Mercurial > cpdt > repo
changeset 172:653c03f6061e
Examples; pair optimization
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Sun, 09 Nov 2008 14:24:31 -0500 |
parents | b00b6a9b6b58 |
children | 7fd470d8a788 |
files | src/Interps.v |
diffstat | 1 files changed, 89 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Interps.v Sun Nov 09 13:59:51 2008 -0500 +++ b/src/Interps.v Sun Nov 09 14:24:31 2008 -0500 @@ -67,6 +67,15 @@ Notation "\ x , e" := (Abs (fun x => e)) (at level 78). Notation "\ ! , e" := (Abs (fun _ => e)) (at level 78). + Definition zero : Exp Nat := fun _ => ^0. + Definition one : Exp Nat := fun _ => ^1. + Definition zpo : Exp Nat := fun _ => zero _ +^ one _. + Definition ident : Exp (Nat --> Nat) := fun _ => \x, #x. + Definition app_ident : Exp Nat := fun _ => ident _ @ zpo _. + Definition app : Exp ((Nat --> Nat) --> Nat --> Nat) := fun _ => + \f, \x, #f @ #x. + Definition app_ident' : Exp Nat := fun _ => app _ @ ident _ @ zpo _. + Fixpoint typeDenote (t : type) : Set := match t with | Nat => nat @@ -86,6 +95,14 @@ Definition ExpDenote t (e : Exp t) := expDenote (e _). + Eval compute in ExpDenote zero. + Eval compute in ExpDenote one. + Eval compute in ExpDenote zpo. + Eval compute in ExpDenote ident. + Eval compute in ExpDenote app_ident. + Eval compute in ExpDenote app. + Eval compute in ExpDenote app_ident'. + Section cfold. Variable var : type -> Type. @@ -191,7 +208,7 @@ Notation "# v" := (Var v) (at level 70). Notation "^ n" := (Const n) (at level 70). - Infix "+^" := Plus (left associativity, at level 79). + Infix "+^" := Plus (left associativity, at level 78). Infix "@" := App (left associativity, at level 77). Notation "\ x , e" := (Abs (fun x => e)) (at level 78). @@ -204,6 +221,18 @@ Notation "'case' e 'of' x => e1 | y => e2" := (SumCase e (fun x => e1) (fun y => e2)) (at level 79). + Definition swap : Exp (Nat ** Nat --> Nat ** Nat) := fun _ => + \p, [#2 #p, #1 #p]. + Definition zo : Exp (Nat ** Nat) := fun _ => [^0, ^1]. + Definition swap_zo : Exp (Nat ** Nat) := fun _ => swap _ @ zo _. + + Definition natOut : Exp (Nat ++ Nat --> Nat) := fun _ => + \s, case #s of x => #x | y => #y +^ #y. + Definition ns1 : Exp (Nat ++ Nat) := fun _ => Inl (^3). + Definition ns2 : Exp (Nat ++ Nat) := fun _ => Inr (^5). + Definition natOut_ns1 : Exp Nat := fun _ => natOut _ @ ns1 _. + Definition natOut_ns2 : Exp Nat := fun _ => natOut _ @ ns2 _. + Fixpoint typeDenote (t : type) : Set := match t with | Nat => nat @@ -237,9 +266,37 @@ Definition ExpDenote t (e : Exp t) := expDenote (e _). + Eval compute in ExpDenote swap. + Eval compute in ExpDenote zo. + Eval compute in ExpDenote swap_zo. + + Eval compute in ExpDenote natOut. + Eval compute in ExpDenote ns1. + Eval compute in ExpDenote ns2. + Eval compute in ExpDenote natOut_ns1. + Eval compute in ExpDenote natOut_ns2. + Section cfold. Variable var : type -> Type. + Definition pairOutType t := + match t with + | t1 ** t2 => option (exp var t1 * exp var t2) + | _ => unit + end. + + Definition pairOutDefault (t : type) : pairOutType t := + match t return pairOutType t with + | _ ** _ => None + | _ => tt + end. + + Definition pairOut t1 t2 (e : exp var (t1 ** t2)) : option (exp var t1 * exp var t2) := + match e in exp _ t return pairOutType t with + | Pair _ _ e1 e2 => Some (e1, e2) + | _ => pairOutDefault _ + end. + Fixpoint cfold t (e : exp var t) {struct e} : exp var t := match e in exp _ t return exp _ t with | Var _ v => #v @@ -257,8 +314,18 @@ | Abs _ _ e' => Abs (fun x => cfold (e' x)) | Pair _ _ e1 e2 => [cfold e1, cfold e2] - | Fst _ _ e' => #1 (cfold e') - | Snd _ _ e' => #2 (cfold e') + | Fst t1 _ e' => + let e'' := cfold e' in + match pairOut e'' with + | None => #1 e'' + | Some (e1, _) => e1 + end + | Snd _ _ e' => + let e'' := cfold e' in + match pairOut e'' with + | None => #2 e'' + | Some (_, e2) => e2 + end | Inl _ _ e' => Inl (cfold e') | Inr _ _ e' => Inr (cfold e') @@ -271,13 +338,31 @@ Definition Cfold t (E : Exp t) : Exp t := fun _ => cfold (E _). + Section pairs. + Variables A B : Type. + + Variable v1 : A. + Variable v2 : B. + Variable v : A * B. + + Theorem pair_eta1 : (v1, v2) = v -> v1 = fst v. + destruct v; crush. + Qed. + + Theorem pair_eta2 : (v1, v2) = v -> v2 = snd v. + destruct v; crush. + Qed. + End pairs. + + Hint Resolve pair_eta1 pair_eta2. + Lemma cfold_correct : forall t (e : exp _ t), expDenote (cfold e) = expDenote e. induction e; crush; try (ext_eq; crush); repeat (match goal with | [ |- context[cfold ?E] ] => dep_destruct (cfold E) | [ |- match ?E with inl _ => _ | inr _ => _ end = _ ] => destruct E - end; crush). + end; crush); eauto. Qed. Theorem Cfold_correct : forall t (E : Exp t),