adamc@2: (* Copyright (c) 2008, Adam Chlipala adamc@2: * adamc@2: * This work is licensed under a adamc@2: * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 adamc@2: * Unported License. adamc@2: * The license text is available at: adamc@2: * http://creativecommons.org/licenses/by-nc-nd/3.0/ adamc@2: *) adamc@2: adamc@2: Require Import List. adamc@2: adamc@38: Require Omega. adamc@38: adamc@59: Set Implicit Arguments. adamc@59: adamc@2: adamc@51: Ltac inject H := injection H; clear H; intros; subst. adamc@51: adamc@59: Ltac appHyps f := adamc@50: match goal with adamc@59: | [ H : _ |- _ ] => f H adamc@59: end. adamc@59: adamc@59: Ltac inList x ls := adamc@59: match ls with adamc@59: | x => idtac adamc@59: | (?LS, _) => inList x LS adamc@59: end. adamc@59: adamc@59: Ltac app f ls := adamc@59: match ls with adamc@59: | (?LS, ?X) => f X || app f LS || fail 1 adamc@59: | _ => f ls adamc@59: end. adamc@59: adamc@59: Ltac all f ls := adamc@59: match ls with adamc@59: | (?LS, ?X) => f X; all f LS adamc@59: | (_, _) => fail 1 adamc@59: | _ => f ls adamc@59: end. adamc@59: adamc@59: Ltac simplHyp invOne := adamc@59: match goal with adamc@59: | [ H : ex _ |- _ ] => destruct H adamc@59: adamc@51: | [ H : ?F _ = ?F _ |- _ ] => injection H; adamc@51: match goal with adamc@51: | [ |- _ = _ -> _ ] => clear H; intros; subst adamc@51: end adamc@51: | [ H : ?F _ _ = ?F _ _ |- _ ] => injection H; adamc@51: match goal with adamc@51: | [ |- _ = _ -> _ = _ -> _ ] => clear H; intros; subst adamc@51: end adamc@59: adamc@59: | [ H : ?F _ |- _ ] => inList F invOne; inversion H; [idtac]; clear H; subst adamc@59: | [ H : ?F _ _ |- _ ] => inList F invOne; inversion H; [idtac]; clear H; subst adamc@50: end. adamc@50: adamc@2: Ltac rewriteHyp := adamc@2: match goal with adamc@2: | [ H : _ |- _ ] => rewrite H adamc@2: end. adamc@2: adamc@2: Ltac rewriterP := repeat (rewriteHyp; autorewrite with cpdt in *). adamc@2: adamc@2: Ltac rewriter := autorewrite with cpdt in *; rewriterP. adamc@2: adamc@2: Hint Rewrite app_ass : cpdt. adamc@2: adamc@59: Definition done (T : Type) (x : T) := True. adamc@2: adamc@59: Ltac inster e trace := adamc@59: match type of e with adamc@59: | forall x : _, _ => adamc@59: match goal with adamc@59: | [ H : _ |- _ ] => adamc@59: inster (e H) (trace, H) adamc@59: | _ => fail 2 adamc@59: end adamc@59: | _ => adamc@59: match trace with adamc@59: | (_, _) => adamc@59: match goal with adamc@59: | [ H : done (trace, _) |- _ ] => fail 1 adamc@59: | _ => adamc@59: let T := type of e in adamc@59: match type of T with adamc@59: | Prop => adamc@59: generalize e; intro; adamc@59: assert (done (trace, tt)); [constructor | idtac] adamc@59: | _ => adamc@59: all ltac:(fun X => adamc@59: match goal with adamc@59: | [ H : done (_, X) |- _ ] => fail 1 adamc@59: | _ => idtac adamc@59: end) trace; adamc@59: let i := fresh "i" in (pose (i := e); adamc@59: assert (done (trace, i)); [constructor | idtac]) adamc@59: end adamc@59: end adamc@59: end adamc@59: end. adamc@59: adamc@59: Ltac crush' lemmas invOne := adamc@64: let sintuition := simpl in *; intuition; subst; repeat (simplHyp invOne; intuition; subst); try congruence adamc@59: in (sintuition; rewriter; adamc@59: repeat ((app ltac:(fun L => inster L L) lemmas || appHyps ltac:(fun L => inster L L)); adamc@59: repeat (simplHyp invOne; intuition)); adamc@59: sintuition; try omega). adamc@59: adamc@59: Ltac crush := crush' tt fail.