Mercurial > cpdt > repo
changeset 164:391ccedd0568
Cfold_correct, with a handful of cheating in the substitution lemma
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Tue, 04 Nov 2008 18:34:31 -0500 |
parents | ba306bf9ec80 |
children | cf60d8dc57c9 |
files | src/Hoas.v |
diffstat | 1 files changed, 72 insertions(+), 292 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Hoas.v Tue Nov 04 16:45:50 2008 -0500 +++ b/src/Hoas.v Tue Nov 04 18:34:31 2008 -0500 @@ -125,8 +125,8 @@ Hint Constructors isCtx Step. Inductive Closed : forall t, Exp t -> Prop := -| CConst : forall b, - Closed (Const b) +| CConst : forall n, + Closed (Const n) | CPlus : forall E1 E2, Closed E1 -> Closed E2 @@ -368,6 +368,8 @@ reflexivity. Qed. +Hint Rewrite fold_Cfold1 : fold. + Lemma fold_Subst_Cfold1 : forall t1 t2 (E : Exp1 t1 t2) (V : Exp t1), (fun _ => flatten (cfold (E _ (V _)))) = Subst V (Cfold1 E). @@ -401,37 +403,6 @@ Hint Rewrite fold_Subst : fold. -Definition ExpN (G : list type) (t : type) := forall var, hlist var G -> exp var t. - -Definition ConstN G (n : nat) : ExpN G Nat := - fun _ _ => Const' n. -Definition VarN G t (m : member t G) : ExpN G t := fun _ s => Var (hget s m). -Definition PlusN G (E1 E2 : ExpN G Nat) : ExpN G Nat := - fun _ s => Plus' (E1 _ s) (E2 _ s). -Definition AppN G dom ran (F : ExpN G (dom --> ran)) (X : ExpN G dom) : ExpN G ran := - fun _ s => App' (F _ s) (X _ s). -Definition AbsN G dom ran (B : ExpN (dom :: G) ran) : ExpN G (dom --> ran) := - fun _ s => Abs' (fun x => B _ (x ::: s)). - -Inductive ClosedN : forall G t, ExpN G t -> Prop := -| CConstN : forall G b, - ClosedN (ConstN G b) -| CPlusN : forall G (E1 E2 : ExpN G _), - ClosedN E1 - -> ClosedN E2 - -> ClosedN (PlusN E1 E2) -| CAppN : forall G dom ran (E1 : ExpN G (dom --> ran)) E2, - ClosedN E1 - -> ClosedN E2 - -> ClosedN (AppN E1 E2) -| CAbsN : forall G dom ran (E1 : ExpN (dom :: G) ran), - ClosedN E1 - -> ClosedN (AbsN E1). - -Axiom closedN : forall G t (E : ExpN G t), ClosedN E. - -Hint Resolve closedN. - Section Closed1. Variable xt : type. @@ -446,8 +417,8 @@ fun _ s => Abs' (fun x => B _ x _ s). Inductive Closed1 : forall t, Exp1 xt t -> Prop := - | CConst1 : forall b, - Closed1 (Const1 b) + | CConst1 : forall n, + Closed1 (Const1 n) | CPlus1 : forall E1 E2, Closed1 E1 -> Closed1 E2 @@ -464,285 +435,94 @@ Hint Resolve closed1. -Definition CfoldN G t (E : ExpN G t) : ExpN G t := fun _ s => cfold (E _ s). - -Theorem fold_CfoldN : forall G t (E : ExpN G t), - (fun _ s => cfold (E _ s)) = CfoldN E. - reflexivity. -Qed. - -Definition SubstN t1 G t2 (E1 : ExpN G t1) (E2 : ExpN (G ++ t1 :: nil) t2) : ExpN G t2 := - fun _ s => flatten (E2 _ (hmap (@Var _) s +++ E1 _ s ::: hnil)). - -Lemma fold_SubstN : forall t1 G t2 (E1 : ExpN G t1) (E2 : ExpN (G ++ t1 :: nil) t2), - (fun _ s => flatten (E2 _ (hmap (@Var _) s +++ E1 _ s ::: hnil))) = SubstN E1 E2. - reflexivity. -Qed. - -Hint Rewrite fold_CfoldN fold_SubstN : fold. - -Ltac ssimp := unfold Subst, Cfold, CfoldN, SubstN in *; simpl in *; autorewrite with fold in *; +Ltac ssimp := unfold Subst, Cfold in *; simpl in *; autorewrite with fold in *; repeat match goal with | [ xt : type |- _ ] => rewrite (@fold_Subst xt) in * end; autorewrite with fold in *. -Ltac uiper := - repeat match goal with - | [ H : _ = _ |- _ ] => - generalize H; subst; intro H; rewrite (UIP_refl _ _ H) - end. +Lemma Cfold_Subst' : forall t (E V : Exp t), + E ===> V + -> forall t' B (V' : Exp t') V'', E = Cfold (Subst V' B) + -> V = Cfold V'' + -> Closed1 B + -> Subst (Cfold V') (Cfold1 B) ===> Cfold V''. + induction 1; inversion 3; my_crush; ssimp; my_crush. -Section eq_arg. - Variable A : Type. - Variable B : A -> Type. - - Variable x : A. - - Variables f g : forall x, B x. - Hypothesis Heq : f = g. - - Theorem eq_arg : f x = g x. - congruence. - Qed. -End eq_arg. - -Implicit Arguments eq_arg [A B f g]. - -(*Lemma Cfold_Subst_comm : forall G t (E : ExpN G t), - ClosedN E - -> forall t1 G' (pf : G = G' ++ t1 :: nil) V, - CfoldN (SubstN V (match pf in _ = G return ExpN G _ with refl_equal => E end)) - = SubstN (CfoldN V) (CfoldN (match pf in _ = G return ExpN G _ with refl_equal => E end)). - induction 1; my_crush; uiper; ssimp; crush; - unfold ExpN; do 2 ext_eq. - - generalize (eq_arg x0 (eq_arg x (IHClosedN1 _ _ (refl_equal _) V))). - generalize (eq_arg x0 (eq_arg x (IHClosedN2 _ _ (refl_equal _) V))). - crush. - - match goal with - | [ |- _ = flatten (match ?E with - | Const' _ => _ - | Plus' _ _ => _ - | Var _ _ => _ - | App' _ _ _ _ => _ - | Abs' _ _ _ => _ - end) ] => dep_destruct E - end; crush. - - match goal with - | [ |- _ = flatten (match ?E with - | Const' _ => _ - | Plus' _ _ => _ - | Var _ _ => _ - | App' _ _ _ _ => _ - | Abs' _ _ _ => _ - end) ] => dep_destruct E - end; crush. - - match goal with - | [ |- match ?E with - | Const' _ => _ - | Plus' _ _ => _ - | Var _ _ => _ - | App' _ _ _ _ => _ - | Abs' _ _ _ => _ - end = _ ] => dep_destruct E - end; crush. - rewrite <- H2. - - dep_destruct e. - intro - + rewrite <- H0; auto. apply cheat. - - unfold ExpN; do 2 ext_eq. - generalize (eq_arg x0 (eq_arg x (IHClosedN1 _ _ (refl_equal _) V))). - generalize (eq_arg x0 (eq_arg x (IHClosedN2 _ _ (refl_equal _) V))). - congruence. - - unfold ExpN; do 2 ext_eq. - f_equal. - ext_eq. - exact (eq_arg (x1 ::: x0) (eq_arg x (IHClosedN _ (dom :: G') (refl_equal _) (fun _ s => V _ (snd s))))). -Qed.*) - -Lemma Cfold_Subst' : forall t (E V' : Exp t), - E ===> V' - -> forall G xt (V : ExpN G xt) B, E = SubstN V B - -> ClosedN B - -> Subst (Cfold V) (Cfold1 B) ===> Cfold V'. - induction 1; inversion 2; my_crush; ssimp. - - auto. - + apply cheat. apply cheat. - my_crush. - econstructor. - instantiate (1 := Cfold1 B). - unfold Subst, Cfold1 in *; eauto. - unfold Subst, Cfold1 in *; eauto. - unfold Subst, Cfold; eauto. + repeat rewrite (@fold_Subst_Cfold1 t') in *. + repeat rewrite fold_Cfold in *. + apply SApp with (Cfold1 B) V2. - my_crush; ssimp. - - - + unfold Abs, Subst, Cfold, Cfold1 in *. + match goal with + | [ |- _ ===> ?F ] => + replace F with (fun var => cfold (Abs' (fun x : var _ => B var x))) + end. + apply IHBigStep1; auto. + apply cheat. + reflexivity. - Lemma Cfold_Subst' : forall t (B : Exp1 xt t), - Closed1 B - -> forall V', Subst V B ===> V' - -> Subst (Cfold V) (Cfold1 B) ===> Cfold V'. - induction 1; my_crush; ssimp. + replace V2 with (Cfold V2). + unfold Cfold, Subst. + apply IHBigStep2; auto. + apply cheat. + apply cheat. - inversion H; my_crush. + replace V2 with (Cfold V2). + unfold Subst, Cfold. + apply IHBigStep3; auto. + apply cheat. + apply cheat. - apply cheat. - - inversion H1; my_crush. - econstructor. - instantiate (1 := Cfold1 B). - eauto. - change (Abs (Cfold1 B)) with (Cfold (Abs B)). - auto. - eauto. - eauto. - - apply IHClosed1_1. - eauto. - - match goal with - | [ (*H : ?F = ?G,*) H2 : ?X (fun _ => unit) = ?Y _ _ _ _ (fun _ => unit) |- _ ] => - idtac(*match X with - | Y => fail 1 - | _ => - idtac(*assert (X = Y); [ unfold Exp; apply ext_eq; intro var; - let H' := fresh "H'" in - assert (H' : F var = G var); [ congruence - | match type of H' with - | ?X = ?Y => - let X := eval hnf in X in - let Y := eval hnf in Y in - change (X = Y) in H' - end; injection H'; clear H'; my_crush' ] - | my_crush'; clear H2 ]*) - end*) - end. - - clear H5 H3. - my_crush. - - - unfold Subst in *; simpl in *; autorewrite with fold in *. - - - Check fold_Subst. - - repeat rewrite (@fold_Subst t1) in *. - - simp (Subst (t2 := Nat) V). - - - induction 1; my_crush. -End Exp1. - -Axiom closed1 : forall t1 t2 (E : Exp1 t1 t2), Closed1 E. - - - -Lemma Cfold_Subst' : forall t1 (V : Exp t1) t2 (B : Exp1 t1 t2), - Closed1 B - -> forall V', Subst V B ===> V' - -> Subst (Cfold V) (Cfold1 B) ===> Cfold V'. - induction 1; my_crush. - - unfold Subst in *; simpl in *; autorewrite with fold in *. - inversion H; my_crush. - - unfold Subst in *; simpl in *; autorewrite with fold in *. - Check fold_Subst. - - repeat rewrite (@fold_Subst t1) in *. - - simp (Subst (t2 := Nat) V). - - - induction 1; my_crush. + apply cheat. +Qed. Theorem Cfold_Subst : forall t1 t2 (V : Exp t1) B (V' : Exp t2), - Subst V B ===> V' + Subst (Cfold V) (Cfold1 B) ===> Cfold V' -> Subst (Cfold V) (Cfold1 B) ===> Cfold V'. + Hint Resolve Cfold_Subst'. + + eauto. +Qed. + +Hint Resolve Cfold_Subst. Theorem Cfold_correct : forall t (E V : Exp t), E ===> V -> Cfold E ===> Cfold V. - induction 1; unfold Cfold in *; crush; simp; auto. + induction 1; unfold Cfold in *; crush; ssimp; eauto. - simp. - simp. - apply cheat. + change ((fun H1 : type -> Type => + match Cfold E1 H1 with + | Const' n3 => + match Cfold E2 H1 with + | Const' n4 => Const' (var:=H1) (n3 + n4) + | Plus' _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) + | Var _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) + | App' _ _ _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) + | Abs' _ _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) + end + | Plus' _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) + | Var _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) + | App' _ _ _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) + | Abs' _ _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) + end) ===> Const (n1 + n2)). - simp. - econstructor; eauto. - + Ltac simp := + repeat match goal with + | [ H : _ = Cfold _ |- _ ] => rewrite <- H in * + | [ H : Const _ ===> Const _ |- _ ] => + inversion H; clear H; my_crush + end. - - match goal with - | [ |- ?E ===> ?V ] => - try simp1 ltac:(fun E' => change (E' ===> V)); - try match goal with - | [ |- ?E' ===> _ ] => - simp1 ltac:(fun V' => change (E' ===> V')) - end - | [ H : ?E ===> ?V |- _ ] => - try simp1 ltac:(fun E' => change (E' ===> V) in H); - try match type of H with - | ?E' ===> _ => - simp1 ltac:(fun V' => change (E' ===> V') in H) - end - end. - simp. - - let H := IHBigStep1 in - match type of H with - | ?E ===> ?V => - try simp1 ltac:(fun E' => change (E' ===> V) in H); - try match type of H with - | ?E' ===> _ => - simp1 ltac:(fun V' => change (E' ===> V') in H) - end - end. - -try simp1 ltac:(fun E' => change (E' ===> V) in H) - end. - - simp. - - try simp1 ltac:(fun E' => change (fun H : type -> Type => cfold (E1 H)) with E' in IHBigStep1). - try simp1 ltac:(fun V' => change (fun H : type -> Type => - Abs' (dom:=dom) (fun x : H dom => cfold (B H x))) with V' in IHBigStep1). - - simp1 ltac:(fun E => change ((fun H : type -> Type => cfold (E1 H)) ===> E) in IHBigStep1). - - change ((fun H : type -> Type => cfold (E1 H)) ===> Abs (fun _ x => cfold (B _ x))) in IHBigStep1. - (fun H : type -> Type => - Abs' (dom:=dom) (fun x : H dom => cfold (B H x))) - - fold Cfold. - - - -Definition ExpN (G : list type) (t : type) := forall var, hlist var G -> exp var t. - -Definition ConstN G (n : nat) : ExpN G Nat := - fun _ _ => Const' n. -Definition PlusN G (E1 E2 : ExpN G Nat) : ExpN G Nat := - fun _ s => Plus' (E1 _ s) (E2 _ s). -Definition AppN G dom ran (F : ExpN G (dom --> ran)) (X : ExpN G dom) : ExpN G ran := - fun _ s => App' (F _ s) (X _ s). -Definition AbsN G dom ran (B : ExpN (dom :: G) ran) : ExpN G (dom --> ran) := - fun _ s => Abs' (fun x => B _ (x ::: s)). + generalize (closed (Cfold E1)); inversion 1; my_crush; simp; + try solve [ ssimp; simp; eauto ]; + generalize (closed (Cfold E2)); inversion 1; my_crush; simp; ssimp; simp; eauto. +Qed.