view src/Tactics.v @ 70:1e3c49602384

Start of Subset
author Adam Chlipala <adamc@hcoop.net>
date Fri, 03 Oct 2008 11:39:59 -0400
parents b52204928c7d
children 506a06118014
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala
 * 
 * This work is licensed under a
 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
 * Unported License.
 * The license text is available at:
 *   http://creativecommons.org/licenses/by-nc-nd/3.0/
 *)

Require Import List.

Require Omega.

Set Implicit Arguments.


Ltac inject H := injection H; clear H; intros; try subst.

Ltac appHyps f :=
  match goal with
    | [ H : _ |- _ ] => f H
  end.

Ltac inList x ls :=
  match ls with
    | x => idtac
    | (?LS, _) => inList x LS
  end.

Ltac app f ls :=
  match ls with
    | (?LS, ?X) => f X || app f LS || fail 1
    | _ => f ls
  end.

Ltac all f ls :=
  match ls with
    | (?LS, ?X) => f X; all f LS
    | (_, _) => fail 1
    | _ => f ls
  end.

Ltac simplHyp invOne :=
  match goal with
    | [ H : ex _ |- _ ] => destruct H

    | [ H : ?F _ = ?F _ |- _ ] => injection H;
      match goal with
        | [ |- _ = _ -> _ ] => clear H; intros; try subst
      end
    | [ H : ?F _ _ = ?F _ _ |- _ ] => injection H;
      match goal with
        | [ |- _ = _ -> _ = _ -> _ ] => clear H; intros; try subst
      end

    | [ H : ?F _ |- _ ] => inList F invOne; inversion H; [idtac]; clear H; try subst
    | [ H : ?F _ _ |- _ ] => inList F invOne; inversion H; [idtac]; clear H; try subst
  end.

Ltac rewriteHyp :=
  match goal with
    | [ H : _ |- _ ] => rewrite H
  end.

Ltac rewriterP := repeat (rewriteHyp; autorewrite with cpdt in *).

Ltac rewriter := autorewrite with cpdt in *; rewriterP.

Hint Rewrite app_ass : cpdt.

Definition done (T : Type) (x : T) := True.

Ltac inster e trace :=
  match type of e with
    | forall x : _, _ =>
      match goal with
        | [ H : _ |- _ ] =>
          inster (e H) (trace, H)
        | _ => fail 2
      end
    | _ =>
      match trace with
        | (_, _) =>
          match goal with
            | [ H : done (trace, _) |- _ ] => fail 1
            | _ =>
              let T := type of e in
                match type of T with
                  | Prop =>
                    generalize e; intro;
                      assert (done (trace, tt)); [constructor | idtac]
                  | _ =>
                    all ltac:(fun X =>
                      match goal with
                        | [ H : done (_, X) |- _ ] => fail 1
                        | _ => idtac
                      end) trace;
                    let i := fresh "i" in (pose (i := e);
                      assert (done (trace, i)); [constructor | idtac])
                end
          end
      end
  end.

Ltac un_done :=
  repeat match goal with
           | [ H : done _ |- _ ] => clear H
         end.

Ltac crush' lemmas invOne :=
  let sintuition := simpl in *; intuition; try subst; repeat (simplHyp invOne; intuition; try subst); try congruence
    in (sintuition; rewriter;
      repeat ((app ltac:(fun L => inster L L) lemmas || appHyps ltac:(fun L => inster L L));
        repeat (simplHyp invOne; intuition));
      un_done; sintuition; try omega).

Ltac crush := crush' tt fail.