Mercurial > cpdt > repo
view src/Extensional.v @ 176:9b1f58dbc464
CpsExp_correct
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Mon, 10 Nov 2008 11:36:00 -0500 |
parents | 022feabdff50 |
children | cee290647641 |
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala * * This work is licensed under a * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 * Unported License. * The license text is available at: * http://creativecommons.org/licenses/by-nc-nd/3.0/ *) (* begin hide *) Require Import String List. Require Import AxiomsImpred Tactics. Set Implicit Arguments. (* end hide *) (** %\chapter{Certifying Extensional Transformations}% *) (** TODO: Prose for this chapter *) (** * Simply-Typed Lambda Calculus *) Module STLC. Module Source. Inductive type : Type := | TNat : type | Arrow : type -> type -> type. Notation "'Nat'" := TNat : source_scope. Infix "-->" := Arrow (right associativity, at level 60) : source_scope. Open Scope source_scope. Bind Scope source_scope with type. Delimit Scope source_scope with source. Section vars. Variable var : type -> Type. Inductive exp : type -> Type := | Var : forall t, var t -> exp t | Const : nat -> exp Nat | Plus : exp Nat -> exp Nat -> exp Nat | App : forall t1 t2, exp (t1 --> t2) -> exp t1 -> exp t2 | Abs : forall t1 t2, (var t1 -> exp t2) -> exp (t1 --> t2). End vars. Definition Exp t := forall var, exp var t. Implicit Arguments Var [var t]. Implicit Arguments Const [var]. Implicit Arguments Plus [var]. Implicit Arguments App [var t1 t2]. Implicit Arguments Abs [var t1 t2]. Notation "# v" := (Var v) (at level 70) : source_scope. Notation "^ n" := (Const n) (at level 70) : source_scope. Infix "+^" := Plus (left associativity, at level 79) : source_scope. Infix "@" := App (left associativity, at level 77) : source_scope. Notation "\ x , e" := (Abs (fun x => e)) (at level 78) : source_scope. Notation "\ ! , e" := (Abs (fun _ => e)) (at level 78) : source_scope. Bind Scope source_scope with exp. Definition zero : Exp Nat := fun _ => ^0. Definition one : Exp Nat := fun _ => ^1. Definition zpo : Exp Nat := fun _ => zero _ +^ one _. Definition ident : Exp (Nat --> Nat) := fun _ => \x, #x. Definition app_ident : Exp Nat := fun _ => ident _ @ zpo _. Definition app : Exp ((Nat --> Nat) --> Nat --> Nat) := fun _ => \f, \x, #f @ #x. Definition app_ident' : Exp Nat := fun _ => app _ @ ident _ @ zpo _. Fixpoint typeDenote (t : type) : Set := match t with | Nat => nat | t1 --> t2 => typeDenote t1 -> typeDenote t2 end. Fixpoint expDenote t (e : exp typeDenote t) {struct e} : typeDenote t := match e in (exp _ t) return (typeDenote t) with | Var _ v => v | Const n => n | Plus e1 e2 => expDenote e1 + expDenote e2 | App _ _ e1 e2 => (expDenote e1) (expDenote e2) | Abs _ _ e' => fun x => expDenote (e' x) end. Definition ExpDenote t (e : Exp t) := expDenote (e _). Section exp_equiv. Variables var1 var2 : type -> Type. Inductive exp_equiv : list { t : type & var1 t * var2 t }%type -> forall t, exp var1 t -> exp var2 t -> Prop := | EqEVar : forall G t (v1 : var1 t) v2, In (existT _ t (v1, v2)) G -> exp_equiv G (#v1) (#v2) | EqEConst : forall G n, exp_equiv G (^n) (^n) | EqEPlus : forall G x1 y1 x2 y2, exp_equiv G x1 x2 -> exp_equiv G y1 y2 -> exp_equiv G (x1 +^ y1) (x2 +^ y2) | EqEApp : forall G t1 t2 (f1 : exp _ (t1 --> t2)) (x1 : exp _ t1) f2 x2, exp_equiv G f1 f2 -> exp_equiv G x1 x2 -> exp_equiv G (f1 @ x1) (f2 @ x2) | EqEAbs : forall G t1 t2 (f1 : var1 t1 -> exp var1 t2) f2, (forall v1 v2, exp_equiv (existT _ t1 (v1, v2) :: G) (f1 v1) (f2 v2)) -> exp_equiv G (Abs f1) (Abs f2). End exp_equiv. Axiom Exp_equiv : forall t (E : Exp t) var1 var2, exp_equiv nil (E var1) (E var2). End Source. Module CPS. Inductive type : Type := | TNat : type | Cont : type -> type | TUnit : type | Prod : type -> type -> type. Notation "'Nat'" := TNat : cps_scope. Notation "'Unit'" := TUnit : cps_scope. Notation "t --->" := (Cont t) (at level 61) : cps_scope. Infix "**" := Prod (right associativity, at level 60) : cps_scope. Bind Scope cps_scope with type. Delimit Scope cps_scope with cps. Section vars. Variable var : type -> Type. Inductive prog : Type := | PHalt : var Nat -> prog | App : forall t, var (t --->) -> var t -> prog | Bind : forall t, primop t -> (var t -> prog) -> prog with primop : type -> Type := | Var : forall t, var t -> primop t | Const : nat -> primop Nat | Plus : var Nat -> var Nat -> primop Nat | Abs : forall t, (var t -> prog) -> primop (t --->) | Pair : forall t1 t2, var t1 -> var t2 -> primop (t1 ** t2) | Fst : forall t1 t2, var (t1 ** t2) -> primop t1 | Snd : forall t1 t2, var (t1 ** t2) -> primop t2. End vars. Implicit Arguments PHalt [var]. Implicit Arguments App [var t]. Implicit Arguments Var [var t]. Implicit Arguments Const [var]. Implicit Arguments Plus [var]. Implicit Arguments Abs [var t]. Implicit Arguments Pair [var t1 t2]. Implicit Arguments Fst [var t1 t2]. Implicit Arguments Snd [var t1 t2]. Notation "'Halt' x" := (PHalt x) (no associativity, at level 75) : cps_scope. Infix "@@" := App (no associativity, at level 75) : cps_scope. Notation "x <- p ; e" := (Bind p (fun x => e)) (right associativity, at level 76, p at next level) : cps_scope. Notation "! <- p ; e" := (Bind p (fun _ => e)) (right associativity, at level 76, p at next level) : cps_scope. Notation "# v" := (Var v) (at level 70) : cps_scope. Notation "^ n" := (Const n) (at level 70) : cps_scope. Infix "+^" := Plus (left associativity, at level 79) : cps_scope. Notation "\ x , e" := (Abs (fun x => e)) (at level 78) : cps_scope. Notation "\ ! , e" := (Abs (fun _ => e)) (at level 78) : cps_scope. Notation "[ x1 , x2 ]" := (Pair x1 x2) (at level 73) : cps_scope. Notation "#1 x" := (Fst x) (at level 72) : cps_scope. Notation "#2 x" := (Snd x) (at level 72) : cps_scope. Bind Scope cps_scope with prog primop. Open Scope cps_scope. Fixpoint typeDenote (t : type) : Set := match t with | Nat => nat | t' ---> => typeDenote t' -> nat | Unit => unit | t1 ** t2 => (typeDenote t1 * typeDenote t2)%type end. Fixpoint progDenote (e : prog typeDenote) : nat := match e with | PHalt n => n | App _ f x => f x | Bind _ p x => progDenote (x (primopDenote p)) end with primopDenote t (p : primop typeDenote t) {struct p} : typeDenote t := match p in (primop _ t) return (typeDenote t) with | Var _ v => v | Const n => n | Plus n1 n2 => n1 + n2 | Abs _ e => fun x => progDenote (e x) | Pair _ _ v1 v2 => (v1, v2) | Fst _ _ v => fst v | Snd _ _ v => snd v end. Definition Prog := forall var, prog var. Definition Primop t := forall var, primop var t. Definition ProgDenote (E : Prog) := progDenote (E _). Definition PrimopDenote t (P : Primop t) := primopDenote (P _). End CPS. Import Source CPS. Fixpoint cpsType (t : Source.type) : CPS.type := match t with | Nat => Nat%cps | t1 --> t2 => (cpsType t1 ** (cpsType t2 --->) --->)%cps end%source. Reserved Notation "x <-- e1 ; e2" (right associativity, at level 76, e1 at next level). Section cpsExp. Variable var : CPS.type -> Type. Import Source. Open Scope cps_scope. Fixpoint cpsExp t (e : exp (fun t => var (cpsType t)) t) {struct e} : (var (cpsType t) -> prog var) -> prog var := match e in (exp _ t) return ((var (cpsType t) -> prog var) -> prog var) with | Var _ v => fun k => k v | Const n => fun k => x <- ^n; k x | Plus e1 e2 => fun k => x1 <-- e1; x2 <-- e2; x <- x1 +^ x2; k x | App _ _ e1 e2 => fun k => f <-- e1; x <-- e2; kf <- \r, k r; p <- [x, kf]; f @@ p | Abs _ _ e' => fun k => f <- CPS.Abs (var := var) (fun p => x <- #1 p; kf <- #2 p; r <-- e' x; kf @@ r); k f end where "x <-- e1 ; e2" := (cpsExp e1 (fun x => e2)). End cpsExp. Notation "x <-- e1 ; e2" := (cpsExp e1 (fun x => e2)) : cps_scope. Notation "! <-- e1 ; e2" := (cpsExp e1 (fun _ => e2)) (right associativity, at level 76, e1 at next level) : cps_scope. Implicit Arguments cpsExp [var t]. Definition CpsExp (E : Exp Nat) : Prog := fun var => cpsExp (E _) (PHalt (var := _)). Eval compute in CpsExp zero. Eval compute in CpsExp one. Eval compute in CpsExp zpo. Eval compute in CpsExp app_ident. Eval compute in CpsExp app_ident'. Eval compute in ProgDenote (CpsExp zero). Eval compute in ProgDenote (CpsExp one). Eval compute in ProgDenote (CpsExp zpo). Eval compute in ProgDenote (CpsExp app_ident). Eval compute in ProgDenote (CpsExp app_ident'). Fixpoint lr (t : Source.type) : Source.typeDenote t -> CPS.typeDenote (cpsType t) -> Prop := match t return (Source.typeDenote t -> CPS.typeDenote (cpsType t) -> Prop) with | Nat => fun n1 n2 => n1 = n2 | t1 --> t2 => fun f1 f2 => forall x1 x2, lr _ x1 x2 -> forall k, exists r, f2 (x2, k) = k r /\ lr _ (f1 x1) r end%source. Lemma cpsExp_correct : forall G t (e1 : exp _ t) (e2 : exp _ t), exp_equiv G e1 e2 -> (forall t v1 v2, In (existT _ t (v1, v2)) G -> lr t v1 v2) -> forall k, exists r, progDenote (cpsExp e2 k) = progDenote (k r) /\ lr t (expDenote e1) r. induction 1; crush; fold typeDenote in *; repeat (match goal with | [ H : forall k, exists r, progDenote (cpsExp ?E k) = _ /\ _ |- context[cpsExp ?E ?K] ] => generalize (H K); clear H | [ |- exists r, progDenote (_ ?R) = progDenote (_ r) /\ _ ] => exists R | [ t1 : Source.type |- _ ] => match goal with | [ Hlr : lr t1 ?X1 ?X2, IH : forall v1 v2, _ |- _ ] => generalize (IH X1 X2); clear IH; intro IH; match type of IH with | ?P -> _ => assert P end end end; crush); eauto. Qed. Lemma vars_easy : forall (t : Source.type) (v1 : Source.typeDenote t) (v2 : typeDenote (cpsType t)), In (existT (fun t0 : Source.type => (Source.typeDenote t0 * typeDenote (cpsType t0))%type) t (v1, v2)) nil -> lr t v1 v2. crush. Qed. Theorem CpsExp_correct : forall (E : Exp Nat), ProgDenote (CpsExp E) = ExpDenote E. unfold ProgDenote, CpsExp, ExpDenote; intros; generalize (cpsExp_correct (e1 := E _) (e2 := E _) (Exp_equiv _ _ _) vars_easy (PHalt (var := _))); crush. Qed. End STLC.