Mercurial > cpdt > repo
view src/Interps.v @ 171:b00b6a9b6b58
PSLC
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Sun, 09 Nov 2008 13:59:51 -0500 |
parents | f8353e2a21d6 |
children | 653c03f6061e |
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala * * This work is licensed under a * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 * Unported License. * The license text is available at: * http://creativecommons.org/licenses/by-nc-nd/3.0/ *) (* begin hide *) Require Import String List. Require Import Axioms Tactics. Set Implicit Arguments. (* end hide *) (** %\chapter{Type-Theoretic Interpreters}% *) (** TODO: Prose for this chapter *) (** * Simply-Typed Lambda Calculus *) Module STLC. Inductive type : Type := | Nat : type | Arrow : type -> type -> type. Infix "-->" := Arrow (right associativity, at level 60). Section vars. Variable var : type -> Type. Inductive exp : type -> Type := | Var : forall t, var t -> exp t | Const : nat -> exp Nat | Plus : exp Nat -> exp Nat -> exp Nat | App : forall t1 t2, exp (t1 --> t2) -> exp t1 -> exp t2 | Abs : forall t1 t2, (var t1 -> exp t2) -> exp (t1 --> t2). End vars. Definition Exp t := forall var, exp var t. Implicit Arguments Var [var t]. Implicit Arguments Const [var]. Implicit Arguments Plus [var]. Implicit Arguments App [var t1 t2]. Implicit Arguments Abs [var t1 t2]. Notation "# v" := (Var v) (at level 70). Notation "^ n" := (Const n) (at level 70). Infix "+^" := Plus (left associativity, at level 79). Infix "@" := App (left associativity, at level 77). Notation "\ x , e" := (Abs (fun x => e)) (at level 78). Notation "\ ! , e" := (Abs (fun _ => e)) (at level 78). Fixpoint typeDenote (t : type) : Set := match t with | Nat => nat | t1 --> t2 => typeDenote t1 -> typeDenote t2 end. Fixpoint expDenote t (e : exp typeDenote t) {struct e} : typeDenote t := match e in (exp _ t) return (typeDenote t) with | Var _ v => v | Const n => n | Plus e1 e2 => expDenote e1 + expDenote e2 | App _ _ e1 e2 => (expDenote e1) (expDenote e2) | Abs _ _ e' => fun x => expDenote (e' x) end. Definition ExpDenote t (e : Exp t) := expDenote (e _). Section cfold. Variable var : type -> Type. Fixpoint cfold t (e : exp var t) {struct e} : exp var t := match e in exp _ t return exp _ t with | Var _ v => #v | Const n => ^n | Plus e1 e2 => let e1' := cfold e1 in let e2' := cfold e2 in match e1', e2' with | Const n1, Const n2 => ^(n1 + n2) | _, _ => e1' +^ e2' end | App _ _ e1 e2 => cfold e1 @ cfold e2 | Abs _ _ e' => Abs (fun x => cfold (e' x)) end. End cfold. Definition Cfold t (E : Exp t) : Exp t := fun _ => cfold (E _). Lemma cfold_correct : forall t (e : exp _ t), expDenote (cfold e) = expDenote e. induction e; crush; try (ext_eq; crush); repeat (match goal with | [ |- context[cfold ?E] ] => dep_destruct (cfold E) end; crush). Qed. Theorem Cfold_correct : forall t (E : Exp t), ExpDenote (Cfold E) = ExpDenote E. unfold ExpDenote, Cfold; intros; apply cfold_correct. Qed. End STLC. (** * Adding Products and Sums *) Module PSLC. Inductive type : Type := | Nat : type | Arrow : type -> type -> type | Prod : type -> type -> type | Sum : type -> type -> type. Infix "-->" := Arrow (right associativity, at level 62). Infix "**" := Prod (right associativity, at level 61). Infix "++" := Sum (right associativity, at level 60). Section vars. Variable var : type -> Type. Inductive exp : type -> Type := | Var : forall t, var t -> exp t | Const : nat -> exp Nat | Plus : exp Nat -> exp Nat -> exp Nat | App : forall t1 t2, exp (t1 --> t2) -> exp t1 -> exp t2 | Abs : forall t1 t2, (var t1 -> exp t2) -> exp (t1 --> t2) | Pair : forall t1 t2, exp t1 -> exp t2 -> exp (t1 ** t2) | Fst : forall t1 t2, exp (t1 ** t2) -> exp t1 | Snd : forall t1 t2, exp (t1 ** t2) -> exp t2 | Inl : forall t1 t2, exp t1 -> exp (t1 ++ t2) | Inr : forall t1 t2, exp t2 -> exp (t1 ++ t2) | SumCase : forall t1 t2 t, exp (t1 ++ t2) -> (var t1 -> exp t) -> (var t2 -> exp t) -> exp t. End vars. Definition Exp t := forall var, exp var t. Implicit Arguments Var [var t]. Implicit Arguments Const [var]. Implicit Arguments Abs [var t1 t2]. Implicit Arguments Inl [var t1 t2]. Implicit Arguments Inr [var t1 t2]. Notation "# v" := (Var v) (at level 70). Notation "^ n" := (Const n) (at level 70). Infix "+^" := Plus (left associativity, at level 79). Infix "@" := App (left associativity, at level 77). Notation "\ x , e" := (Abs (fun x => e)) (at level 78). Notation "\ ! , e" := (Abs (fun _ => e)) (at level 78). Notation "[ e1 , e2 ]" := (Pair e1 e2). Notation "#1 e" := (Fst e) (at level 75). Notation "#2 e" := (Snd e) (at level 75). Notation "'case' e 'of' x => e1 | y => e2" := (SumCase e (fun x => e1) (fun y => e2)) (at level 79). Fixpoint typeDenote (t : type) : Set := match t with | Nat => nat | t1 --> t2 => typeDenote t1 -> typeDenote t2 | t1 ** t2 => typeDenote t1 * typeDenote t2 | t1 ++ t2 => typeDenote t1 + typeDenote t2 end%type. Fixpoint expDenote t (e : exp typeDenote t) {struct e} : typeDenote t := match e in (exp _ t) return (typeDenote t) with | Var _ v => v | Const n => n | Plus e1 e2 => expDenote e1 + expDenote e2 | App _ _ e1 e2 => (expDenote e1) (expDenote e2) | Abs _ _ e' => fun x => expDenote (e' x) | Pair _ _ e1 e2 => (expDenote e1, expDenote e2) | Fst _ _ e' => fst (expDenote e') | Snd _ _ e' => snd (expDenote e') | Inl _ _ e' => inl _ (expDenote e') | Inr _ _ e' => inr _ (expDenote e') | SumCase _ _ _ e' e1 e2 => match expDenote e' with | inl v => expDenote (e1 v) | inr v => expDenote (e2 v) end end. Definition ExpDenote t (e : Exp t) := expDenote (e _). Section cfold. Variable var : type -> Type. Fixpoint cfold t (e : exp var t) {struct e} : exp var t := match e in exp _ t return exp _ t with | Var _ v => #v | Const n => ^n | Plus e1 e2 => let e1' := cfold e1 in let e2' := cfold e2 in match e1', e2' with | Const n1, Const n2 => ^(n1 + n2) | _, _ => e1' +^ e2' end | App _ _ e1 e2 => cfold e1 @ cfold e2 | Abs _ _ e' => Abs (fun x => cfold (e' x)) | Pair _ _ e1 e2 => [cfold e1, cfold e2] | Fst _ _ e' => #1 (cfold e') | Snd _ _ e' => #2 (cfold e') | Inl _ _ e' => Inl (cfold e') | Inr _ _ e' => Inr (cfold e') | SumCase _ _ _ e' e1 e2 => case cfold e' of x => cfold (e1 x) | y => cfold (e2 y) end. End cfold. Definition Cfold t (E : Exp t) : Exp t := fun _ => cfold (E _). Lemma cfold_correct : forall t (e : exp _ t), expDenote (cfold e) = expDenote e. induction e; crush; try (ext_eq; crush); repeat (match goal with | [ |- context[cfold ?E] ] => dep_destruct (cfold E) | [ |- match ?E with inl _ => _ | inr _ => _ end = _ ] => destruct E end; crush). Qed. Theorem Cfold_correct : forall t (E : Exp t), ExpDenote (Cfold E) = ExpDenote E. unfold ExpDenote, Cfold; intros; apply cfold_correct. Qed. End PSLC.