Mercurial > cpdt > repo
view src/Hoas.v @ 172:653c03f6061e
Examples; pair optimization
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Sun, 09 Nov 2008 14:24:31 -0500 |
parents | 8905f28ffeef |
children | 13620dfd5f97 |
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala * * This work is licensed under a * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 * Unported License. * The license text is available at: * http://creativecommons.org/licenses/by-nc-nd/3.0/ *) (* begin hide *) Require Import Eqdep String List. Require Import Axioms Tactics. Set Implicit Arguments. (* end hide *) (** %\chapter{Higher-Order Abstract Syntax}% *) (** TODO: Prose for this chapter *) (** * Parametric Higher-Order Abstract Syntax *) Inductive type : Type := | Nat : type | Arrow : type -> type -> type. Infix "-->" := Arrow (right associativity, at level 60). Section exp. Variable var : type -> Type. Inductive exp : type -> Type := | Const' : nat -> exp Nat | Plus' : exp Nat -> exp Nat -> exp Nat | Var : forall t, var t -> exp t | App' : forall dom ran, exp (dom --> ran) -> exp dom -> exp ran | Abs' : forall dom ran, (var dom -> exp ran) -> exp (dom --> ran). End exp. Implicit Arguments Const' [var]. Implicit Arguments Var [var t]. Implicit Arguments Abs' [var dom ran]. Definition Exp t := forall var, exp var t. (* begin thide *) Definition Exp1 t1 t2 := forall var, var t1 -> exp var t2. Definition Const (n : nat) : Exp Nat := fun _ => Const' n. Definition Plus (E1 E2 : Exp Nat) : Exp Nat := fun _ => Plus' (E1 _) (E2 _). Definition App dom ran (F : Exp (dom --> ran)) (X : Exp dom) : Exp ran := fun _ => App' (F _) (X _). Definition Abs dom ran (B : Exp1 dom ran) : Exp (dom --> ran) := fun _ => Abs' (B _). (* end thide *) (* EX: Define appropriate shorthands, so that these definitions type-check. *) Definition zero := Const 0. Definition one := Const 1. Definition one_again := Plus zero one. Definition ident : Exp (Nat --> Nat) := Abs (fun _ X => Var X). Definition app_ident := App ident one_again. Definition app : Exp ((Nat --> Nat) --> Nat --> Nat) := fun _ => Abs' (fun f => Abs' (fun x => App' (Var f) (Var x))). Definition app_ident' := App (App app ident) one_again. (* EX: Define a function to count the number of variable occurrences in an [Exp]. *) (* begin thide *) Fixpoint countVars t (e : exp (fun _ => unit) t) {struct e} : nat := match e with | Const' _ => 0 | Plus' e1 e2 => countVars e1 + countVars e2 | Var _ _ => 1 | App' _ _ e1 e2 => countVars e1 + countVars e2 | Abs' _ _ e' => countVars (e' tt) end. Definition CountVars t (E : Exp t) : nat := countVars (E _). (* end thide *) Eval compute in CountVars zero. Eval compute in CountVars one. Eval compute in CountVars one_again. Eval compute in CountVars ident. Eval compute in CountVars app_ident. Eval compute in CountVars app. Eval compute in CountVars app_ident'. (* EX: Define a function to count the number of occurrences of a single distinguished variable. *) (* begin thide *) Fixpoint countOne t (e : exp (fun _ => bool) t) {struct e} : nat := match e with | Const' _ => 0 | Plus' e1 e2 => countOne e1 + countOne e2 | Var _ true => 1 | Var _ false => 0 | App' _ _ e1 e2 => countOne e1 + countOne e2 | Abs' _ _ e' => countOne (e' false) end. Definition CountOne t1 t2 (E : Exp1 t1 t2) : nat := countOne (E _ true). (* end thide *) Definition ident1 : Exp1 Nat Nat := fun _ X => Var X. Definition add_self : Exp1 Nat Nat := fun _ X => Plus' (Var X) (Var X). Definition app_zero : Exp1 (Nat --> Nat) Nat := fun _ X => App' (Var X) (Const' 0). Definition app_ident1 : Exp1 Nat Nat := fun _ X => App' (Abs' (fun Y => Var Y)) (Var X). Eval compute in CountOne ident1. Eval compute in CountOne add_self. Eval compute in CountOne app_zero. Eval compute in CountOne app_ident1. (* EX: Define a function to pretty-print [Exp]s as strings. *) (* begin thide *) Section ToString. Open Scope string_scope. Fixpoint natToString (n : nat) : string := match n with | O => "O" | S n' => "S(" ++ natToString n' ++ ")" end. Fixpoint toString t (e : exp (fun _ => string) t) (cur : string) {struct e} : string * string := match e with | Const' n => (cur, natToString n) | Plus' e1 e2 => let (cur', s1) := toString e1 cur in let (cur'', s2) := toString e2 cur' in (cur'', "(" ++ s1 ++ ") + (" ++ s2 ++ ")") | Var _ s => (cur, s) | App' _ _ e1 e2 => let (cur', s1) := toString e1 cur in let (cur'', s2) := toString e2 cur' in (cur'', "(" ++ s1 ++ ") (" ++ s2 ++ ")") | Abs' _ _ e' => let (cur', s) := toString (e' cur) (cur ++ "'") in (cur', "(\" ++ cur ++ ", " ++ s ++ ")") end. Definition ToString t (E : Exp t) : string := snd (toString (E _) "x"). End ToString. (* end thide *) Eval compute in ToString zero. Eval compute in ToString one. Eval compute in ToString one_again. Eval compute in ToString ident. Eval compute in ToString app_ident. Eval compute in ToString app. Eval compute in ToString app_ident'. (* EX: Define a substitution function. *) (* begin thide *) Section flatten. Variable var : type -> Type. Fixpoint flatten t (e : exp (exp var) t) {struct e} : exp var t := match e in exp _ t return exp _ t with | Const' n => Const' n | Plus' e1 e2 => Plus' (flatten e1) (flatten e2) | Var _ e' => e' | App' _ _ e1 e2 => App' (flatten e1) (flatten e2) | Abs' _ _ e' => Abs' (fun x => flatten (e' (Var x))) end. End flatten. Definition Subst t1 t2 (E1 : Exp t1) (E2 : Exp1 t1 t2) : Exp t2 := fun _ => flatten (E2 _ (E1 _)). (* end thide *) Eval compute in Subst one ident1. Eval compute in Subst one add_self. Eval compute in Subst ident app_zero. Eval compute in Subst one app_ident1. (** * A Type Soundness Proof *) Reserved Notation "E1 ==> E2" (no associativity, at level 90). Inductive Val : forall t, Exp t -> Prop := | VConst : forall n, Val (Const n) | VAbs : forall dom ran (B : Exp1 dom ran), Val (Abs B). Hint Constructors Val. Inductive Ctx : type -> type -> Type := | AppCong1 : forall (dom ran : type), Exp dom -> Ctx (dom --> ran) ran | AppCong2 : forall (dom ran : type), Exp (dom --> ran) -> Ctx dom ran | PlusCong1 : Exp Nat -> Ctx Nat Nat | PlusCong2 : Exp Nat -> Ctx Nat Nat. Inductive isCtx : forall t1 t2, Ctx t1 t2 -> Prop := | IsApp1 : forall dom ran (X : Exp dom), isCtx (AppCong1 ran X) | IsApp2 : forall dom ran (F : Exp (dom --> ran)), Val F -> isCtx (AppCong2 F) | IsPlus1 : forall E2, isCtx (PlusCong1 E2) | IsPlus2 : forall E1, Val E1 -> isCtx (PlusCong2 E1). Definition plug t1 t2 (C : Ctx t1 t2) : Exp t1 -> Exp t2 := match C in Ctx t1 t2 return Exp t1 -> Exp t2 with | AppCong1 _ _ X => fun F => App F X | AppCong2 _ _ F => fun X => App F X | PlusCong1 E2 => fun E1 => Plus E1 E2 | PlusCong2 E1 => fun E2 => Plus E1 E2 end. Infix "@" := plug (no associativity, at level 60). Inductive Step : forall t, Exp t -> Exp t -> Prop := | Beta : forall dom ran (B : Exp1 dom ran) (X : Exp dom), Val X -> App (Abs B) X ==> Subst X B | Sum : forall n1 n2, Plus (Const n1) (Const n2) ==> Const (n1 + n2) | Cong : forall t t' (C : Ctx t t') E E' E1, isCtx C -> E1 = C @ E -> E ==> E' -> E1 ==> C @ E' where "E1 ==> E2" := (Step E1 E2). Hint Constructors isCtx Step. (* EX: Prove type soundness. *) (* begin thide *) Inductive Closed : forall t, Exp t -> Prop := | CConst : forall n, Closed (Const n) | CPlus : forall E1 E2, Closed E1 -> Closed E2 -> Closed (Plus E1 E2) | CApp : forall dom ran (E1 : Exp (dom --> ran)) E2, Closed E1 -> Closed E2 -> Closed (App E1 E2) | CAbs : forall dom ran (E1 : Exp1 dom ran), Closed (Abs E1). Axiom closed : forall t (E : Exp t), Closed E. Ltac my_crush' := crush; repeat (match goal with | [ H : _ |- _ ] => generalize (inj_pairT2 _ _ _ _ _ H); clear H end; crush). Hint Extern 1 (_ = _ @ _) => simpl. Lemma progress' : forall t (E : Exp t), Closed E -> Val E \/ exists E', E ==> E'. induction 1; crush; repeat match goal with | [ H : Val _ |- _ ] => inversion H; []; clear H; my_crush' end; eauto 6. Qed. Theorem progress : forall t (E : Exp t), Val E \/ exists E', E ==> E'. intros; apply progress'; apply closed. Qed. (* end thide *) (** * Big-Step Semantics *) Reserved Notation "E1 ===> E2" (no associativity, at level 90). Inductive BigStep : forall t, Exp t -> Exp t -> Prop := | SConst : forall n, Const n ===> Const n | SPlus : forall E1 E2 n1 n2, E1 ===> Const n1 -> E2 ===> Const n2 -> Plus E1 E2 ===> Const (n1 + n2) | SApp : forall dom ran (E1 : Exp (dom --> ran)) E2 B V2 V, E1 ===> Abs B -> E2 ===> V2 -> Subst V2 B ===> V -> App E1 E2 ===> V | SAbs : forall dom ran (B : Exp1 dom ran), Abs B ===> Abs B where "E1 ===> E2" := (BigStep E1 E2). Hint Constructors BigStep. (* EX: Prove the equivalence of the small- and big-step semantics. *) (* begin thide *) Reserved Notation "E1 ==>* E2" (no associativity, at level 90). Inductive MultiStep : forall t, Exp t -> Exp t -> Prop := | Done : forall t (E : Exp t), E ==>* E | OneStep : forall t (E E' E'' : Exp t), E ==> E' -> E' ==>* E'' -> E ==>* E'' where "E1 ==>* E2" := (MultiStep E1 E2). Hint Constructors MultiStep. Theorem MultiStep_trans : forall t (E1 E2 E3 : Exp t), E1 ==>* E2 -> E2 ==>* E3 -> E1 ==>* E3. induction 1; eauto. Qed. Theorem Big_Val : forall t (E V : Exp t), E ===> V -> Val V. induction 1; crush. Qed. Theorem Val_Big : forall t (V : Exp t), Val V -> V ===> V. destruct 1; crush. Qed. Hint Resolve Big_Val Val_Big. Lemma Multi_Cong : forall t t' (C : Ctx t t'), isCtx C -> forall E E', E ==>* E' -> C @ E ==>* C @ E'. induction 2; crush; eauto. Qed. Lemma Multi_Cong' : forall t t' (C : Ctx t t') E1 E2 E E', isCtx C -> E1 = C @ E -> E2 = C @ E' -> E ==>* E' -> E1 ==>* E2. crush; apply Multi_Cong; auto. Qed. Hint Resolve Multi_Cong'. Ltac mtrans E := match goal with | [ |- E ==>* _ ] => fail 1 | _ => apply MultiStep_trans with E; [ solve [ eauto ] | eauto ] end. Theorem Big_Multi : forall t (E V : Exp t), E ===> V -> E ==>* V. induction 1; crush; eauto; repeat match goal with | [ n1 : _, E2 : _ |- _ ] => mtrans (Plus (Const n1) E2) | [ n1 : _, n2 : _ |- _ ] => mtrans (Plus (Const n1) (Const n2)) | [ B : _, E2 : _ |- _ ] => mtrans (App (Abs B) E2) end. Qed. Lemma Big_Val' : forall t (V1 V2 : Exp t), Val V2 -> V1 = V2 -> V1 ===> V2. crush. Qed. Hint Resolve Big_Val'. Ltac equate_conj F G := match constr:(F, G) with | (_ ?x1, _ ?x2) => constr:(x1 = x2) | (_ ?x1 ?y1, _ ?x2 ?y2) => constr:(x1 = x2 /\ y1 = y2) | (_ ?x1 ?y1 ?z1, _ ?x2 ?y2 ?z2) => constr:(x1 = x2 /\ y1 = y2 /\ z1 = z2) | (_ ?x1 ?y1 ?z1 ?u1, _ ?x2 ?y2 ?z2 ?u2) => constr:(x1 = x2 /\ y1 = y2 /\ z1 = z2 /\ u1 = u2) | (_ ?x1 ?y1 ?z1 ?u1 ?v1, _ ?x2 ?y2 ?z2 ?u2 ?v2) => constr:(x1 = x2 /\ y1 = y2 /\ z1 = z2 /\ u1 = u2 /\ v1 = v2) end. Ltac my_crush := my_crush'; repeat (match goal with | [ H : ?F = ?G |- _ ] => (let H' := fresh "H'" in assert (H' : F (fun _ => unit) = G (fun _ => unit)); [ congruence | discriminate || injection H'; clear H' ]; my_crush'; repeat match goal with | [ H : context[fun _ => unit] |- _ ] => clear H end; match type of H with | ?F = ?G => let ec := equate_conj F G in let var := fresh "var" in assert ec; [ intuition; unfold Exp; apply ext_eq; intro var; assert (H' : F var = G var); try congruence; match type of H' with | ?X = ?Y => let X := eval hnf in X in let Y := eval hnf in Y in change (X = Y) in H' end; injection H'; my_crush'; tauto | intuition; subst ] end); clear H end; my_crush'); my_crush'. Lemma Multi_Big' : forall t (E E' : Exp t), E ==> E' -> forall E'', E' ===> E'' -> E ===> E''. induction 1; crush; eauto; match goal with | [ H : _ ===> _ |- _ ] => inversion H; my_crush; eauto end; match goal with | [ H : isCtx _ |- _ ] => inversion H; my_crush; eauto end. Qed. Hint Resolve Multi_Big'. Theorem Multi_Big : forall t (E V : Exp t), E ==>* V -> Val V -> E ===> V. induction 1; crush; eauto. Qed. (* end thide *)