Mercurial > cpdt > repo
changeset 183:02569049397b
Closure conversion defined
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Sun, 16 Nov 2008 14:01:33 -0500 |
parents | 24b99e025fe8 |
children | 699fd70c04a7 |
files | src/Firstorder.v src/Intensional.v src/Tactics.v |
diffstat | 3 files changed, 904 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Firstorder.v Sun Nov 16 11:54:51 2008 -0500 +++ b/src/Firstorder.v Sun Nov 16 14:01:33 2008 -0500 @@ -146,10 +146,13 @@ induction G1 as [ | [x'' t'] tl ]; crush; eauto; match goal with | [ H : _ |-v _ : _ |- _ ] => inversion H - end; crush; elimtype False; eauto; - match goal with - | [ H : nil |-v _ : _ |- _ ] => inversion H - end. + end; crush; (elimtype False; eauto; + match goal with + | [ H : nil |-v _ : _ |- _ ] => inversion H + end) + || match goal with + | [ H : _ |- _ ] => apply H; crush; eauto + end. Qed. Implicit Arguments subst_lookup [x' t G1].
--- a/src/Intensional.v Sun Nov 16 11:54:51 2008 -0500 +++ b/src/Intensional.v Sun Nov 16 14:01:33 2008 -0500 @@ -8,7 +8,7 @@ *) (* begin hide *) -Require Import String List. +Require Import Arith Bool String List. Require Import Axioms Tactics DepList. @@ -130,7 +130,7 @@ exp_equiv nil (E var1) (E var2). End Source. -Section Closed. +Module Closed. Inductive type : Type := | TNat : type | Arrow : type -> type -> type @@ -181,6 +181,11 @@ -> exp t1 | Snd : forall t1 t2, exp (t1 ** t2) + -> exp t2 + + | Let : forall t1 t2, + exp t1 + -> (var t1 -> exp t2) -> exp t2. Section funcs. @@ -211,7 +216,7 @@ Notation "^ n" := (Const n) (at level 70) : cc_scope. Infix "+^" := Plus (left associativity, at level 79) : cc_scope. - Infix "@@" := App (no associativity, at level 75) : cc_scope. + Infix "@" := App (left associativity, at level 77) : cc_scope. Infix "##" := Pack (no associativity, at level 71) : cc_scope. Notation "()" := EUnit : cc_scope. @@ -220,10 +225,13 @@ Notation "#1 x" := (Fst x) (at level 72) : cc_scope. Notation "#2 x" := (Snd x) (at level 72) : cc_scope. - Notation "f <= \\ x , y , e ; fs" := + Notation "f <== \\ x , y , e ; fs" := (Abs (fun x y => e) (fun f => fs)) (right associativity, at level 80, e at next level) : cc_scope. + Notation "x <- e1 ; e2" := (Let e1 (fun x => e2)) + (right associativity, at level 80, e1 at next level) : cc_scope. + Bind Scope cc_scope with exp funcs prog. Fixpoint typeDenote (t : type) : Set := @@ -250,6 +258,8 @@ | Pair _ _ e1 e2 => (expDenote e1, expDenote e2) | Fst _ _ e' => fst (expDenote e') | Snd _ _ e' => snd (expDenote e') + + | Let _ _ e1 e2 => expDenote (e2 (expDenote e1)) end. Fixpoint funcsDenote T (fs : funcs typeDenote T) : T := @@ -269,3 +279,874 @@ Definition ProgDenote t (P : Prog t) := progDenote (P _). End Closed. +Import Source Closed. + +Section splice. + Open Local Scope cc_scope. + + Fixpoint spliceFuncs var T1 (fs : funcs var T1) + T2 (f : T1 -> funcs var T2) {struct fs} : funcs var T2 := + match fs with + | Main v => f v + | Abs _ _ _ e fs' => Abs e (fun x => spliceFuncs (fs' x) f) + end. +End splice. + +Notation "x <-- e1 ; e2" := (spliceFuncs e1 (fun x => e2)) + (right associativity, at level 80, e1 at next level) : cc_scope. + +Definition natvar (_ : Source.type) := nat. +Definition isfree := hlist (fun (_ : Source.type) => bool). + +Ltac maybe_destruct E := + match goal with + | [ x : _ |- _ ] => + match E with + | x => idtac + end + | _ => + match E with + | eq_nat_dec _ _ => idtac + end + end; destruct E. + +Ltac my_crush := + crush; repeat (match goal with + | [ x : (_ * _)%type |- _ ] => destruct x + | [ |- context[if ?B then _ else _] ] => maybe_destruct B + | [ _ : context[if ?B then _ else _] |- _ ] => maybe_destruct B + end; crush). + +Section isfree. + Import Source. + Open Local Scope source_scope. + + Hint Extern 3 False => omega. + + Fixpoint lookup_type (envT : list Source.type) (n : nat) {struct envT} + : isfree envT -> option Source.type := + match envT return (isfree envT -> _) with + | nil => fun _ => None + | first :: rest => fun fvs => + if eq_nat_dec n (length rest) + then match fvs with + | (true, _) => Some first + | (false, _) => None + end + else lookup_type rest n (snd fvs) + end. + + Implicit Arguments lookup_type [envT]. + + Notation ok := (fun (envT : list Source.type) (fvs : isfree envT) + (n : nat) (t : Source.type) + => lookup_type n fvs = Some t). + + Fixpoint wfExp (envT : list Source.type) (fvs : isfree envT) + t (e : Source.exp natvar t) {struct e} : Prop := + match e with + | Var t v => ok envT fvs v t + + | Const _ => True + | Plus e1 e2 => wfExp envT fvs e1 /\ wfExp envT fvs e2 + + | App _ _ e1 e2 => wfExp envT fvs e1 /\ wfExp envT fvs e2 + | Abs dom _ e' => wfExp (dom :: envT) (true ::: fvs) (e' (length envT)) + end. + + Implicit Arguments wfExp [envT t]. + + Theorem wfExp_weaken : forall t (e : exp natvar t) envT (fvs fvs' : isfree envT), + wfExp fvs e + -> (forall n t, ok _ fvs n t -> ok _ fvs' n t) + -> wfExp fvs' e. + Hint Extern 1 (lookup_type (envT := _ :: _) _ _ = Some _) => + simpl in *; my_crush. + + induction e; my_crush; eauto. + Defined. + + Fixpoint isfree_none (envT : list Source.type) : isfree envT := + match envT return (isfree envT) with + | nil => tt + | _ :: _ => (false, isfree_none _) + end. + + Implicit Arguments isfree_none [envT]. + + Fixpoint isfree_one (envT : list Source.type) (n : nat) {struct envT} : isfree envT := + match envT return (isfree envT) with + | nil => tt + | _ :: rest => + if eq_nat_dec n (length rest) + then (true, isfree_none) + else (false, isfree_one _ n) + end. + + Implicit Arguments isfree_one [envT]. + + Fixpoint isfree_merge (envT : list Source.type) : isfree envT -> isfree envT -> isfree envT := + match envT return (isfree envT -> isfree envT -> isfree envT) with + | nil => fun _ _ => tt + | _ :: _ => fun fv1 fv2 => (fst fv1 || fst fv2, isfree_merge _ (snd fv1) (snd fv2)) + end. + + Implicit Arguments isfree_merge [envT]. + + Fixpoint fvsExp t (e : exp natvar t) + (envT : list Source.type) {struct e} : isfree envT := + match e with + | Var _ n => isfree_one n + + | Const _ => isfree_none + | Plus e1 e2 => isfree_merge (fvsExp e1 envT) (fvsExp e2 envT) + + | App _ _ e1 e2 => isfree_merge (fvsExp e1 envT) (fvsExp e2 envT) + | Abs dom _ e' => snd (fvsExp (e' (length envT)) (dom :: envT)) + end. + + Lemma isfree_one_correct : forall t (v : natvar t) envT fvs, + ok envT fvs v t + -> ok envT (isfree_one (envT:=envT) v) v t. + induction envT; my_crush; eauto. + Defined. + + Lemma isfree_merge_correct1 : forall t (v : natvar t) envT fvs1 fvs2, + ok envT fvs1 v t + -> ok envT (isfree_merge (envT:=envT) fvs1 fvs2) v t. + induction envT; my_crush; eauto. + Defined. + + Hint Rewrite orb_true_r : cpdt. + + Lemma isfree_merge_correct2 : forall t (v : natvar t) envT fvs1 fvs2, + ok envT fvs2 v t + -> ok envT (isfree_merge (envT:=envT) fvs1 fvs2) v t. + induction envT; my_crush; eauto. + Defined. + + Hint Resolve isfree_one_correct isfree_merge_correct1 isfree_merge_correct2. + + Lemma fvsExp_correct : forall t (e : exp natvar t) + envT (fvs : isfree envT), wfExp fvs e + -> forall (fvs' : isfree envT), + (forall v t, ok envT (fvsExp e envT) v t -> ok envT fvs' v t) + -> wfExp fvs' e. + Hint Extern 1 (_ = _) => + match goal with + | [ H : lookup_type _ (fvsExp ?X ?Y) = _ |- _ ] => + destruct (fvsExp X Y); my_crush + end. + + induction e; my_crush; eauto. + Defined. + + Lemma lookup_type_unique : forall v t1 t2 envT (fvs1 fvs2 : isfree envT), + lookup_type v fvs1 = Some t1 + -> lookup_type v fvs2 = Some t2 + -> t1 = t2. + induction envT; my_crush; eauto. + Defined. + + Implicit Arguments lookup_type_unique [v t1 t2 envT fvs1 fvs2]. + + Hint Extern 2 (lookup_type _ _ = Some _) => + match goal with + | [ H1 : lookup_type ?v _ = Some _, + H2 : lookup_type ?v _ = Some _ |- _ ] => + (generalize (lookup_type_unique H1 H2); intro; subst) + || rewrite <- (lookup_type_unique H1 H2) + end. + + Lemma lookup_none : forall v t envT, + lookup_type (envT:=envT) v (isfree_none (envT:=envT)) = Some t + -> False. + induction envT; my_crush. + Defined. + + Hint Extern 2 (_ = _) => elimtype False; eapply lookup_none; eassumption. + + Lemma lookup_one : forall v' v t envT, + lookup_type (envT:=envT) v' (isfree_one (envT:=envT) v) = Some t + -> v' = v. + induction envT; my_crush. + Defined. + + Implicit Arguments lookup_one [v' v t envT]. + + Hint Extern 2 (lookup_type _ _ = Some _) => + match goal with + | [ H : lookup_type _ _ = Some _ |- _ ] => + generalize (lookup_one H); intro; subst + end. + + Lemma lookup_merge : forall v t envT (fvs1 fvs2 : isfree envT), + lookup_type v (isfree_merge fvs1 fvs2) = Some t + -> lookup_type v fvs1 = Some t + \/ lookup_type v fvs2 = Some t. + induction envT; my_crush. + Defined. + + Implicit Arguments lookup_merge [v t envT fvs1 fvs2]. + + Lemma lookup_bound : forall v t envT (fvs : isfree envT), + lookup_type v fvs = Some t + -> v < length envT. + Hint Resolve lt_S. + induction envT; my_crush; eauto. + Defined. + + Hint Resolve lookup_bound. + + Lemma lookup_bound_contra : forall t envT (fvs : isfree envT), + lookup_type (length envT) fvs = Some t + -> False. + intros; assert (length envT < length envT); eauto. + Defined. + + Hint Resolve lookup_bound_contra. + + Hint Extern 3 (_ = _) => elimtype False; omega. + + Lemma lookup_push_drop : forall v t t' envT fvs, + v < length envT + -> lookup_type (envT := t :: envT) v (true, fvs) = Some t' + -> lookup_type (envT := envT) v fvs = Some t'. + my_crush. + Defined. + + Lemma lookup_push_add : forall v t t' envT fvs, + lookup_type (envT := envT) v (snd fvs) = Some t' + -> lookup_type (envT := t :: envT) v fvs = Some t'. + my_crush; elimtype False; eauto. + Defined. + + Hint Resolve lookup_bound lookup_push_drop lookup_push_add. + + Theorem fvsExp_minimal : forall t (e : exp natvar t) + envT (fvs : isfree envT), wfExp fvs e + -> (forall v t, ok envT (fvsExp e envT) v t -> ok envT fvs v t). + Hint Extern 1 (_ = _) => + match goal with + | [ H : lookup_type _ (isfree_merge _ _) = Some _ |- _ ] => + destruct (lookup_merge H); clear H; eauto + end. + + induction e; my_crush; eauto. + Defined. + + Fixpoint ccType (t : Source.type) : Closed.type := + match t with + | Nat%source => Nat + | (dom --> ran)%source => ccType dom --> ccType ran + end%cc. + + Open Local Scope cc_scope. + + Fixpoint envType (envT : list Source.type) : isfree envT -> Closed.type := + match envT return (isfree envT -> _) with + | nil => fun _ => Unit + | t :: _ => fun tup => + if fst tup + then ccType t ** envType _ (snd tup) + else envType _ (snd tup) + end. + + Implicit Arguments envType [envT]. + + Fixpoint envOf (var : Closed.type -> Set) (envT : list Source.type) {struct envT} + : isfree envT -> Set := + match envT return (isfree envT -> _) with + | nil => fun _ => unit + | first :: rest => fun fvs => + match fvs with + | (true, fvs') => (var (ccType first) * envOf var rest fvs')%type + | (false, fvs') => envOf var rest fvs' + end + end. + + Implicit Arguments envOf [envT]. + + Notation "var <| to" := (match to with + | None => unit + | Some t => var (ccType t) + end) (no associativity, at level 70). + + Fixpoint lookup (var : Closed.type -> Set) (envT : list Source.type) : + forall (n : nat) (fvs : isfree envT), envOf var fvs -> var <| lookup_type n fvs := + match envT return (forall (n : nat) (fvs : isfree envT), envOf var fvs + -> var <| lookup_type n fvs) with + | nil => fun _ _ _ => tt + | first :: rest => fun n fvs => + match (eq_nat_dec n (length rest)) as Heq return + (envOf var (envT := first :: rest) fvs + -> var <| (if Heq + then match fvs with + | (true, _) => Some first + | (false, _) => None + end + else lookup_type n (snd fvs))) with + | left _ => + match fvs return (envOf var (envT := first :: rest) fvs + -> var <| (match fvs with + | (true, _) => Some first + | (false, _) => None + end)) with + | (true, _) => fun env => fst env + | (false, _) => fun _ => tt + end + | right _ => + match fvs return (envOf var (envT := first :: rest) fvs + -> var <| (lookup_type n (snd fvs))) with + | (true, fvs') => fun env => lookup var rest n fvs' (snd env) + | (false, fvs') => fun env => lookup var rest n fvs' env + end + end + end. + + Theorem lok : forall var n t envT (fvs : isfree envT), + lookup_type n fvs = Some t + -> var <| lookup_type n fvs = var (ccType t). + crush. + Defined. +End isfree. + +Implicit Arguments lookup_type [envT]. +Implicit Arguments lookup [envT fvs]. +Implicit Arguments wfExp [t envT]. +Implicit Arguments envType [envT]. +Implicit Arguments envOf [envT]. +Implicit Arguments lok [var n t envT fvs]. + +Section lookup_hints. + Hint Resolve lookup_bound_contra. + + (*Ltac my_chooser T k := + match T with + | ptype => + match goal with + | [ H : lookup _ _ = Some ?t |- _ ] => k t + end + | _ => default_chooser T k + end. + + Ltac my_matching := matching equation my_chooser.*) + + Hint Resolve lookup_bound_contra. + + Lemma lookup_type_push : forall t' envT (fvs1 fvs2 : isfree envT) b1 b2, + (forall (n : nat) (t : Source.type), + lookup_type (envT := t' :: envT) n (b1, fvs1) = Some t -> + lookup_type (envT := t' :: envT) n (b2, fvs2) = Some t) + -> (forall (n : nat) (t : Source.type), + lookup_type n fvs1 = Some t -> + lookup_type n fvs2 = Some t). + intros until b2; intro H; intros n t; + generalize (H n t); my_crush; elimtype False; eauto. + Defined. + + Lemma lookup_type_push_contra : forall t' envT (fvs1 fvs2 : isfree envT), + (forall (n : nat) (t : Source.type), + lookup_type (envT := t' :: envT) n (true, fvs1) = Some t -> + lookup_type (envT := t' :: envT) n (false, fvs2) = Some t) + -> False. + intros until fvs2; intro H; generalize (H (length envT) t'); my_crush. + Defined. +End lookup_hints. + +Section packing. + Open Local Scope cc_scope. + + Hint Resolve lookup_type_push lookup_type_push_contra. + + Definition packExp (var : Closed.type -> Set) (envT : list Source.type) + (fvs1 fvs2 : isfree envT) + : (forall n t, lookup_type n fvs1 = Some t -> lookup_type n fvs2 = Some t) + -> envOf var fvs2 -> exp var (envType fvs1). + refine (fix packExp (var : Closed.type -> Set) (envT : list Source.type) {struct envT} + : forall fvs1 fvs2 : isfree envT, + (forall n t, lookup_type n fvs1 = Some t -> lookup_type n fvs2 = Some t) + -> envOf var fvs2 -> exp var (envType fvs1) := + match envT return (forall fvs1 fvs2 : isfree envT, + (forall n t, lookup_type n fvs1 = Some t -> lookup_type n fvs2 = Some t) + -> envOf var fvs2 + -> exp var (envType fvs1)) with + | nil => fun _ _ _ _ => () + | first :: rest => fun fvs1 => + match fvs1 return (forall fvs2 : isfree (first :: rest), + (forall n t, lookup_type (envT := first :: rest) n fvs1 = Some t + -> lookup_type n fvs2 = Some t) + -> envOf var fvs2 + -> exp var (envType (envT := first :: rest) fvs1)) with + | (false, fvs1') => fun fvs2 => + match fvs2 return ((forall n t, lookup_type (envT := first :: rest) n (false, fvs1') = Some t + -> lookup_type (envT := first :: rest) n fvs2 = Some t) + -> envOf (envT := first :: rest) var fvs2 + -> exp var (envType (envT := first :: rest) (false, fvs1'))) with + | (false, fvs2') => fun Hmin env => + packExp var _ fvs1' fvs2' _ env + | (true, fvs2') => fun Hmin env => + packExp var _ fvs1' fvs2' _ (snd env) + end + | (true, fvs1') => fun fvs2 => + match fvs2 return ((forall n t, lookup_type (envT := first :: rest) n (true, fvs1') = Some t + -> lookup_type (envT := first :: rest) n fvs2 = Some t) + -> envOf (envT := first :: rest) var fvs2 + -> exp var (envType (envT := first :: rest) (true, fvs1'))) with + | (false, fvs2') => fun Hmin env => + False_rect _ _ + | (true, fvs2') => fun Hmin env => + [#(fst env), packExp var _ fvs1' fvs2' _ (snd env)] + end + end + end); eauto. + Defined. + + Hint Resolve fvsExp_correct fvsExp_minimal. + Hint Resolve lookup_push_drop lookup_bound lookup_push_add. + + Implicit Arguments packExp [var envT]. + + Fixpoint unpackExp (var : Closed.type -> Set) t (envT : list Source.type) {struct envT} + : forall fvs : isfree envT, + exp var (envType fvs) + -> (envOf var fvs -> exp var t) -> exp var t := + match envT return (forall fvs : isfree envT, + exp var (envType fvs) + -> (envOf var fvs -> exp var t) -> exp var t) with + | nil => fun _ _ f => f tt + | first :: rest => fun fvs => + match fvs return (exp var (envType (envT := first :: rest) fvs) + -> (envOf var (envT := first :: rest) fvs -> exp var t) + -> exp var t) with + | (false, fvs') => fun p f => + unpackExp rest fvs' p f + | (true, fvs') => fun p f => + x <- #1 p; + unpackExp rest fvs' (#2 p) + (fun env => f (x, env)) + end + end. + + Implicit Arguments unpackExp [var t envT fvs]. + + Theorem wfExp_lax : forall t t' envT (fvs : isfree envT) (e : Source.exp natvar t), + wfExp (envT := t' :: envT) (true, fvs) e + -> wfExp (envT := t' :: envT) (true, snd (fvsExp e (t' :: envT))) e. + Hint Extern 1 (_ = _) => + match goal with + | [ H : lookup_type _ (fvsExp ?X ?Y) = _ |- _ ] => + destruct (fvsExp X Y); my_crush + end. + eauto. + Defined. + + Implicit Arguments wfExp_lax [t t' envT fvs e]. + + Lemma inclusion : forall t t' envT fvs (e : Source.exp natvar t), + wfExp (envT := t' :: envT) (true, fvs) e + -> (forall n t, lookup_type n (snd (fvsExp e (t' :: envT))) = Some t + -> lookup_type n fvs = Some t). + eauto. + Defined. + + Implicit Arguments inclusion [t t' envT fvs e]. + + Definition env_prog var t envT (fvs : isfree envT) := + funcs var (envOf var fvs -> Closed.exp var t). + + Implicit Arguments env_prog [envT]. + + Axiom cheat : forall T, T. + + Import Source. + Open Local Scope cc_scope. + + Fixpoint ccExp var t (e : Source.exp natvar t) + (envT : list Source.type) (fvs : isfree envT) + {struct e} : wfExp fvs e -> env_prog var (ccType t) fvs := + match e in (Source.exp _ t) return (wfExp fvs e -> env_prog var (ccType t) fvs) with + | Const n => fun _ => Main (fun _ => ^n) + | Plus e1 e2 => fun wf => + n1 <-- ccExp var e1 _ fvs (proj1 wf); + n2 <-- ccExp var e2 _ fvs (proj2 wf); + Main (fun env => n1 env +^ n2 env) + + | Var _ n => fun wf => + Main (fun env => #(match lok wf in _ = T return T with + | refl_equal => lookup var n env + end)) + + | App _ _ f x => fun wf => + f' <-- ccExp var f _ fvs (proj1 wf); + x' <-- ccExp var x _ fvs (proj2 wf); + Main (fun env => f' env @ x' env) + + | Abs dom _ b => fun wf => + b' <-- ccExp var (b (length envT)) (dom :: envT) _ (wfExp_lax wf); + f <== \\env, arg, unpackExp (#env) (fun env => b' (arg, env)); + Main (fun env => #f ## + packExp + (snd (fvsExp (b (length envT)) (dom :: envT))) + fvs (inclusion wf) env) + end. +End packing. + +Implicit Arguments packExp [var envT]. +Implicit Arguments unpackExp [var t envT fvs]. + +Implicit Arguments ccExp [var t envT]. + +Fixpoint map_funcs var result T1 T2 (f : T1 -> T2) (fs : cfuncs var result T1) {struct fs} + : cfuncs var result T2 := + match fs with + | CMain v => CMain (f v) + | CAbs _ _ e fs' => CAbs e (fun x => map_funcs f (fs' x)) + end. + +Definition CcTerm' result (E : Pterm result) (Hwf : wfTerm (envT := nil) tt (E _)) : Cprog result := + fun _ => map_funcs (fun f => f tt) (ccTerm (E _) (envT := nil) tt Hwf). + + +(** * Correctness *) + +Scheme pterm_equiv_mut := Minimality for pterm_equiv Sort Prop +with pprimop_equiv_mut := Minimality for pprimop_equiv Sort Prop. + +Section splicePrim_correct. + Variables result t t' : ptype. + Variable ps' : ctypeDenote ([< t >]) -> cprimops ctypeDenote t'. + + Theorem splicePrim_correct : forall (ps : cprimops ctypeDenote t), + cprimopsDenote (splicePrim ps ps') + = cprimopsDenote (ps' (cprimopsDenote ps)). + induction ps; equation. + Qed. +End splicePrim_correct. + +Section spliceTerm_correct. + Variables result t : ptype. + Variable e : ctypeDenote ([< t >]) -> cterm ctypeDenote result. + Variable k : ptypeDenote result -> bool. + + Theorem spliceTerm_correct : forall (ps : cprimops ctypeDenote t), + ctermDenote (spliceTerm ps e) k + = ctermDenote (e (cprimopsDenote ps)) k. + induction ps; equation. + Qed. +End spliceTerm_correct. + +Section spliceFuncs'_correct. + Variable result : ptype. + Variables T1 T2 : Type. + Variable f : T1 -> T2. + Variable k : ptypeDenote result -> bool. + + Theorem spliceFuncs'_correct : forall fs, + cfuncsDenote (spliceFuncs' fs f) k + = f (cfuncsDenote fs k). + induction fs; equation. + Qed. +End spliceFuncs'_correct. + +Section spliceFuncs_correct. + Variable result : ptype. + Variables T1 T2 T3 : Type. + Variable fs2 : cfuncs ctypeDenote result T2. + Variable f : T1 -> T2 -> T3. + Variable k : ptypeDenote result -> bool. + + Hint Rewrite spliceFuncs'_correct : ltamer. + + Theorem spliceFuncs_correct : forall fs1, + cfuncsDenote (spliceFuncs fs1 fs2 f) k + = f (cfuncsDenote fs1 k) (cfuncsDenote fs2 k). + induction fs1; equation. + Qed. +End spliceFuncs_correct. + +Section inside_correct. + Variable result : ptype. + Variables T1 T2 : Type. + Variable fs2 : T1 -> cfuncs ctypeDenote result T2. + Variable k : ptypeDenote result -> bool. + + Theorem inside_correct : forall fs1, + cfuncsDenote (inside fs1 fs2) k + = cfuncsDenote (fs2 (cfuncsDenote fs1 k)) k. + induction fs1; equation. + Qed. +End inside_correct. + + +Notation "var <| to" := (match to with + | None => unit + | Some t => var ([< t >])%cc + end) (no associativity, at level 70). + +Section packing_correct. + Variable result : ptype. + + Hint Rewrite splicePrim_correct spliceTerm_correct : ltamer. + + Ltac my_matching := matching my_equation default_chooser. + + Fixpoint makeEnv (envT : list ptype) : forall (fvs : isfree envT), + ptypeDenote (envType fvs) + -> envOf ctypeDenote fvs := + match envT return (forall (fvs : isfree envT), + ptypeDenote (envType fvs) + -> envOf ctypeDenote fvs) with + | nil => fun _ _ => tt + | first :: rest => fun fvs => + match fvs return (ptypeDenote (envType (envT := first :: rest) fvs) + -> envOf (envT := first :: rest) ctypeDenote fvs) with + | (false, fvs') => fun env => makeEnv rest fvs' env + | (true, fvs') => fun env => (fst env, makeEnv rest fvs' (snd env)) + end + end. + + Theorem unpackExp_correct : forall (envT : list ptype) (fvs : isfree envT) + (ps : cprimops ctypeDenote (envType fvs)) + (e : envOf ctypeDenote fvs -> cterm ctypeDenote result) k, + ctermDenote (unpackExp ps e) k + = ctermDenote (e (makeEnv _ _ (cprimopsDenote ps))) k. + induction envT; my_matching. + Qed. + + Lemma lookup_type_more : forall v2 envT (fvs : isfree envT) t b v, + (v2 = length envT -> False) + -> lookup_type v2 (envT := t :: envT) (b, fvs) = v + -> lookup_type v2 fvs = v. + equation. + Qed. + + Lemma lookup_type_less : forall v2 t envT (fvs : isfree (t :: envT)) v, + (v2 = length envT -> False) + -> lookup_type v2 (snd fvs) = v + -> lookup_type v2 (envT := t :: envT) fvs = v. + equation. + Qed. + + Lemma lookup_bound_contra_eq : forall t envT (fvs : isfree envT) v, + lookup_type v fvs = Some t + -> v = length envT + -> False. + simpler; eapply lookup_bound_contra; eauto. + Defined. + + Lemma lookup_type_inner : forall result t envT v t' (fvs : isfree envT) e, + wfTerm (envT := t :: envT) (true, fvs) e + -> lookup_type v (snd (fvsTerm (result := result) e (t :: envT))) = Some t' + -> lookup_type v fvs = Some t'. + Hint Resolve lookup_bound_contra_eq fvsTerm_minimal + lookup_type_more lookup_type_less. + Hint Extern 2 (Some _ = Some _) => contradictory. + + eauto 6. + Qed. + + Lemma cast_irrel : forall T1 T2 x (H1 H2 : T1 = T2), + (x :? H1) = (x :? H2). + equation. + Qed. + + Hint Immediate cast_irrel. + + Lemma cast_irrel_unit : forall T1 T2 x y (H1 : T1 = T2) (H2 : unit = T2), + (x :? H1) = (y :? H2). + intros; generalize H1; + rewrite <- H2 in H1; + equation. + Qed. + + Hint Immediate cast_irrel_unit. + + Hint Extern 3 (_ = _) => + match goal with + | [ |- context[False_rect _ ?H] ] => + apply False_rect; exact H + end. + + Theorem packExp_correct : forall v2 t envT (fvs1 fvs2 : isfree envT) + Heq1 (Heq2 : ctypeDenote <| lookup_type v2 fvs2 = ptypeDenote t) + Hincl env, + (lookup ctypeDenote v2 env :? Heq2) + = (lookup ctypeDenote v2 + (makeEnv envT fvs1 + (cprimopsDenote + (packExp fvs1 fvs2 Hincl env))) :? Heq1). + induction envT; my_equation. + Qed. +End packing_correct. + +Lemma look : forall envT n (fvs : isfree envT) t, + lookup_type n fvs = Some t + -> ctypeDenote <| lookup_type n fvs = ptypeDenote t. + equation. +Qed. + +Implicit Arguments look [envT n fvs t]. + + +Theorem ccTerm_correct : forall result G + (e1 : pterm ptypeDenote result) + (e2 : pterm natvar result), + pterm_equiv G e1 e2 + -> forall (envT : list ptype) (fvs : isfree envT) + (env : envOf ctypeDenote fvs) (Hwf : wfTerm fvs e2) k, + (forall t (v1 : ptypeDenote t) (v2 : natvar t), + In (vars (x := t) (v1, v2)) G + -> v2 < length envT) + -> (forall t (v1 : ptypeDenote t) (v2 : natvar t), + In (vars (x := t) (v1, v2)) G + -> lookup_type v2 fvs = Some t + -> forall Heq, (lookup ctypeDenote v2 env :? Heq) = v1) + -> ptermDenote e1 k + = ctermDenote (cfuncsDenote (ccTerm e2 fvs Hwf) k env) k. + + Hint Rewrite splicePrim_correct spliceTerm_correct + spliceFuncs_correct inside_correct : ltamer. + + Hint Rewrite unpackExp_correct : ltamer. + Hint Resolve packExp_correct lookup_type_inner. + + Hint Extern 1 (_ = _) => push_vars. + + Hint Extern 1 (_ = _) => + match goal with + | [ Hvars : forall t v1 v2, _, + Hin : In _ _ |- _ ] => + rewrite (Hvars _ _ _ Hin) + end. + + Hint Extern 1 (wfPrimop _ _) => tauto. + + Hint Extern 1 (_ < _) => + match goal with + | [ Hvars : forall t v1 v2, _, + Hin : In _ _ |- _ ] => + exact (Hvars _ _ _ Hin) + end. + + Hint Extern 1 (lookup_type _ _ = _) => tauto. + + Hint Extern 1 (_ = _) => + match goal with + | [ Hvars : forall t v1 v2, _, + Hin : In (vars (_, length ?envT)) _ |- _ ] => + contradictory; assert (length envT < length envT); [auto | omega] + end. + + Hint Extern 5 (_ = _) => symmetry. + + Hint Extern 1 (_ = _) => + match goal with + | [ H : lookup_type ?v _ = Some ?t, fvs : isfree _ |- (lookup _ _ _ :? _) = _ ] => + let Hty := fresh "Hty" in + (assert (Hty : lookup_type v fvs = Some t); + [eauto + | eapply (trans_cast (look Hty))]) + end. + + Hint Extern 3 (ptermDenote _ _ = ctermDenote _ _) => + match goal with + | [ H : _ |- ptermDenote (_ ?v1) _ + = ctermDenote (cfuncsDenote (ccTerm (_ ?v2) (envT := ?envT) ?fvs _) _ _) _ ] => + apply (H v1 v2 envT fvs); my_simpler + end. + + intro. + apply (pterm_equiv_mut + (fun G (e1 : pterm ptypeDenote result) (e2 : pterm natvar result) => + forall (envT : list ptype) (fvs : isfree envT) + (env : envOf ctypeDenote fvs) (Hwf : wfTerm fvs e2) k, + (forall t (v1 : ptypeDenote t) (v2 : natvar t), + In (vars (x := t) (v1, v2)) G + -> v2 < length envT) + -> (forall t (v1 : ptypeDenote t) (v2 : natvar t), + In (vars (x := t) (v1, v2)) G + -> lookup_type v2 fvs = Some t + -> forall Heq, (lookup ctypeDenote v2 env :? Heq) = v1) + -> ptermDenote e1 k + = ctermDenote (cfuncsDenote (ccTerm e2 fvs Hwf) k env) k) + (fun G t (p1 : pprimop ptypeDenote result t) (p2 : pprimop natvar result t) => + forall (envT : list ptype) (fvs : isfree envT) + (env : envOf ctypeDenote fvs) (Hwf : wfPrimop fvs p2) Hwf k, + (forall t (v1 : ptypeDenote t) (v2 : natvar t), + In (vars (x := t) (v1, v2)) G + -> v2 < length envT) + -> (forall t (v1 : ptypeDenote t) (v2 : natvar t), + In (vars (x := t) (v1, v2)) G + -> lookup_type v2 fvs = Some t + -> forall Heq, (lookup ctypeDenote v2 env :? Heq) = v1) + -> pprimopDenote p1 k + = cprimopsDenote (cfuncsDenote (ccPrimop p2 fvs Hwf) k env))); + my_simpler; eauto. +Qed. + + +(** * Parametric version *) + +Section wf. + Variable result : ptype. + + Lemma Pterm_wf' : forall G (e1 e2 : pterm natvar result), + pterm_equiv G e1 e2 + -> forall envT (fvs : isfree envT), + (forall t (v1 v2 : natvar t), In (vars (v1, v2)) G + -> lookup_type v1 fvs = Some t) + -> wfTerm fvs e1. + Hint Extern 3 (Some _ = Some _) => contradictory; eapply lookup_bound_contra; eauto. + + apply (pterm_equiv_mut + (fun G (e1 e2 : pterm natvar result) => + forall envT (fvs : isfree envT), + (forall t (v1 v2 : natvar t), In (vars (v1, v2)) G + -> lookup_type v1 fvs = Some t) + -> wfTerm (envT:=envT) fvs e1) + (fun G t (p1 p2 : pprimop natvar result t) => + forall envT (fvs : isfree envT), + (forall t (v1 v2 : natvar t), In (vars (v1, v2)) G + -> lookup_type v1 fvs = Some t) + -> wfPrimop (envT:=envT) fvs p1)); + simpler; + match goal with + | [ envT : list ptype, H : _ |- _ ] => + apply (H (length envT) (length envT)); simpler + end. + Qed. + + Theorem Pterm_wf : forall (E : Pterm result), + wfTerm (envT := nil) tt (E _). + intros; eapply Pterm_wf'; + [apply Pterm_equiv + | simpler]. + Qed. +End wf. + +Definition CcTerm result (E : Pterm result) : Cprog result := + CcTerm' E (Pterm_wf E). + +Lemma map_funcs_correct : forall result T1 T2 (f : T1 -> T2) (fs : cfuncs ctypeDenote result T1) k, + cfuncsDenote (map_funcs f fs) k = f (cfuncsDenote fs k). + induction fs; equation. +Qed. + +Theorem CcTerm_correct : forall result (E : Pterm result) k, + PtermDenote E k + = CprogDenote (CcTerm E) k. + Hint Rewrite map_funcs_correct : ltamer. + + unfold PtermDenote, CprogDenote, CcTerm, CcTerm', cprogDenote; + simpler; + apply (ccTerm_correct (result := result) + (G := nil) + (e1 := E _) + (e2 := E _) + (Pterm_equiv _ _ _) + nil + tt + tt); + simpler. +Qed.
--- a/src/Tactics.v Sun Nov 16 11:54:51 2008 -0500 +++ b/src/Tactics.v Sun Nov 16 14:01:33 2008 -0500 @@ -72,7 +72,7 @@ Ltac rewriteHyp := match goal with - | [ H : _ |- _ ] => rewrite H + | [ H : _ |- _ ] => rewrite H; auto; [idtac] end. Ltac rewriterP := repeat (rewriteHyp; autorewrite with cpdt in *). @@ -122,12 +122,17 @@ Ltac crush' lemmas invOne := let sintuition := simpl in *; intuition; try subst; repeat (simplHyp invOne; intuition; try subst); try congruence - in (sintuition; rewriter; - match lemmas with - | false => idtac - | _ => repeat ((app ltac:(fun L => inster L L) lemmas || appHyps ltac:(fun L => inster L L)); - repeat (simplHyp invOne; intuition)); un_done - end; sintuition; try omega; try (elimtype False; omega)). + in (sintuition; + autorewrite with cpdt in *; + repeat (match goal with + | [ H : _ |- _ ] => (rewrite H; []) + || (rewrite H; [ | solve [ crush' lemmas invOne ] ]) + end; autorewrite with cpdt in *); + match lemmas with + | false => idtac + | _ => repeat ((app ltac:(fun L => inster L L) lemmas || appHyps ltac:(fun L => inster L L)); + repeat (simplHyp invOne; intuition)); un_done + end; sintuition; try omega; try (elimtype False; omega)). Ltac crush := crush' false fail.