Mercurial > cpdt > repo
diff src/Hoas.v @ 158:fabfaa93c9ea
Hoas, up to type soundness
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Mon, 03 Nov 2008 09:43:32 -0500 |
parents | |
children | 8b2b652ab0ee |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Hoas.v Mon Nov 03 09:43:32 2008 -0500 @@ -0,0 +1,128 @@ +(* Copyright (c) 2008, Adam Chlipala + * + * This work is licensed under a + * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 + * Unported License. + * The license text is available at: + * http://creativecommons.org/licenses/by-nc-nd/3.0/ + *) + +(* begin hide *) +Require Import Arith Eqdep String List. + +Require Import Tactics. + +Set Implicit Arguments. +(* end hide *) + + +(** %\chapter{Higher-Order Abstract Syntax}% *) + +(** TODO: Prose for this chapter *) + + +(** * Parametric Higher-Order Abstract Syntax *) + +Inductive type : Type := +| Bool : type +| Arrow : type -> type -> type. + +Infix "-->" := Arrow (right associativity, at level 60). + +Section exp. + Variable var : type -> Type. + + Inductive exp : type -> Type := + | Const' : bool -> exp Bool + | Var : forall t, var t -> exp t + | App' : forall dom ran, exp (dom --> ran) -> exp dom -> exp ran + | Abs' : forall dom ran, (var dom -> exp ran) -> exp (dom --> ran). +End exp. + +Implicit Arguments Const' [var]. +Implicit Arguments Var [var t]. +Implicit Arguments Abs' [var dom ran]. + +Definition Exp t := forall var, exp var t. +Definition Exp1 t1 t2 := forall var, var t1 -> exp var t2. + +Definition Const (b : bool) : Exp Bool := + fun _ => Const' b. +Definition App dom ran (F : Exp (dom --> ran)) (X : Exp dom) : Exp ran := + fun _ => App' (F _) (X _). +Definition Abs dom ran (B : Exp1 dom ran) : Exp (dom --> ran) := + fun _ => Abs' (B _). + +Section flatten. + Variable var : type -> Type. + + Fixpoint flatten t (e : exp (exp var) t) {struct e} : exp var t := + match e in exp _ t return exp _ t with + | Const' b => Const' b + | Var _ e' => e' + | App' _ _ e1 e2 => App' (flatten e1) (flatten e2) + | Abs' _ _ e' => Abs' (fun x => flatten (e' (Var x))) + end. +End flatten. + +Definition Subst t1 t2 (E1 : Exp t1) (E2 : Exp1 t1 t2) : Exp t2 := fun _ => + flatten (E2 _ (E1 _)). + + +(** * A Type Soundness Proof *) + +Reserved Notation "E1 ==> E2" (no associativity, at level 90). + +Inductive Val : forall t, Exp t -> Prop := +| VConst : forall b, Val (Const b) +| VAbs : forall dom ran (B : Exp1 dom ran), Val (Abs B). + +Hint Constructors Val. + +Inductive Step : forall t, Exp t -> Exp t -> Prop := +| Beta : forall dom ran (B : Exp1 dom ran) (X : Exp dom), + App (Abs B) X ==> Subst X B +| Cong1 : forall dom ran (F : Exp (dom --> ran)) (X : Exp dom) F', + F ==> F' + -> App F X ==> App F' X +| Cong2 : forall dom ran (F : Exp (dom --> ran)) (X : Exp dom) X', + Val F + -> X ==> X' + -> App F X ==> App F X' + + where "E1 ==> E2" := (Step E1 E2). + +Hint Constructors Step. + +Inductive Closed : forall t, Exp t -> Prop := +| CConst : forall b, + Closed (Const b) +| CApp : forall dom ran (E1 : Exp (dom --> ran)) E2, + Closed E1 + -> Closed E2 + -> Closed (App E1 E2) +| CAbs : forall dom ran (E1 : Exp1 dom ran), + Closed (Abs E1). + +Axiom closed : forall t (E : Exp t), Closed E. + +Ltac my_crush := + crush; + repeat (match goal with + | [ H : _ |- _ ] => generalize (inj_pairT2 _ _ _ _ _ H); clear H + end; crush). + +Lemma progress' : forall t (E : Exp t), + Closed E + -> Val E \/ exists E', E ==> E'. + induction 1; crush; + try match goal with + | [ H : @Val (_ --> _) _ |- _ ] => inversion H; my_crush + end; eauto. +Qed. + +Theorem progress : forall t (E : Exp t), + Val E \/ exists E', E ==> E'. + intros; apply progress'; apply closed. +Qed. +