Mercurial > cpdt > repo
view src/Interps.v @ 189:0198181d1b64
Automated CcExp_correct
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Mon, 17 Nov 2008 10:36:02 -0500 |
parents | cd39a64d41ee |
children | cbf2f74a5130 |
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala * * This work is licensed under a * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 * Unported License. * The license text is available at: * http://creativecommons.org/licenses/by-nc-nd/3.0/ *) (* begin hide *) Require Import String List. Require Import AxiomsImpred Tactics. Set Implicit Arguments. (* end hide *) (** %\chapter{Type-Theoretic Interpreters}% *) (** TODO: Prose for this chapter *) (** * Simply-Typed Lambda Calculus *) Module STLC. Inductive type : Type := | Nat : type | Arrow : type -> type -> type. Infix "-->" := Arrow (right associativity, at level 60). Section vars. Variable var : type -> Type. Inductive exp : type -> Type := | Var : forall t, var t -> exp t | Const : nat -> exp Nat | Plus : exp Nat -> exp Nat -> exp Nat | App : forall t1 t2, exp (t1 --> t2) -> exp t1 -> exp t2 | Abs : forall t1 t2, (var t1 -> exp t2) -> exp (t1 --> t2). End vars. Definition Exp t := forall var, exp var t. Implicit Arguments Var [var t]. Implicit Arguments Const [var]. Implicit Arguments Plus [var]. Implicit Arguments App [var t1 t2]. Implicit Arguments Abs [var t1 t2]. Notation "# v" := (Var v) (at level 70). Notation "^ n" := (Const n) (at level 70). Infix "+^" := Plus (left associativity, at level 79). Infix "@" := App (left associativity, at level 77). Notation "\ x , e" := (Abs (fun x => e)) (at level 78). Notation "\ ! , e" := (Abs (fun _ => e)) (at level 78). Definition zero : Exp Nat := fun _ => ^0. Definition one : Exp Nat := fun _ => ^1. Definition zpo : Exp Nat := fun _ => zero _ +^ one _. Definition ident : Exp (Nat --> Nat) := fun _ => \x, #x. Definition app_ident : Exp Nat := fun _ => ident _ @ zpo _. Definition app : Exp ((Nat --> Nat) --> Nat --> Nat) := fun _ => \f, \x, #f @ #x. Definition app_ident' : Exp Nat := fun _ => app _ @ ident _ @ zpo _. (* EX: Define an interpreter for [Exp]s. *) (* begin thide *) Fixpoint typeDenote (t : type) : Set := match t with | Nat => nat | t1 --> t2 => typeDenote t1 -> typeDenote t2 end. Fixpoint expDenote t (e : exp typeDenote t) {struct e} : typeDenote t := match e in (exp _ t) return (typeDenote t) with | Var _ v => v | Const n => n | Plus e1 e2 => expDenote e1 + expDenote e2 | App _ _ e1 e2 => (expDenote e1) (expDenote e2) | Abs _ _ e' => fun x => expDenote (e' x) end. Definition ExpDenote t (e : Exp t) := expDenote (e _). (* end thide *) Eval compute in ExpDenote zero. Eval compute in ExpDenote one. Eval compute in ExpDenote zpo. Eval compute in ExpDenote ident. Eval compute in ExpDenote app_ident. Eval compute in ExpDenote app. Eval compute in ExpDenote app_ident'. (* EX: Define a constant-folding function for [Exp]s. *) (* begin thide *) Section cfold. Variable var : type -> Type. Fixpoint cfold t (e : exp var t) {struct e} : exp var t := match e in exp _ t return exp _ t with | Var _ v => #v | Const n => ^n | Plus e1 e2 => let e1' := cfold e1 in let e2' := cfold e2 in match e1', e2' with | Const n1, Const n2 => ^(n1 + n2) | _, _ => e1' +^ e2' end | App _ _ e1 e2 => cfold e1 @ cfold e2 | Abs _ _ e' => Abs (fun x => cfold (e' x)) end. End cfold. Definition Cfold t (E : Exp t) : Exp t := fun _ => cfold (E _). (* end thide *) (* EX: Prove the correctness of constant-folding. *) (* begin thide *) Lemma cfold_correct : forall t (e : exp _ t), expDenote (cfold e) = expDenote e. induction e; crush; try (ext_eq; crush); repeat (match goal with | [ |- context[cfold ?E] ] => dep_destruct (cfold E) end; crush). Qed. Theorem Cfold_correct : forall t (E : Exp t), ExpDenote (Cfold E) = ExpDenote E. unfold ExpDenote, Cfold; intros; apply cfold_correct. Qed. (* end thide *) End STLC. (** * Adding Products and Sums *) Module PSLC. (* EX: Extend the development with products and sums. *) (* begin thide *) Inductive type : Type := | Nat : type | Arrow : type -> type -> type | Prod : type -> type -> type | Sum : type -> type -> type. (* end thide *) Infix "-->" := Arrow (right associativity, at level 62). Infix "**" := Prod (right associativity, at level 61). Infix "++" := Sum (right associativity, at level 60). (* begin thide *) Section vars. Variable var : type -> Type. Inductive exp : type -> Type := | Var : forall t, var t -> exp t | Const : nat -> exp Nat | Plus : exp Nat -> exp Nat -> exp Nat | App : forall t1 t2, exp (t1 --> t2) -> exp t1 -> exp t2 | Abs : forall t1 t2, (var t1 -> exp t2) -> exp (t1 --> t2) | Pair : forall t1 t2, exp t1 -> exp t2 -> exp (t1 ** t2) | Fst : forall t1 t2, exp (t1 ** t2) -> exp t1 | Snd : forall t1 t2, exp (t1 ** t2) -> exp t2 | Inl : forall t1 t2, exp t1 -> exp (t1 ++ t2) | Inr : forall t1 t2, exp t2 -> exp (t1 ++ t2) | SumCase : forall t1 t2 t, exp (t1 ++ t2) -> (var t1 -> exp t) -> (var t2 -> exp t) -> exp t. End vars. Definition Exp t := forall var, exp var t. (* end thide *) Implicit Arguments Var [var t]. Implicit Arguments Const [var]. Implicit Arguments Abs [var t1 t2]. Implicit Arguments Inl [var t1 t2]. Implicit Arguments Inr [var t1 t2]. Notation "# v" := (Var v) (at level 70). Notation "^ n" := (Const n) (at level 70). Infix "+^" := Plus (left associativity, at level 78). Infix "@" := App (left associativity, at level 77). Notation "\ x , e" := (Abs (fun x => e)) (at level 78). Notation "\ ! , e" := (Abs (fun _ => e)) (at level 78). Notation "[ e1 , e2 ]" := (Pair e1 e2). Notation "#1 e" := (Fst e) (at level 75). Notation "#2 e" := (Snd e) (at level 75). Notation "'case' e 'of' x => e1 | y => e2" := (SumCase e (fun x => e1) (fun y => e2)) (at level 79). Definition swap : Exp (Nat ** Nat --> Nat ** Nat) := fun _ => \p, [#2 #p, #1 #p]. Definition zo : Exp (Nat ** Nat) := fun _ => [^0, ^1]. Definition swap_zo : Exp (Nat ** Nat) := fun _ => swap _ @ zo _. Definition natOut : Exp (Nat ++ Nat --> Nat) := fun _ => \s, case #s of x => #x | y => #y +^ #y. Definition ns1 : Exp (Nat ++ Nat) := fun _ => Inl (^3). Definition ns2 : Exp (Nat ++ Nat) := fun _ => Inr (^5). Definition natOut_ns1 : Exp Nat := fun _ => natOut _ @ ns1 _. Definition natOut_ns2 : Exp Nat := fun _ => natOut _ @ ns2 _. (* begin thide *) Fixpoint typeDenote (t : type) : Set := match t with | Nat => nat | t1 --> t2 => typeDenote t1 -> typeDenote t2 | t1 ** t2 => typeDenote t1 * typeDenote t2 | t1 ++ t2 => typeDenote t1 + typeDenote t2 end%type. Fixpoint expDenote t (e : exp typeDenote t) {struct e} : typeDenote t := match e in (exp _ t) return (typeDenote t) with | Var _ v => v | Const n => n | Plus e1 e2 => expDenote e1 + expDenote e2 | App _ _ e1 e2 => (expDenote e1) (expDenote e2) | Abs _ _ e' => fun x => expDenote (e' x) | Pair _ _ e1 e2 => (expDenote e1, expDenote e2) | Fst _ _ e' => fst (expDenote e') | Snd _ _ e' => snd (expDenote e') | Inl _ _ e' => inl _ (expDenote e') | Inr _ _ e' => inr _ (expDenote e') | SumCase _ _ _ e' e1 e2 => match expDenote e' with | inl v => expDenote (e1 v) | inr v => expDenote (e2 v) end end. Definition ExpDenote t (e : Exp t) := expDenote (e _). (* end thide *) Eval compute in ExpDenote swap. Eval compute in ExpDenote zo. Eval compute in ExpDenote swap_zo. Eval compute in ExpDenote natOut. Eval compute in ExpDenote ns1. Eval compute in ExpDenote ns2. Eval compute in ExpDenote natOut_ns1. Eval compute in ExpDenote natOut_ns2. (* begin thide *) Section cfold. Variable var : type -> Type. Definition pairOutType t := match t with | t1 ** t2 => option (exp var t1 * exp var t2) | _ => unit end. Definition pairOutDefault (t : type) : pairOutType t := match t return pairOutType t with | _ ** _ => None | _ => tt end. Definition pairOut t1 t2 (e : exp var (t1 ** t2)) : option (exp var t1 * exp var t2) := match e in exp _ t return pairOutType t with | Pair _ _ e1 e2 => Some (e1, e2) | _ => pairOutDefault _ end. Fixpoint cfold t (e : exp var t) {struct e} : exp var t := match e in exp _ t return exp _ t with | Var _ v => #v | Const n => ^n | Plus e1 e2 => let e1' := cfold e1 in let e2' := cfold e2 in match e1', e2' with | Const n1, Const n2 => ^(n1 + n2) | _, _ => e1' +^ e2' end | App _ _ e1 e2 => cfold e1 @ cfold e2 | Abs _ _ e' => Abs (fun x => cfold (e' x)) | Pair _ _ e1 e2 => [cfold e1, cfold e2] | Fst t1 _ e' => let e'' := cfold e' in match pairOut e'' with | None => #1 e'' | Some (e1, _) => e1 end | Snd _ _ e' => let e'' := cfold e' in match pairOut e'' with | None => #2 e'' | Some (_, e2) => e2 end | Inl _ _ e' => Inl (cfold e') | Inr _ _ e' => Inr (cfold e') | SumCase _ _ _ e' e1 e2 => case cfold e' of x => cfold (e1 x) | y => cfold (e2 y) end. End cfold. Definition Cfold t (E : Exp t) : Exp t := fun _ => cfold (E _). Section pairs. Variables A B : Type. Variable v1 : A. Variable v2 : B. Variable v : A * B. Theorem pair_eta1 : (v1, v2) = v -> v1 = fst v. destruct v; crush. Qed. Theorem pair_eta2 : (v1, v2) = v -> v2 = snd v. destruct v; crush. Qed. End pairs. Hint Resolve pair_eta1 pair_eta2. Lemma cfold_correct : forall t (e : exp _ t), expDenote (cfold e) = expDenote e. induction e; crush; try (ext_eq; crush); repeat (match goal with | [ |- context[cfold ?E] ] => dep_destruct (cfold E) | [ |- match ?E with inl _ => _ | inr _ => _ end = _ ] => destruct E end; crush); eauto. Qed. Theorem Cfold_correct : forall t (E : Exp t), ExpDenote (Cfold E) = ExpDenote E. unfold ExpDenote, Cfold; intros; apply cfold_correct. Qed. (* end thide *) End PSLC. (** * Type Variables *) Module SysF. (* EX: Follow a similar progression for System F. *) (* begin thide *) Section vars. Variable tvar : Type. Inductive type : Type := | Nat : type | Arrow : type -> type -> type | TVar : tvar -> type | All : (tvar -> type) -> type. Notation "## v" := (TVar v) (at level 40). Infix "-->" := Arrow (right associativity, at level 60). Section Subst. Variable t : type. Inductive Subst : (tvar -> type) -> type -> Prop := | SNat : Subst (fun _ => Nat) Nat | SArrow : forall dom ran dom' ran', Subst dom dom' -> Subst ran ran' -> Subst (fun v => dom v --> ran v) (dom' --> ran') | SVarEq : Subst TVar t | SVarNe : forall v, Subst (fun _ => ##v) (##v) | SAll : forall ran ran', (forall v', Subst (fun v => ran v v') (ran' v')) -> Subst (fun v => All (ran v)) (All ran'). End Subst. Variable var : type -> Type. Inductive exp : type -> Type := | Var : forall t, var t -> exp t | Const : nat -> exp Nat | Plus : exp Nat -> exp Nat -> exp Nat | App : forall t1 t2, exp (t1 --> t2) -> exp t1 -> exp t2 | Abs : forall t1 t2, (var t1 -> exp t2) -> exp (t1 --> t2) | TApp : forall tf, exp (All tf) -> forall t tf', Subst t tf tf' -> exp tf' | TAbs : forall tf, (forall v, exp (tf v)) -> exp (All tf). End vars. Definition Typ := forall tvar, type tvar. Definition Exp (T : Typ) := forall tvar (var : type tvar -> Type), exp var (T _). (* end thide *) Implicit Arguments Nat [tvar]. Notation "## v" := (TVar v) (at level 40). Infix "-->" := Arrow (right associativity, at level 60). Notation "\\\ x , t" := (All (fun x => t)) (at level 65). Implicit Arguments Var [tvar var t]. Implicit Arguments Const [tvar var]. Implicit Arguments Plus [tvar var]. Implicit Arguments App [tvar var t1 t2]. Implicit Arguments Abs [tvar var t1 t2]. Implicit Arguments TAbs [tvar var tf]. Notation "# v" := (Var v) (at level 70). Notation "^ n" := (Const n) (at level 70). Infix "+^" := Plus (left associativity, at level 79). Infix "@" := App (left associativity, at level 77). Notation "\ x , e" := (Abs (fun x => e)) (at level 78). Notation "\ ! , e" := (Abs (fun _ => e)) (at level 78). Notation "e @@ t" := (TApp e (t := t) _) (left associativity, at level 77). Notation "\\ x , e" := (TAbs (fun x => e)) (at level 78). Notation "\\ ! , e" := (TAbs (fun _ => e)) (at level 78). Definition zero : Exp (fun _ => Nat) := fun _ _ => ^0. Definition ident : Exp (fun _ => \\\T, ##T --> ##T) := fun _ _ => \\T, \x, #x. Definition ident_zero : Exp (fun _ => Nat). do 2 intro; refine (ident _ @@ _ @ zero _); repeat constructor. Defined. Definition ident_ident : Exp (fun _ => \\\T, ##T --> ##T). do 2 intro; refine (ident _ @@ _ @ ident _); repeat constructor. Defined. Definition ident5 : Exp (fun _ => \\\T, ##T --> ##T). do 2 intro; refine (ident_ident _ @@ _ @ ident_ident _ @@ _ @ ident _); repeat constructor. Defined. (* begin thide *) Fixpoint typeDenote (t : type Set) : Set := match t with | Nat => nat | t1 --> t2 => typeDenote t1 -> typeDenote t2 | ##v => v | All tf => forall T, typeDenote (tf T) end. Lemma Subst_typeDenote : forall t tf tf', Subst t tf tf' -> typeDenote (tf (typeDenote t)) = typeDenote tf'. induction 1; crush; ext_eq; crush. Defined. Fixpoint expDenote t (e : exp typeDenote t) {struct e} : typeDenote t := match e in (exp _ t) return (typeDenote t) with | Var _ v => v | Const n => n | Plus e1 e2 => expDenote e1 + expDenote e2 | App _ _ e1 e2 => (expDenote e1) (expDenote e2) | Abs _ _ e' => fun x => expDenote (e' x) | TApp _ e' t' _ pf => match Subst_typeDenote pf in _ = T return T with | refl_equal => (expDenote e') (typeDenote t') end | TAbs _ e' => fun T => expDenote (e' T) end. Definition ExpDenote T (E : Exp T) := expDenote (E _ _). (* end thide *) Eval compute in ExpDenote zero. Eval compute in ExpDenote ident. Eval compute in ExpDenote ident_zero. Eval compute in ExpDenote ident_ident. Eval compute in ExpDenote ident5. (* begin thide *) Section cfold. Variable tvar : Type. Variable var : type tvar -> Type. Fixpoint cfold t (e : exp var t) {struct e} : exp var t := match e in exp _ t return exp _ t with | Var _ v => #v | Const n => ^n | Plus e1 e2 => let e1' := cfold e1 in let e2' := cfold e2 in match e1', e2' with | Const n1, Const n2 => ^(n1 + n2) | _, _ => e1' +^ e2' end | App _ _ e1 e2 => cfold e1 @ cfold e2 | Abs _ _ e' => Abs (fun x => cfold (e' x)) | TApp _ e' _ _ pf => TApp (cfold e') pf | TAbs _ e' => \\T, cfold (e' T) end. End cfold. Definition Cfold T (E : Exp T) : Exp T := fun _ _ => cfold (E _ _). Lemma cfold_correct : forall t (e : exp _ t), expDenote (cfold e) = expDenote e. induction e; crush; try (ext_eq; crush); repeat (match goal with | [ |- context[cfold ?E] ] => dep_destruct (cfold E) end; crush). Qed. Theorem Cfold_correct : forall t (E : Exp t), ExpDenote (Cfold E) = ExpDenote E. unfold ExpDenote, Cfold; intros; apply cfold_correct. Qed. (* end thide *) End SysF.