Mercurial > cpdt > repo
view src/Generic.v @ 194:063b5741c248
Generic size examples
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Fri, 28 Nov 2008 11:21:01 -0500 |
parents | 8e9499e27b6c |
children | 3676acc40ce1 |
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala * * This work is licensed under a * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 * Unported License. * The license text is available at: * http://creativecommons.org/licenses/by-nc-nd/3.0/ *) (* begin hide *) Require Import List. Require Import Tactics DepList. Set Implicit Arguments. (* end hide *) (** %\part{Chapters to be Moved Earlier} \chapter{Generic Programming}% *) (** TODO: Prose for this chapter *) (** * Simple Algebraic Datatypes *) Record constructor : Type := Con { nonrecursive : Type; recursive : nat }. Definition datatype := list constructor. Definition Empty_set_dt : datatype := nil. Definition unit_dt : datatype := Con unit 0 :: nil. Definition bool_dt : datatype := Con unit 0 :: Con unit 0 :: nil. Definition nat_dt : datatype := Con unit 0 :: Con unit 1 :: nil. Definition list_dt (A : Type) : datatype := Con unit 0 :: Con A 1 :: nil. Section tree. Variable A : Type. Inductive tree : Type := | Leaf : A -> tree | Node : tree -> tree -> tree. End tree. Definition tree_dt (A : Type) : datatype := Con A 0 :: Con unit 2 :: nil. Section denote. Variable T : Type. Definition constructorDenote (c : constructor) := nonrecursive c -> ilist T (recursive c) -> T. Definition datatypeDenote := hlist constructorDenote. End denote. Notation "[ ! , ! ~> x ]" := ((fun _ _ => x) : constructorDenote _ (Con _ _)). Notation "[ v , ! ~> x ]" := ((fun v _ => x) : constructorDenote _ (Con _ _)). Notation "[ ! , r # n ~> x ]" := ((fun _ r => x) : constructorDenote _ (Con _ n)). Notation "[ v , r # n ~> x ]" := ((fun v r => x) : constructorDenote _ (Con _ n)). Definition Empty_set_den : datatypeDenote Empty_set Empty_set_dt := hnil. Definition unit_den : datatypeDenote unit unit_dt := [!, ! ~> tt] ::: hnil. Definition bool_den : datatypeDenote bool bool_dt := [!, ! ~> true] ::: [!, ! ~> false] ::: hnil. Definition nat_den : datatypeDenote nat nat_dt := [!, ! ~> O] ::: [!, r # 1 ~> S (hd r)] ::: hnil. Definition list_den (A : Type) : datatypeDenote (list A) (list_dt A) := [!, ! ~> nil] ::: [x, r # 1 ~> x :: hd r] ::: hnil. Definition tree_den (A : Type) : datatypeDenote (tree A) (tree_dt A) := [v, ! ~> Leaf v] ::: [!, r # 2 ~> Node (hd r) (hd (tl r))] ::: hnil. Definition fixDenote (T : Type) (dt : datatype) := forall (R : Type), datatypeDenote R dt -> (T -> R). Definition size T dt (fx : fixDenote T dt) : T -> nat := fx nat (hmake (B := constructorDenote nat) (fun _ _ r => foldr plus 1 r) dt). Definition Empty_set_fix : fixDenote Empty_set Empty_set_dt := fun R _ emp => match emp with end. Eval compute in size Empty_set_fix. Definition unit_fix : fixDenote unit unit_dt := fun R cases _ => (fst cases) tt inil. Eval compute in size unit_fix. Definition bool_fix : fixDenote bool bool_dt := fun R cases b => if b then (fst cases) tt inil else (fst (snd cases)) tt inil. Eval compute in size bool_fix. Definition nat_fix : fixDenote nat nat_dt := fun R cases => fix F (n : nat) : R := match n with | O => (fst cases) tt inil | S n' => (fst (snd cases)) tt (icons (F n') inil) end. Eval cbv beta iota delta -[plus] in size nat_fix. Definition list_fix (A : Type) : fixDenote (list A) (list_dt A) := fun R cases => fix F (ls : list A) : R := match ls with | nil => (fst cases) tt inil | x :: ls' => (fst (snd cases)) x (icons (F ls') inil) end. Eval cbv beta iota delta -[plus] in fun A => size (@list_fix A). Definition tree_fix (A : Type) : fixDenote (tree A) (tree_dt A) := fun R cases => fix F (t : tree A) : R := match t with | Leaf x => (fst cases) x inil | Node t1 t2 => (fst (snd cases)) tt (icons (F t1) (icons (F t2) inil)) end. Eval cbv beta iota delta -[plus] in fun A => size (@tree_fix A).