view src/Firstorder.v @ 152:8157e8e28e2e

Proved concrete substitution
author Adam Chlipala <adamc@hcoop.net>
date Sun, 02 Nov 2008 12:16:55 -0500
parents
children 8c19768f1a1a
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala
 * 
 * This work is licensed under a
 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
 * Unported License.
 * The license text is available at:
 *   http://creativecommons.org/licenses/by-nc-nd/3.0/
 *)

(* begin hide *)
Require Import List String.

Require Import Tactics.

Set Implicit Arguments.
(* end hide *)


(** %\section{Formalizing Programming Languages and Compilers}

   \chapter{First-Order Variable Representations}% *)

(** TODO: Prose for this chapter *)


(** * Concrete Binding *)

Module Concrete.

  Definition var := string.
  Definition var_eq := string_dec.

  Inductive exp : Set :=
  | Const : bool -> exp
  | Var : var -> exp
  | App : exp -> exp -> exp
  | Abs : var -> exp -> exp.

  Inductive type : Set :=
  | Bool : type
  | Arrow : type -> type -> type.

  Infix "-->" := Arrow (right associativity, at level 60).

  Definition ctx := list (var * type).

  Reserved Notation "G |-v x : t" (no associativity, at level 90, x at next level).

  Inductive lookup : ctx -> var -> type -> Prop :=
  | First : forall x t G,
    (x, t) :: G |-v x : t
  | Next : forall x t x' t' G,
    x <> x'
    -> G |-v x : t
    -> (x', t') :: G |-v x : t

    where "G |-v x : t" := (lookup G x t).

  Hint Constructors lookup.

  Reserved Notation "G |-e e : t" (no associativity, at level 90, e at next level).

  Inductive hasType : ctx -> exp -> type -> Prop :=
  | TConst : forall G b,
    G |-e Const b : Bool
  | TVar : forall G v t,
    G |-v v : t
    -> G |-e Var v : t
  | TApp : forall G e1 e2 dom ran,
    G |-e e1 : dom --> ran
    -> G |-e e2 : dom
    -> G |-e App e1 e2 : ran
  | TAbs : forall G x e' dom ran,
    (x, dom) :: G |-e e' : ran
    -> G |-e Abs x e' : dom --> ran

    where "G |-e e : t" := (hasType G e t).

  Hint Constructors hasType.

  Notation "x ## G" := (forall t' : type, In (x, t') G -> False) (no associativity, at level 90).

  Notation "G' # G" := (forall (x : var) (t : type), In (x, t) G -> x ## G') (no associativity, at level 90).

  Lemma lookup_In : forall G x t,
    G |-v x : t
    -> In (x, t) G.
    induction 1; crush.
  Qed.

  Hint Resolve lookup_In.

  Lemma disjoint_invert1 : forall G x t G' x' t',
    G |-v x : t
    -> (x', t') :: G' # G
    -> x <> x'.
    crush; eauto.
  Qed.

  Lemma disjoint_invert2 : forall G' G p,
    p :: G' # G
    -> G' # G.
    firstorder.
  Qed.

  Hint Resolve disjoint_invert1 disjoint_invert2.
  Hint Extern 1 (_ <> _) => (intro; subst).

  Lemma weaken_lookup' : forall G x t,
    G |-v x : t
    -> forall G', G' # G
      -> G' ++ G |-v x : t.
    induction G' as [ | [x' t'] tl ]; crush; eauto 9.
  Qed.

  Lemma weaken_lookup : forall G2 x t G',
    G' # G2
    -> forall G1, G1 ++ G2 |-v x : t
      -> G1 ++ G' ++ G2 |-v x : t.
    Hint Resolve weaken_lookup'.

    induction G1 as [ | [x' t'] tl ]; crush;
      match goal with
        | [ H : _ |-v _ : _ |- _ ] => inversion H; crush
      end.
  Qed.

  Hint Resolve weaken_lookup.

  Lemma hasType_push : forall x t G1 G2 e t',
    ((x, t) :: G1) ++ G2 |-e e : t'
    -> (x, t) :: G1 ++ G2 |-e e : t'.
    trivial.
  Qed.

  Hint Resolve hasType_push.

  Theorem weaken_hasType' : forall G' G e t,
    G |-e e : t
      -> forall G1 G2, G = G1 ++ G2
        -> G' # G2
        -> G1 ++ G' ++ G2 |-e e : t.
    induction 1; crush; eauto.
  Qed.

  Theorem weaken_hasType : forall G e t,
    G |-e e : t
    -> forall G', G' # G
      -> G' ++ G |-e e : t.
    intros; change (G' ++ G) with (nil ++ G' ++ G);
      eapply weaken_hasType'; eauto.
  Qed.

  Theorem weaken_hasType_closed : forall e t,
    nil |-e e : t
    -> forall G, G |-e e : t.
    intros; rewrite (app_nil_end G); apply weaken_hasType; auto.
  Qed.

  Theorem weaken_hasType1 : forall G e t,
    G |-e e : t
    -> forall x t', x ## G
      -> (x, t') :: G |-e e : t.
    intros; change ((x, t') :: G) with (((x, t') :: nil) ++ G);
      apply weaken_hasType; crush;
        match goal with
          | [ H : (_, _) = (_, _) |- _ ] => injection H
        end; crush; eauto.
  Qed.

  Hint Resolve weaken_hasType_closed weaken_hasType1.

  Section subst.
    Variable x : var.
    Variable e1 : exp.

    Fixpoint subst (e2 : exp) : exp :=
      match e2 with
        | Const b => Const b
        | Var x' =>
          if var_eq x' x
            then e1
            else Var x'
        | App e1 e2 => App (subst e1) (subst e2)
        | Abs x' e' =>
          Abs x' (if var_eq x' x
            then e'
            else subst e')
      end.

    Variable xt : type.
    Hypothesis Ht' : nil |-e e1 : xt.

    Lemma subst_lookup' : forall G2 x' t,
      x' ## G2
      -> (x, xt) :: G2 |-v x' : t
      -> t = xt.
      inversion 2; crush; elimtype False; eauto.
    Qed.

    Lemma subst_lookup : forall x' t G2,
      x <> x'
      -> forall G1, G1 ++ (x, xt) :: G2 |-v x' : t
        -> G1 ++ G2 |-v x' : t.
      induction G1 as [ | [x'' t'] tl ]; crush;
        match goal with
          | [ H : _ |-v _ : _ |- _ ] => inversion H
        end; crush.
    Qed.

    Hint Resolve subst_lookup.

    Lemma subst_lookup'' : forall G2 x' t,
      x' ## G2
      -> forall G1, x' ## G1
        -> G1 ++ (x, xt) :: G2 |-v x' : t
        -> t = xt.
      Hint Resolve subst_lookup'.

      induction G1 as [ | [x'' t'] tl ]; crush; eauto;
        match goal with
          | [ H : _ |-v _ : _ |- _ ] => inversion H
        end; crush; elimtype False; eauto.
    Qed.

    Implicit Arguments subst_lookup'' [G2 x' t G1].

    Lemma disjoint_cons : forall x x' t (G : ctx),
      x ## G
      -> x' <> x
      -> x ## (x', t) :: G.
      firstorder;
        match goal with
          | [ H : (_, _) = (_, _) |- _ ] => injection H
        end; crush.
    Qed.

    Hint Resolve disjoint_cons.

    Lemma shadow_lookup : forall G2 v t t' G1,
      G1 |-v x : t'
      -> G1 ++ (x, xt) :: G2 |-v v : t
      -> G1 ++ G2 |-v v : t.
      induction G1 as [ | [x'' t''] tl ]; crush;
        match goal with
          | [ H : nil |-v _ : _ |- _ ] => inversion H
          | [ H1 : _ |-v _ : _, H2 : _ |-v _ : _ |- _ ] =>
            inversion H1; crush; inversion H2; crush
        end.
    Qed.

    Lemma shadow_hasType' : forall G2 G e t,
      G |-e e : t
      -> forall G1, G = G1 ++ (x, xt) :: G2
        -> forall t'', G1 |-v x : t''
          -> G1 ++ G2 |-e e : t.
      Hint Resolve shadow_lookup.

      induction 1; crush; eauto;
        match goal with
          | [ H : (?x0, _) :: _ ++ (x, _) :: _ |-e _ : _ |- _ ] =>
            destruct (var_eq x0 x); subst; eauto
        end.
    Qed.      

    Lemma shadow_hasType : forall G1 G2 e t t'',
      G1 ++ (x, xt) :: G2 |-e e : t
      -> G1 |-v x : t''
      -> G1 ++ G2 |-e e : t.
      intros; eapply shadow_hasType'; eauto.
    Qed.

    Hint Resolve shadow_hasType.

    Theorem subst_hasType : forall G e2 t,
      G |-e e2 : t
        -> forall G1 G2, G = G1 ++ (x, xt) :: G2
          -> x ## G1
          -> x ## G2
          -> G1 ++ G2 |-e subst e2 : t.
      induction 1; crush;
        try match goal with
              | [ |- context[if ?E then _ else _] ] => destruct E
            end; crush; eauto 6;
        match goal with
          | [ H1 : x ## _, H2 : x ## _, H3 : _ |-v x : _ |- _ ] =>
            rewrite (subst_lookup'' H2 H1 H3)
        end; crush.
    Qed.

    Theorem subst_hasType_closed : forall e2 t,
      (x, xt) :: nil |-e e2 : t
      -> nil |-e subst e2 : t.
      intros; change (nil ++ nil |-e subst e2 : t);
        eapply subst_hasType; eauto.
    Qed.
  End subst.

End Concrete.