view src/Hoas.v @ 158:fabfaa93c9ea

Hoas, up to type soundness
author Adam Chlipala <adamc@hcoop.net>
date Mon, 03 Nov 2008 09:43:32 -0500
parents
children 8b2b652ab0ee
line wrap: on
line source
(* Copyright (c) 2008, Adam Chlipala
 * 
 * This work is licensed under a
 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
 * Unported License.
 * The license text is available at:
 *   http://creativecommons.org/licenses/by-nc-nd/3.0/
 *)

(* begin hide *)
Require Import Arith Eqdep String List.

Require Import Tactics.

Set Implicit Arguments.
(* end hide *)


(** %\chapter{Higher-Order Abstract Syntax}% *)

(** TODO: Prose for this chapter *)


(** * Parametric Higher-Order Abstract Syntax *)

Inductive type : Type :=
| Bool : type
| Arrow : type -> type -> type.

Infix "-->" := Arrow (right associativity, at level 60).

Section exp.
  Variable var : type -> Type.

  Inductive exp : type -> Type :=
  | Const' : bool -> exp Bool
  | Var : forall t, var t -> exp t
  | App' : forall dom ran, exp (dom --> ran) -> exp dom -> exp ran
  | Abs' : forall dom ran, (var dom -> exp ran) -> exp (dom --> ran).
End exp.

Implicit Arguments Const' [var].
Implicit Arguments Var [var t].
Implicit Arguments Abs' [var dom ran].

Definition Exp t := forall var, exp var t.
Definition Exp1 t1 t2 := forall var, var t1 -> exp var t2.

Definition Const (b : bool) : Exp Bool :=
  fun _ => Const' b.
Definition App dom ran (F : Exp (dom --> ran)) (X : Exp dom) : Exp ran :=
  fun _ => App' (F _) (X _).
Definition Abs dom ran (B : Exp1 dom ran) : Exp (dom --> ran) :=
  fun _ => Abs' (B _).

Section flatten.
  Variable var : type -> Type.

  Fixpoint flatten t (e : exp (exp var) t) {struct e} : exp var t :=
    match e in exp _ t return exp _ t with
      | Const' b => Const' b
      | Var _ e' => e'
      | App' _ _ e1 e2 => App' (flatten e1) (flatten e2)
      | Abs' _ _ e' => Abs' (fun x => flatten (e' (Var x)))
    end.
End flatten.

Definition Subst t1 t2 (E1 : Exp t1) (E2 : Exp1 t1 t2) : Exp t2 := fun _ =>
  flatten (E2 _ (E1 _)).


(** * A Type Soundness Proof *)

Reserved Notation "E1 ==> E2" (no associativity, at level 90).

Inductive Val : forall t, Exp t -> Prop :=
| VConst : forall b, Val (Const b)
| VAbs : forall dom ran (B : Exp1 dom ran), Val (Abs B).

Hint Constructors Val.

Inductive Step : forall t, Exp t -> Exp t -> Prop :=
| Beta : forall dom ran (B : Exp1 dom ran) (X : Exp dom),
  App (Abs B) X ==> Subst X B
| Cong1 : forall dom ran (F : Exp (dom --> ran)) (X : Exp dom) F',
  F ==> F'
  -> App F X ==> App F' X
| Cong2 : forall dom ran (F : Exp (dom --> ran)) (X : Exp dom) X',
  Val F
  -> X ==> X'
  -> App F X ==> App F X'

  where "E1 ==> E2" := (Step E1 E2).

Hint Constructors Step.

Inductive Closed : forall t, Exp t -> Prop :=
| CConst : forall b,
  Closed (Const b)
| CApp : forall dom ran (E1 : Exp (dom --> ran)) E2,
  Closed E1
  -> Closed E2
  -> Closed (App E1 E2)
| CAbs : forall dom ran (E1 : Exp1 dom ran),
  Closed (Abs E1).

Axiom closed : forall t (E : Exp t), Closed E.

Ltac my_crush :=
  crush;
  repeat (match goal with
            | [ H : _ |- _ ] => generalize (inj_pairT2 _ _ _ _ _ H); clear H
          end; crush).

Lemma progress' : forall t (E : Exp t),
  Closed E
  -> Val E \/ exists E', E ==> E'.
  induction 1; crush;
    try match goal with
          | [ H : @Val (_ --> _) _ |- _ ] => inversion H; my_crush
        end; eauto.
Qed.

Theorem progress : forall t (E : Exp t),
  Val E \/ exists E', E ==> E'.
  intros; apply progress'; apply closed.
Qed.