Mercurial > cpdt > repo
view src/Axioms.v @ 197:f6293ba66559
map_id
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Fri, 28 Nov 2008 14:10:23 -0500 |
parents | 094bd1e353dd |
children |
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala * * This work is licensed under a * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 * Unported License. * The license text is available at: * http://creativecommons.org/licenses/by-nc-nd/3.0/ *) (* Additional axioms not in the Coq standard library *) Set Implicit Arguments. Axiom ext_eq : forall (A : Type) (B : A -> Type) (f g : forall x, B x), (forall x, f x = g x) -> f = g. Theorem ext_eq_Set : forall (A : Set) (B : A -> Set) (f g : forall x, B x), (forall x, f x = g x) -> f = g. intros. rewrite (ext_eq _ _ _ H); reflexivity. Qed. Theorem ext_eq_forall : forall (A : Type) (f g : A -> Set), (forall x, f x = g x) -> @eq Type (forall x, f x) (forall x, g x). intros. rewrite (ext_eq _ _ _ H); trivial. Qed. Ltac ext_eq := (apply ext_eq || apply ext_eq_Set || apply ext_eq_forall); intro. Theorem eta : forall (A B : Type) (f : A -> B), (fun x => f x) = f. intros; ext_eq; trivial. Qed.