Mercurial > cpdt > repo
view src/Tactics.v @ 167:ef485f86a7b6
Cleaning up BigStep proofs
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Wed, 05 Nov 2008 09:29:15 -0500 |
parents | 56e205f966cc |
children | 7fd470d8a788 |
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala * * This work is licensed under a * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 * Unported License. * The license text is available at: * http://creativecommons.org/licenses/by-nc-nd/3.0/ *) Require Import Eqdep List. Require Omega. Set Implicit Arguments. Ltac inject H := injection H; clear H; intros; try subst. Ltac appHyps f := match goal with | [ H : _ |- _ ] => f H end. Ltac inList x ls := match ls with | x => idtac | (_, x) => idtac | (?LS, _) => inList x LS end. Ltac app f ls := match ls with | (?LS, ?X) => f X || app f LS || fail 1 | _ => f ls end. Ltac all f ls := match ls with | (?LS, ?X) => f X; all f LS | (_, _) => fail 1 | _ => f ls end. Ltac simplHyp invOne := let invert H F := inList F invOne; (inversion H; fail) || (inversion H; [idtac]; clear H; try subst) in match goal with | [ H : ex _ |- _ ] => destruct H | [ H : ?F ?X = ?F ?Y |- _ ] => injection H; match goal with | [ |- F X = F Y -> _ ] => fail 1 | [ |- _ = _ -> _ ] => try clear H; intros; try subst end | [ H : ?F _ _ = ?F _ _ |- _ ] => injection H; match goal with | [ |- _ = _ -> _ = _ -> _ ] => try clear H; intros; try subst end | [ H : ?F _ |- _ ] => invert H F | [ H : ?F _ _ |- _ ] => invert H F | [ H : ?F _ _ _ |- _ ] => invert H F | [ H : ?F _ _ _ _ |- _ ] => invert H F | [ H : ?F _ _ _ _ _ |- _ ] => invert H F end. Ltac rewriteHyp := match goal with | [ H : _ |- _ ] => rewrite H end. Ltac rewriterP := repeat (rewriteHyp; autorewrite with cpdt in *). Ltac rewriter := autorewrite with cpdt in *; rewriterP. Hint Rewrite app_ass : cpdt. Definition done (T : Type) (x : T) := True. Ltac inster e trace := match type of e with | forall x : _, _ => match goal with | [ H : _ |- _ ] => inster (e H) (trace, H) | _ => fail 2 end | _ => match trace with | (_, _) => match goal with | [ H : done (trace, _) |- _ ] => fail 1 | _ => let T := type of e in match type of T with | Prop => generalize e; intro; assert (done (trace, tt)); [constructor | idtac] | _ => all ltac:(fun X => match goal with | [ H : done (_, X) |- _ ] => fail 1 | _ => idtac end) trace; let i := fresh "i" in (pose (i := e); assert (done (trace, i)); [constructor | idtac]) end end end end. Ltac un_done := repeat match goal with | [ H : done _ |- _ ] => clear H end. Ltac crush' lemmas invOne := let sintuition := simpl in *; intuition; try subst; repeat (simplHyp invOne; intuition; try subst); try congruence in (sintuition; rewriter; match lemmas with | false => idtac | _ => repeat ((app ltac:(fun L => inster L L) lemmas || appHyps ltac:(fun L => inster L L)); repeat (simplHyp invOne; intuition)); un_done end; sintuition; try omega; try (elimtype False; omega)). Ltac crush := crush' false fail. Theorem dep_destruct : forall (T : Type) (T' : T -> Type) x (v : T' x) (P : T' x -> Prop), (forall x' (v' : T' x') (Heq : x' = x), P (match Heq in (_ = x) return (T' x) with | refl_equal => v' end)) -> P v. intros. generalize (H _ v (refl_equal _)); trivial. Qed. Ltac dep_destruct E := let doit A := let T := type of A in generalize dependent E; let e := fresh "e" in intro e; pattern e; apply (@dep_destruct T); let x := fresh "x" with v := fresh "v" in intros x v; destruct v; crush; let bestEffort Heq E tac := repeat match goal with | [ H : context[E] |- _ ] => match H with | Heq => fail 1 | _ => generalize dependent H end end; generalize Heq; tac Heq; clear Heq; intro Heq; rewrite (UIP_refl _ _ Heq); intros in repeat match goal with | [ Heq : ?X = ?X |- _ ] => generalize (UIP_refl _ _ Heq); intro; subst; clear Heq | [ Heq : ?E = _ |- _ ] => bestEffort Heq E ltac:(fun E => rewrite E) | [ Heq : _ = ?E |- _ ] => bestEffort Heq E ltac:(fun E => rewrite <- E) end in match type of E with | _ _ ?A => doit A | _ ?A => doit A end. Ltac clear_all := repeat match goal with | [ H : _ |- _ ] => clear H end.