Mercurial > cpdt > repo
changeset 145:617323a60cc4
Monoid code
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Tue, 28 Oct 2008 15:28:52 -0400 |
parents | 5ea9a0bff8f7 |
children | 2779c651406a |
files | src/Reflection.v |
diffstat | 1 files changed, 81 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Reflection.v Tue Oct 28 14:28:22 2008 -0400 +++ b/src/Reflection.v Tue Oct 28 15:28:52 2008 -0400 @@ -231,6 +231,87 @@ It is worth considering how the reflective tactic improves on a pure-Ltac implementation. The formula reflection process is just as ad-hoc as before, so we gain little there. In general, proofs will be more complicated than formula translation, and the "generic proof rule" that we apply here %\textit{%#<i>#is#</i>#%}% on much better formal footing than a recursive Ltac function. The dependent type of the proof guarantees that it "works" on any input formula. This is all in addition to the proof-size improvement that we have already seen. *) +(** * A Monoid Expression Simplifier *) + +Section monoid. + Variable A : Set. + Variable e : A. + Variable f : A -> A -> A. + + Infix "+" := f. + + Hypothesis assoc : forall a b c, (a + b) + c = a + (b + c). + Hypothesis identl : forall a, e + a = a. + Hypothesis identr : forall a, a + e = a. + + Inductive mexp : Set := + | Ident : mexp + | Var : A -> mexp + | Op : mexp -> mexp -> mexp. + + Fixpoint mdenote (me : mexp) : A := + match me with + | Ident => e + | Var v => v + | Op me1 me2 => mdenote me1 + mdenote me2 + end. + + Fixpoint mldenote (ls : list A) : A := + match ls with + | nil => e + | x :: ls' => x + mldenote ls' + end. + + Fixpoint flatten (me : mexp) : list A := + match me with + | Ident => nil + | Var x => x :: nil + | Op me1 me2 => flatten me1 ++ flatten me2 + end. + + Lemma flatten_correct' : forall ml2 ml1, f (mldenote ml1) (mldenote ml2) = mldenote (ml1 ++ ml2). + induction ml1; crush. + Qed. + + Theorem flatten_correct : forall me, mdenote me = mldenote (flatten me). + Hint Resolve flatten_correct'. + + induction me; crush. + Qed. + + Theorem monoid_reflect : forall m1 m2, + mldenote (flatten m1) = mldenote (flatten m2) + -> mdenote m1 = mdenote m2. + intros; repeat rewrite flatten_correct; assumption. + Qed. + + Ltac reflect m := + match m with + | e => Ident + | ?m1 + ?m2 => + let r1 := reflect m1 in + let r2 := reflect m2 in + constr:(Op r1 r2) + | _ => constr:(Var m) + end. + + Ltac monoid := + match goal with + | [ |- ?m1 = ?m2 ] => + let r1 := reflect m1 in + let r2 := reflect m2 in + change (mdenote r1 = mdenote r2); + apply monoid_reflect; simpl mldenote + end. + + Theorem t1 : forall a b c d, a + b + c + d = a + (b + c) + d. + intros. + monoid. + reflexivity. + Qed. +End monoid. + + (** * A Smarter Tautology Solver *) Require Import Quote.