Mercurial > cpdt > repo
view src/DepList.v @ 215:f8bcd33bdd91
Port DataStruct
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Wed, 11 Nov 2009 14:00:04 -0500 |
parents | f6293ba66559 |
children | d1464997078d |
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala * * This work is licensed under a * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 * Unported License. * The license text is available at: * http://creativecommons.org/licenses/by-nc-nd/3.0/ *) (* Dependent list types presented in Chapter 8 *) Require Import Arith List Tactics. Set Implicit Arguments. Section ilist. Variable A : Type. Fixpoint ilist (n : nat) : Type := match n with | O => unit | S n' => A * ilist n' end%type. Definition inil : ilist O := tt. Definition icons n x (ls : ilist n) : ilist (S n) := (x, ls). Definition hd n (ls : ilist (S n)) : A := fst ls. Definition tl n (ls : ilist (S n)) : ilist n := snd ls. Implicit Arguments icons [n]. Fixpoint fin (n : nat) : Type := match n with | O => Empty_set | S n' => option (fin n') end. Fixpoint get (n : nat) : ilist n -> fin n -> A := match n return ilist n -> fin n -> A with | O => fun _ idx => match idx with end | S n' => fun ls idx => match idx with | None => fst ls | Some idx' => get n' (snd ls) idx' end end. Section everywhere. Variable x : A. Fixpoint everywhere (n : nat) : ilist n := match n return ilist n with | O => inil | S n' => icons x (everywhere n') end. End everywhere. Section singleton. Variables x default : A. Fixpoint singleton (n m : nat) {struct n} : ilist n := match n return ilist n with | O => inil | S n' => match m with | O => icons x (everywhere default n') | S m' => icons default (singleton n' m') end end. End singleton. Section map2. Variable f : A -> A -> A. Fixpoint map2 (n : nat) : ilist n -> ilist n -> ilist n := match n return ilist n -> ilist n -> ilist n with | O => fun _ _ => inil | S n' => fun ls1 ls2 => icons (f (hd ls1) (hd ls2)) (map2 _ (tl ls1) (tl ls2)) end. End map2. Section fold. Variable B : Type. Variable f : A -> B -> B. Variable i : B. Fixpoint foldr (n : nat) : ilist n -> B := match n return ilist n -> B with | O => fun _ => i | S n' => fun ils => f (hd ils) (foldr n' (tl ils)) end. End fold. End ilist. Implicit Arguments inil [A]. Implicit Arguments icons [A n]. Implicit Arguments icons [A n]. Implicit Arguments get [A n]. Implicit Arguments map2 [A n]. Implicit Arguments foldr [A B n]. Section imap. Variables A B : Type. Variable f : A -> B. Fixpoint imap (n : nat) : ilist A n -> ilist B n := match n return ilist A n -> ilist B n with | O => fun _ => inil | S n' => fun ls => icons (f (hd ls)) (imap _ (tl ls)) end. End imap. Implicit Arguments imap [A B n]. Section hlist. Variable A : Type. Variable B : A -> Type. Fixpoint hlist (ls : list A) : Type := match ls with | nil => unit | x :: ls' => B x * hlist ls' end%type. Definition hnil : hlist nil := tt. Definition hcons (x : A) (ls : list A) (v : B x) (hls : hlist ls) : hlist (x :: ls) := (v, hls). Variable elm : A. Fixpoint member (ls : list A) : Type := match ls with | nil => Empty_set | x :: ls' => (x = elm) + member ls' end%type. Definition hfirst (x : A) (ls : list A) (pf : x = elm) : member (x :: ls) := inl _ pf. Definition hnext (x : A) (ls : list A) (m : member ls) : member (x :: ls) := inr _ m. Fixpoint hget (ls : list A) : hlist ls -> member ls -> B elm := match ls return hlist ls -> member ls -> B elm with | nil => fun _ idx => match idx with end | _ :: ls' => fun mls idx => match idx with | inl pf => match pf with | refl_equal => fst mls end | inr idx' => hget ls' (snd mls) idx' end end. Fixpoint happ (ls1 ls2 : list A) {struct ls1} : hlist ls1 -> hlist ls2 -> hlist (ls1 ++ ls2) := match ls1 return hlist ls1 -> hlist ls2 -> hlist (ls1 ++ ls2) with | nil => fun _ hls2 => hls2 | _ :: _ => fun hls1 hls2 => (fst hls1, happ _ _ (snd hls1) hls2) end. Variable f : forall x, B x. Fixpoint hmake (ls : list A) : hlist ls := match ls return hlist ls with | nil => hnil | x :: ls' => hcons _ (f x) (hmake ls') end. Implicit Arguments hget [ls]. Theorem hget_hmake : forall ls (m : member ls), hget (hmake ls) m = f elm. induction ls; crush. case a0; reflexivity. Qed. End hlist. Implicit Arguments hnil [A B]. Implicit Arguments hcons [A B x ls]. Implicit Arguments hget [A B elm ls]. Implicit Arguments happ [A B ls1 ls2]. Implicit Arguments hmake [A B]. Implicit Arguments hfirst [A elm x ls]. Implicit Arguments hnext [A elm x ls]. Infix ":::" := hcons (right associativity, at level 60). Infix "+++" := happ (right associativity, at level 60). Section hmap. Variable A : Type. Variables B1 B2 : A -> Type. Variable f : forall x, B1 x -> B2 x. Fixpoint hmap (ls : list A) : hlist B1 ls -> hlist B2 ls := match ls return hlist B1 ls -> hlist B2 ls with | nil => fun _ => hnil | _ :: _ => fun hl => f (fst hl) ::: hmap _ (snd hl) end. Implicit Arguments hmap [ls]. Theorem hmap_happ : forall ls2 (h2 : hlist B1 ls2) ls1 (h1 : hlist B1 ls1), hmap h1 +++ hmap h2 = hmap (h1 +++ h2). induction ls1; crush. Qed. Theorem hget_hmap : forall elm ls (hls : hlist B1 ls) (m : member elm ls), hget (hmap hls) m = f (hget hls m). induction ls; crush. case a1; crush. Qed. End hmap. Implicit Arguments hmap [A B1 B2 ls].