Mercurial > cpdt > repo
changeset 144:5ea9a0bff8f7
Code for my_tauto
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Tue, 28 Oct 2008 14:28:22 -0400 |
parents | f3e018e167f8 |
children | 617323a60cc4 |
files | src/MoreSpecif.v src/Reflection.v |
diffstat | 2 files changed, 161 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/src/MoreSpecif.v Tue Oct 28 13:19:33 2008 -0400 +++ b/src/MoreSpecif.v Tue Oct 28 14:28:22 2008 -0400 @@ -92,3 +92,5 @@ Delimit Scope partial_scope with partial. Notation "'Reduce' v" := (if v then Yes else No) : partial_scope. +Notation "x || y" := (if x then Yes else Reduce y) : partial_scope. +Notation "x && y" := (if x then Reduce y else No) : partial_scope.
--- a/src/Reflection.v Tue Oct 28 13:19:33 2008 -0400 +++ b/src/Reflection.v Tue Oct 28 14:28:22 2008 -0400 @@ -26,8 +26,8 @@ (** Proving that particular natural number constants are even is certainly something we would rather have happen automatically. The Ltac-programming techniques that we learned in the last chapter make it easy to implement such a procedure. *) Inductive isEven : nat -> Prop := - | Even_O : isEven O - | Even_SS : forall n, isEven n -> isEven (S (S n)). +| Even_O : isEven O +| Even_SS : forall n, isEven n -> isEven (S (S n)). Ltac prove_even := repeat constructor. @@ -229,3 +229,160 @@ ]] It is worth considering how the reflective tactic improves on a pure-Ltac implementation. The formula reflection process is just as ad-hoc as before, so we gain little there. In general, proofs will be more complicated than formula translation, and the "generic proof rule" that we apply here %\textit{%#<i>#is#</i>#%}% on much better formal footing than a recursive Ltac function. The dependent type of the proof guarantees that it "works" on any input formula. This is all in addition to the proof-size improvement that we have already seen. *) + + +(** * A Smarter Tautology Solver *) + +Require Import Quote. + +Inductive formula : Set := +| Atomic : index -> formula +| Truth : formula +| Falsehood : formula +| And : formula -> formula -> formula +| Or : formula -> formula -> formula +| Imp : formula -> formula -> formula. + +Definition asgn := varmap Prop. + +Definition imp (P1 P2 : Prop) := P1 -> P2. +Infix "-->" := imp (no associativity, at level 95). + +Fixpoint formulaDenote (atomics : asgn) (f : formula) : Prop := + match f with + | Atomic v => varmap_find False v atomics + | Truth => True + | Falsehood => False + | And f1 f2 => formulaDenote atomics f1 /\ formulaDenote atomics f2 + | Or f1 f2 => formulaDenote atomics f1 \/ formulaDenote atomics f2 + | Imp f1 f2 => formulaDenote atomics f1 --> formulaDenote atomics f2 + end. + +Section my_tauto. + Variable atomics : asgn. + + Definition holds (v : index) := varmap_find False v atomics. + + Require Import ListSet. + + Definition index_eq : forall x y : index, {x = y} + {x <> y}. + decide equality. + Defined. + + Definition add (s : set index) (v : index) := set_add index_eq v s. + Definition In_dec : forall v (s : set index), {In v s} + {~In v s}. + Open Local Scope specif_scope. + + intro; refine (fix F (s : set index) : {In v s} + {~In v s} := + match s return {In v s} + {~In v s} with + | nil => No + | v' :: s' => index_eq v' v || F s' + end); crush. + Defined. + + Fixpoint allTrue (s : set index) : Prop := + match s with + | nil => True + | v :: s' => holds v /\ allTrue s' + end. + + Theorem allTrue_add : forall v s, + allTrue s + -> holds v + -> allTrue (add s v). + induction s; crush; + match goal with + | [ |- context[if ?E then _ else _] ] => destruct E + end; crush. + Qed. + + Theorem allTrue_In : forall v s, + allTrue s + -> set_In v s + -> varmap_find False v atomics. + induction s; crush. + Qed. + + Hint Resolve allTrue_add allTrue_In. + + Open Local Scope partial_scope. + + Definition forward (f : formula) (known : set index) (hyp : formula) + (cont : forall known', [allTrue known' -> formulaDenote atomics f]) + : [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f]. + refine (fix F (f : formula) (known : set index) (hyp : formula) + (cont : forall known', [allTrue known' -> formulaDenote atomics f]){struct hyp} + : [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f] := + match hyp return [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f] with + | Atomic v => Reduce (cont (add known v)) + | Truth => Reduce (cont known) + | Falsehood => Yes + | And h1 h2 => + Reduce (F (Imp h2 f) known h1 (fun known' => + Reduce (F f known' h2 cont))) + | Or h1 h2 => F f known h1 cont && F f known h2 cont + | Imp _ _ => Reduce (cont known) + end); crush. + Defined. + + Definition backward (known : set index) (f : formula) : [allTrue known -> formulaDenote atomics f]. + refine (fix F (known : set index) (f : formula) : [allTrue known -> formulaDenote atomics f] := + match f return [allTrue known -> formulaDenote atomics f] with + | Atomic v => Reduce (In_dec v known) + | Truth => Yes + | Falsehood => No + | And f1 f2 => F known f1 && F known f2 + | Or f1 f2 => F known f1 || F known f2 + | Imp f1 f2 => forward f2 known f1 (fun known' => F known' f2) + end); crush; eauto. + Defined. + + Definition my_tauto (f : formula) : [formulaDenote atomics f]. + intro; refine (Reduce (backward nil f)); crush. + Defined. +End my_tauto. + +Ltac my_tauto := + repeat match goal with + | [ |- forall x : ?P, _ ] => + match type of P with + | Prop => fail 1 + | _ => intro + end + end; + quote formulaDenote; + match goal with + | [ |- formulaDenote ?m ?f ] => exact (partialOut (my_tauto m f)) + end. + +Theorem mt1 : True. + my_tauto. +Qed. + +Print mt1. + +Theorem mt2 : forall x y : nat, x = y --> x = y. + my_tauto. +Qed. + +Print mt2. + +Theorem mt3 : forall x y z, + (x < y /\ y > z) \/ (y > z /\ x < S y) + --> y > z /\ (x < y \/ x < S y). + my_tauto. +Qed. + +Print mt3. + +Theorem mt4 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False. + my_tauto. +Qed. + +Print mt4. + +Theorem mt4' : True /\ True /\ True /\ True /\ True /\ True /\ False -> False. + tauto. +Qed. + +Print mt4'.