Mercurial > cpdt > repo
diff src/Hoas.v @ 167:ef485f86a7b6
Cleaning up BigStep proofs
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Wed, 05 Nov 2008 09:29:15 -0500 |
parents | 73279a8aac71 |
children | 0c5a41e9e508 |
line wrap: on
line diff
--- a/src/Hoas.v Wed Nov 05 09:21:11 2008 -0500 +++ b/src/Hoas.v Wed Nov 05 09:29:15 2008 -0500 @@ -233,54 +233,11 @@ Axiom closed : forall t (E : Exp t), Closed E. -Ltac my_subst := - repeat match goal with - | [ x : type |- _ ] => subst x - end. - Ltac my_crush' := - crush; my_subst; + crush; repeat (match goal with | [ H : _ |- _ ] => generalize (inj_pairT2 _ _ _ _ _ H); clear H - end; crush; my_subst). - -Ltac equate_conj F G := - match constr:(F, G) with - | (_ ?x1, _ ?x2) => constr:(x1 = x2) - | (_ ?x1 ?y1, _ ?x2 ?y2) => constr:(x1 = x2 /\ y1 = y2) - | (_ ?x1 ?y1 ?z1, _ ?x2 ?y2 ?z2) => constr:(x1 = x2 /\ y1 = y2 /\ z1 = z2) - | (_ ?x1 ?y1 ?z1 ?u1, _ ?x2 ?y2 ?z2 ?u2) => constr:(x1 = x2 /\ y1 = y2 /\ z1 = z2 /\ u1 = u2) - | (_ ?x1 ?y1 ?z1 ?u1 ?v1, _ ?x2 ?y2 ?z2 ?u2 ?v2) => constr:(x1 = x2 /\ y1 = y2 /\ z1 = z2 /\ u1 = u2 /\ v1 = v2) - end. - -Ltac my_crush := - my_crush'; - repeat (match goal with - | [ H : ?F = ?G |- _ ] => - (let H' := fresh "H'" in - assert (H' : F (fun _ => unit) = G (fun _ => unit)); [ congruence - | discriminate || injection H'; clear H' ]; - my_crush'; - repeat match goal with - | [ H : context[fun _ => unit] |- _ ] => clear H - end; - match type of H with - | ?F = ?G => - let ec := equate_conj F G in - let var := fresh "var" in - assert ec; [ intuition; unfold Exp; apply ext_eq; intro var; - assert (H' : F var = G var); try congruence; - match type of H' with - | ?X = ?Y => - let X := eval hnf in X in - let Y := eval hnf in Y in - change (X = Y) in H' - end; injection H'; my_crush'; tauto - | intuition; subst ] - end); - clear H - end; my_crush'); - my_crush'. + end; crush). Hint Extern 1 (_ = _ @ _) => simpl. @@ -289,7 +246,7 @@ -> Val E \/ exists E', E ==> E'. induction 1; crush; repeat match goal with - | [ H : Val _ |- _ ] => inversion H; []; clear H; my_crush + | [ H : Val _ |- _ ] => inversion H; []; clear H; my_crush' end; eauto 6. Qed. @@ -401,6 +358,44 @@ Hint Resolve Big_Val'. +Ltac equate_conj F G := + match constr:(F, G) with + | (_ ?x1, _ ?x2) => constr:(x1 = x2) + | (_ ?x1 ?y1, _ ?x2 ?y2) => constr:(x1 = x2 /\ y1 = y2) + | (_ ?x1 ?y1 ?z1, _ ?x2 ?y2 ?z2) => constr:(x1 = x2 /\ y1 = y2 /\ z1 = z2) + | (_ ?x1 ?y1 ?z1 ?u1, _ ?x2 ?y2 ?z2 ?u2) => constr:(x1 = x2 /\ y1 = y2 /\ z1 = z2 /\ u1 = u2) + | (_ ?x1 ?y1 ?z1 ?u1 ?v1, _ ?x2 ?y2 ?z2 ?u2 ?v2) => constr:(x1 = x2 /\ y1 = y2 /\ z1 = z2 /\ u1 = u2 /\ v1 = v2) + end. + +Ltac my_crush := + my_crush'; + repeat (match goal with + | [ H : ?F = ?G |- _ ] => + (let H' := fresh "H'" in + assert (H' : F (fun _ => unit) = G (fun _ => unit)); [ congruence + | discriminate || injection H'; clear H' ]; + my_crush'; + repeat match goal with + | [ H : context[fun _ => unit] |- _ ] => clear H + end; + match type of H with + | ?F = ?G => + let ec := equate_conj F G in + let var := fresh "var" in + assert ec; [ intuition; unfold Exp; apply ext_eq; intro var; + assert (H' : F var = G var); try congruence; + match type of H' with + | ?X = ?Y => + let X := eval hnf in X in + let Y := eval hnf in Y in + change (X = Y) in H' + end; injection H'; my_crush'; tauto + | intuition; subst ] + end); + clear H + end; my_crush'); + my_crush'. + Lemma Multi_Big' : forall t (E E' : Exp t), E ==> E' -> forall E'', E' ===> E''