Mercurial > cpdt > repo
view src/DepList.v @ 384:eb0fa506d04c
Strengthen last theorem of Coinductive
author | Adam Chlipala <adam@chlipala.net> |
---|---|
date | Sun, 08 Apr 2012 11:11:27 -0400 |
parents | ad315efc3b6b |
children | ed829eaa91b2 |
line wrap: on
line source
(* Copyright (c) 2008-2009, Adam Chlipala * * This work is licensed under a * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 * Unported License. * The license text is available at: * http://creativecommons.org/licenses/by-nc-nd/3.0/ *) (* Dependent list types presented in Chapter 9 *) Require Import Arith List CpdtTactics. Set Implicit Arguments. Section ilist. Variable A : Type. Inductive ilist : nat -> Type := | INil : ilist O | ICons : forall n, A -> ilist n -> ilist (S n). Definition hd n (ls : ilist (S n)) := match ls in ilist n' return match n' with | O => unit | S _ => A end with | INil => tt | ICons _ x _ => x end. Definition tl n (ls : ilist (S n)) := match ls in ilist n' return match n' with | O => unit | S n => ilist n end with | INil => tt | ICons _ _ ls' => ls' end. Inductive fin : nat -> Set := | First : forall n, fin (S n) | Next : forall n, fin n -> fin (S n). Fixpoint get n (ls : ilist n) : fin n -> A := match ls with | INil => fun idx => match idx in fin n' return (match n' with | O => A | S _ => unit end) with | First _ => tt | Next _ _ => tt end | ICons _ x ls' => fun idx => match idx in fin n' return (fin (pred n') -> A) -> A with | First _ => fun _ => x | Next _ idx' => fun get_ls' => get_ls' idx' end (get ls') end. Section everywhere. Variable x : A. Fixpoint everywhere (n : nat) : ilist n := match n with | O => INil | S n' => ICons x (everywhere n') end. End everywhere. Section singleton. Variables x default : A. Fixpoint singleton (n m : nat) : ilist n := match n with | O => INil | S n' => match m with | O => ICons x (everywhere default n') | S m' => ICons default (singleton n' m') end end. End singleton. Section map2. Variable f : A -> A -> A. Fixpoint map2 n (il1 : ilist n) : ilist n -> ilist n := match il1 in ilist n return ilist n -> ilist n with | INil => fun _ => INil | ICons _ x il1' => fun il2 => ICons (f x (hd il2)) (map2 il1' (tl il2)) end. End map2. Section fold. Variable B : Type. Variable f : A -> B -> B. Variable i : B. Fixpoint foldr n (il : ilist n) : B := match il with | INil => i | ICons _ x il' => f x (foldr il') end. End fold. End ilist. Implicit Arguments INil [A]. Implicit Arguments First [n]. Section imap. Variables A B : Type. Variable f : A -> B. Fixpoint imap n (il : ilist A n) : ilist B n := match il with | INil => INil | ICons _ x il' => ICons (f x) (imap il') end. End imap. Section hlist. Variable A : Type. Variable B : A -> Type. Inductive hlist : list A -> Type := | HNil : hlist nil | HCons : forall (x : A) (ls : list A), B x -> hlist ls -> hlist (x :: ls). Definition hhd ls (hl : hlist ls) := match hl in hlist ls return match ls with | nil => unit | x :: _ => B x end with | HNil => tt | HCons _ _ v _ => v end. Definition htl ls (hl : hlist ls) := match hl in hlist ls return match ls with | nil => unit | _ :: ls' => hlist ls' end with | HNil => tt | HCons _ _ _ hl' => hl' end. Variable elm : A. Inductive member : list A -> Type := | HFirst : forall ls, member (elm :: ls) | HNext : forall x ls, member ls -> member (x :: ls). Fixpoint hget ls (mls : hlist ls) : member ls -> B elm := match mls with | HNil => fun mem => match mem in member ls' return (match ls' with | nil => B elm | _ :: _ => unit end) with | HFirst _ => tt | HNext _ _ _ => tt end | HCons _ _ x mls' => fun mem => match mem in member ls' return (match ls' with | nil => Empty_set | x' :: ls'' => B x' -> (member ls'' -> B elm) -> B elm end) with | HFirst _ => fun x _ => x | HNext _ _ mem' => fun _ get_mls' => get_mls' mem' end x (hget mls') end. Fixpoint happ (ls1 : list A) (hl1 : hlist ls1) : forall ls2, hlist ls2 -> hlist (ls1 ++ ls2) := match hl1 in hlist ls1 return forall ls2, hlist ls2 -> hlist (ls1 ++ ls2) with | HNil => fun _ hl2 => hl2 | HCons _ _ x hl1' => fun _ hl2 => HCons x (happ hl1' hl2) end. Variable f : forall x, B x. Fixpoint hmake (ls : list A) : hlist ls := match ls with | nil => HNil | x :: ls' => HCons (f x) (hmake ls') end. Theorem hget_hmake : forall ls (m : member ls), hget (hmake ls) m = f elm. induction ls; crush; match goal with | [ |- context[match ?E with HFirst _ => _ | HNext _ _ _ => _ end] ] => dep_destruct E end; crush. Qed. End hlist. Implicit Arguments HNil [A B]. Implicit Arguments HCons [A B x ls]. Implicit Arguments hmake [A B]. Implicit Arguments HFirst [A elm ls]. Implicit Arguments HNext [A elm x ls]. Infix ":::" := HCons (right associativity, at level 60). Infix "+++" := happ (right associativity, at level 60). Section hmap. Variable A : Type. Variables B1 B2 : A -> Type. Variable f : forall x, B1 x -> B2 x. Fixpoint hmap (ls : list A) (hl : hlist B1 ls) : hlist B2 ls := match hl with | HNil => HNil | HCons _ _ x hl' => f x ::: hmap hl' end. Theorem hmap_happ : forall ls2 (h2 : hlist B1 ls2) ls1 (h1 : hlist B1 ls1), hmap h1 +++ hmap h2 = hmap (h1 +++ h2). induction h1; crush. Qed. Theorem hget_hmap : forall elm ls (hls : hlist B1 ls) (m : member elm ls), hget (hmap hls) m = f (hget hls m). induction hls; crush; match goal with | [ |- context[match ?E with HFirst _ => _ | HNext _ _ _ => _ end] ] => dep_destruct E end; crush. Qed. End hmap. Implicit Arguments hmap [A B1 B2 ls].