view src/DepList.v @ 197:f6293ba66559

map_id
author Adam Chlipala <adamc@hcoop.net>
date Fri, 28 Nov 2008 14:10:23 -0500
parents b4ea71b6bf94
children f8bcd33bdd91
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala
 * 
 * This work is licensed under a
 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
 * Unported License.
 * The license text is available at:
 *   http://creativecommons.org/licenses/by-nc-nd/3.0/
 *)

(* Dependent list types presented in Chapter 8 *)

Require Import Arith List Tactics.

Set Implicit Arguments.


Section ilist.
  Variable A : Type.

  Fixpoint ilist (n : nat) : Type :=
    match n with
      | O => unit
      | S n' => A * ilist n'
    end%type.

  Definition inil : ilist O := tt.
  Definition icons n x (ls : ilist n) : ilist (S n) := (x, ls).

  Definition hd n (ls : ilist (S n)) : A := fst ls.
  Definition tl n (ls : ilist (S n)) : ilist n := snd ls.

  Implicit Arguments icons [n].

  Fixpoint index (n : nat) : Type :=
    match n with
      | O => Empty_set
      | S n' => option (index n')
    end.

  Fixpoint get (n : nat) : ilist n -> index n -> A :=
    match n return ilist n -> index n -> A with
      | O => fun _ idx => match idx with end
      | S n' => fun ls idx =>
        match idx with
          | None => fst ls
          | Some idx' => get n' (snd ls) idx'
        end
    end.

  Section everywhere.
    Variable x : A.

    Fixpoint everywhere (n : nat) : ilist n :=
      match n return ilist n with
        | O => inil
        | S n' => icons x (everywhere n')
      end.
  End everywhere.

  Section singleton.
    Variables x default : A.

    Fixpoint singleton (n m : nat) {struct n} : ilist n :=
      match n return ilist n with
        | O => inil
        | S n' =>
          match m with
            | O => icons x (everywhere default n')
            | S m' => icons default (singleton n' m')
          end
      end.
  End singleton.

  Section map2.
    Variable f : A -> A -> A.

    Fixpoint map2 (n : nat) : ilist n -> ilist n -> ilist n :=
      match n return ilist n -> ilist n -> ilist n with
        | O => fun _ _ => inil
        | S n' => fun ls1 ls2 => icons (f (hd ls1) (hd ls2)) (map2 _ (tl ls1) (tl ls2))
      end.
  End map2.

  Section fold.
    Variable B : Type.
    Variable f : A -> B -> B.
    Variable i : B.

    Fixpoint foldr (n : nat) : ilist n -> B :=
      match n return ilist n -> B with
        | O => fun _ => i
        | S n' => fun ils => f (hd ils) (foldr n' (tl ils))
      end.
  End fold.
End ilist.

Implicit Arguments inil [A].
Implicit Arguments icons [A n].

Implicit Arguments icons [A n].
Implicit Arguments get [A n].
Implicit Arguments map2 [A n].
Implicit Arguments foldr [A B n].

Section imap.
  Variables A B : Type.
  Variable f : A -> B.

  Fixpoint imap (n : nat) : ilist A n -> ilist B n :=
    match n return ilist A n -> ilist B n with
      | O => fun _ => inil
      | S n' => fun ls => icons (f (hd ls)) (imap _ (tl ls))
    end.
End imap.

Implicit Arguments imap [A B n].

Section hlist.
  Variable A : Type.
  Variable B : A -> Type.

  Fixpoint hlist (ls : list A) : Type :=
    match ls with
      | nil => unit
      | x :: ls' => B x * hlist ls'
    end%type.

  Definition hnil : hlist nil := tt.
  Definition hcons (x : A) (ls : list A) (v : B x) (hls : hlist ls) : hlist (x :: ls) :=
    (v, hls).

  Variable elm : A.

  Fixpoint member (ls : list A) : Type :=
    match ls with
      | nil => Empty_set
      | x :: ls' => (x = elm) + member ls'
    end%type.

  Definition hfirst (x : A) (ls : list A) (pf : x = elm) : member (x :: ls) :=
    inl _ pf.
  Definition hnext (x : A) (ls : list A) (m : member ls) : member (x :: ls) :=
    inr _ m.

  Fixpoint hget (ls : list A) : hlist ls -> member ls -> B elm :=
    match ls return hlist ls -> member ls -> B elm with
      | nil => fun _ idx => match idx with end
      | _ :: ls' => fun mls idx =>
        match idx with
          | inl pf => match pf with
                        | refl_equal => fst mls
                      end
          | inr idx' => hget ls' (snd mls) idx'
        end
    end.

  Fixpoint happ (ls1 ls2 : list A) {struct ls1} : hlist ls1 -> hlist ls2 -> hlist (ls1 ++ ls2) :=
    match ls1 return hlist ls1 -> hlist ls2 -> hlist (ls1 ++ ls2) with
      | nil => fun _ hls2 => hls2
      | _ :: _ => fun hls1 hls2 => (fst hls1, happ _ _ (snd hls1) hls2)
    end.

  Variable f : forall x, B x.

  Fixpoint hmake (ls : list A) : hlist ls :=
    match ls return hlist ls with
      | nil => hnil
      | x :: ls' => hcons _ (f x) (hmake ls')
    end.

  Implicit Arguments hget [ls].

  Theorem hget_hmake : forall ls (m : member ls),
    hget (hmake ls) m = f elm.
    induction ls; crush.
    case a0; reflexivity.
  Qed.
End hlist.

Implicit Arguments hnil [A B].
Implicit Arguments hcons [A B x ls].
Implicit Arguments hget [A B elm ls].
Implicit Arguments happ [A B ls1 ls2].
Implicit Arguments hmake [A B].

Implicit Arguments hfirst [A elm x ls].
Implicit Arguments hnext [A elm x ls].

Infix ":::" := hcons (right associativity, at level 60).
Infix "+++" := happ (right associativity, at level 60).

Section hmap.
  Variable A : Type.
  Variables B1 B2 : A -> Type.

  Variable f : forall x, B1 x -> B2 x.

  Fixpoint hmap (ls : list A) : hlist B1 ls -> hlist B2 ls :=
    match ls return hlist B1 ls -> hlist B2 ls with
      | nil => fun _ => hnil
      | _ :: _ => fun hl => f (fst hl) ::: hmap _ (snd hl)
    end.

  Implicit Arguments hmap [ls].

  Theorem hmap_happ : forall ls2 (h2 : hlist B1 ls2) ls1 (h1 : hlist B1 ls1),
    hmap h1 +++ hmap h2 = hmap (h1 +++ h2).
    induction ls1; crush.
  Qed.

  Theorem hget_hmap : forall elm ls (hls : hlist B1 ls) (m : member elm ls),
    hget (hmap hls) m = f (hget hls m).
    induction ls; crush.
    case a1; crush.
  Qed.
End hmap.

Implicit Arguments hmap [A B1 B2 ls].