view book/src/StackMachine.v @ 3:9fea5674367c

Pretty LaTeX generation
author Adam Chlipala <adamc@hcoop.net>
date Fri, 29 Aug 2008 14:24:38 -0400
parents book/StackMachine.v@b3f7de74d38f
children f913d32a49e4
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala
 * 
 * This work is licensed under a
 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
 * Unported License.
 * The license text is available at:
 *   http://creativecommons.org/licenses/by-nc-nd/3.0/
 *)

(* begin hide *)
Require Import List.

Require Import Tactics.
(* end hide *)


(** * Arithmetic expressions over natural numbers *)

(* begin hide *)
Module Nat.
(* end hide *)
  (** ** Source language *)

  Inductive binop : Set := Plus | Times.

  Inductive exp : Set :=
  | Const : nat -> exp
  | Binop : binop -> exp -> exp -> exp.

  Definition binopDenote (b : binop) : nat -> nat -> nat :=
    match b with
      | Plus => plus
      | Times => mult
    end.

  Fixpoint expDenote (e : exp) : nat :=
    match e with
      | Const n => n
      | Binop b e1 e2 => (binopDenote b) (expDenote e1) (expDenote e2)
    end.


  (** ** Target language *)

  Inductive instr : Set :=
  | IConst : nat -> instr
  | IBinop : binop -> instr.

  Definition prog := list instr.
  Definition stack := list nat.

  Definition instrDenote (i : instr) (s : stack) : option stack :=
    match i with
      | IConst n => Some (n :: s)
      | IBinop b =>
        match s with
          | arg1 :: arg2 :: s' => Some ((binopDenote b) arg1 arg2 :: s')
          | _ => None
        end
    end.

  Fixpoint progDenote (p : prog) (s : stack) {struct p} : option stack :=
    match p with
      | nil => Some s
      | i :: p' =>
        match instrDenote i s with
          | None => None
          | Some s' => progDenote p' s'
        end
    end.


  (** ** Translation *)

  Fixpoint compile (e : exp) : prog :=
    match e with
      | Const n => IConst n :: nil
      | Binop b e1 e2 => compile e2 ++ compile e1 ++ IBinop b :: nil
    end.


  (** ** Translation correctness *)

  Lemma compileCorrect' : forall e s p, progDenote (compile e ++ p) s =
    progDenote p (expDenote e :: s).
    induction e.

    intros.
    unfold compile.
    unfold expDenote.
    simpl.
    reflexivity.

    intros.
    unfold compile.
    fold compile.
    unfold expDenote.
    fold expDenote.
    rewrite app_ass.
    rewrite IHe2.
    rewrite app_ass.
    rewrite IHe1.
    simpl.
    reflexivity.
  Abort.

  Lemma compileCorrect' : forall e s p, progDenote (compile e ++ p) s =
    progDenote p (expDenote e :: s).
    induction e; crush.
  Qed.

  Theorem compileCorrect : forall e, progDenote (compile e) nil = Some (expDenote e :: nil).
    intro.
    rewrite (app_nil_end (compile e)).
    rewrite compileCorrect'.
    reflexivity.
  Qed.

(* begin hide *)
End Nat.
(* end hide *)