Mercurial > cpdt > repo
changeset 184:699fd70c04a7
About to stop using JMeq
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Sun, 16 Nov 2008 15:04:21 -0500 |
parents | 02569049397b |
children | 303e9d866597 |
files | src/Intensional.v src/Tactics.v |
diffstat | 2 files changed, 151 insertions(+), 217 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Intensional.v Sun Nov 16 14:01:33 2008 -0500 +++ b/src/Intensional.v Sun Nov 16 15:04:21 2008 -0500 @@ -8,14 +8,18 @@ *) (* begin hide *) -Require Import Arith Bool String List. +Require Import Arith Bool String List Eqdep JMeq. Require Import Axioms Tactics DepList. Set Implicit Arguments. + +Infix "==" := JMeq (at level 70, no associativity). (* end hide *) + + (** %\chapter{Intensional Transformations}% *) (** TODO: Prose for this chapter *) @@ -797,292 +801,221 @@ Implicit Arguments ccExp [var t envT]. -Fixpoint map_funcs var result T1 T2 (f : T1 -> T2) (fs : cfuncs var result T1) {struct fs} - : cfuncs var result T2 := +Fixpoint map_funcs var T1 T2 (f : T1 -> T2) (fs : funcs var T1) {struct fs} + : funcs var T2 := match fs with - | CMain v => CMain (f v) - | CAbs _ _ e fs' => CAbs e (fun x => map_funcs f (fs' x)) + | Main v => Main (f v) + | Abs _ _ _ e fs' => Abs e (fun x => map_funcs f (fs' x)) end. -Definition CcTerm' result (E : Pterm result) (Hwf : wfTerm (envT := nil) tt (E _)) : Cprog result := - fun _ => map_funcs (fun f => f tt) (ccTerm (E _) (envT := nil) tt Hwf). +Definition CcTerm' t (E : Source.Exp t) (Hwf : wfExp (envT := nil) tt (E _)) : Prog (ccType t) := + fun _ => map_funcs (fun f => f tt) (ccExp (E _) (envT := nil) tt Hwf). (** * Correctness *) -Scheme pterm_equiv_mut := Minimality for pterm_equiv Sort Prop -with pprimop_equiv_mut := Minimality for pprimop_equiv Sort Prop. +Section spliceFuncs_correct. + Variables T1 T2 : Type. + Variable f : T1 -> funcs typeDenote T2. -Section splicePrim_correct. - Variables result t t' : ptype. - Variable ps' : ctypeDenote ([< t >]) -> cprimops ctypeDenote t'. - - Theorem splicePrim_correct : forall (ps : cprimops ctypeDenote t), - cprimopsDenote (splicePrim ps ps') - = cprimopsDenote (ps' (cprimopsDenote ps)). - induction ps; equation. - Qed. -End splicePrim_correct. - -Section spliceTerm_correct. - Variables result t : ptype. - Variable e : ctypeDenote ([< t >]) -> cterm ctypeDenote result. - Variable k : ptypeDenote result -> bool. - - Theorem spliceTerm_correct : forall (ps : cprimops ctypeDenote t), - ctermDenote (spliceTerm ps e) k - = ctermDenote (e (cprimopsDenote ps)) k. - induction ps; equation. - Qed. -End spliceTerm_correct. - -Section spliceFuncs'_correct. - Variable result : ptype. - Variables T1 T2 : Type. - Variable f : T1 -> T2. - Variable k : ptypeDenote result -> bool. - - Theorem spliceFuncs'_correct : forall fs, - cfuncsDenote (spliceFuncs' fs f) k - = f (cfuncsDenote fs k). - induction fs; equation. - Qed. -End spliceFuncs'_correct. - -Section spliceFuncs_correct. - Variable result : ptype. - Variables T1 T2 T3 : Type. - Variable fs2 : cfuncs ctypeDenote result T2. - Variable f : T1 -> T2 -> T3. - Variable k : ptypeDenote result -> bool. - - Hint Rewrite spliceFuncs'_correct : ltamer. - - Theorem spliceFuncs_correct : forall fs1, - cfuncsDenote (spliceFuncs fs1 fs2 f) k - = f (cfuncsDenote fs1 k) (cfuncsDenote fs2 k). - induction fs1; equation. + Theorem spliceFuncs_correct : forall fs, + funcsDenote (spliceFuncs fs f) + = funcsDenote (f (funcsDenote fs)). + induction fs; crush. Qed. End spliceFuncs_correct. -Section inside_correct. - Variable result : ptype. - Variables T1 T2 : Type. - Variable fs2 : T1 -> cfuncs ctypeDenote result T2. - Variable k : ptypeDenote result -> bool. - - Theorem inside_correct : forall fs1, - cfuncsDenote (inside fs1 fs2) k - = cfuncsDenote (fs2 (cfuncsDenote fs1 k)) k. - induction fs1; equation. - Qed. -End inside_correct. - Notation "var <| to" := (match to with | None => unit - | Some t => var ([< t >])%cc + | Some t => var (ccType t) end) (no associativity, at level 70). Section packing_correct. - Variable result : ptype. - - Hint Rewrite splicePrim_correct spliceTerm_correct : ltamer. - - Ltac my_matching := matching my_equation default_chooser. - - Fixpoint makeEnv (envT : list ptype) : forall (fvs : isfree envT), - ptypeDenote (envType fvs) - -> envOf ctypeDenote fvs := + Fixpoint makeEnv (envT : list Source.type) : forall (fvs : isfree envT), + Closed.typeDenote (envType fvs) + -> envOf Closed.typeDenote fvs := match envT return (forall (fvs : isfree envT), - ptypeDenote (envType fvs) - -> envOf ctypeDenote fvs) with + Closed.typeDenote (envType fvs) + -> envOf Closed.typeDenote fvs) with | nil => fun _ _ => tt | first :: rest => fun fvs => - match fvs return (ptypeDenote (envType (envT := first :: rest) fvs) - -> envOf (envT := first :: rest) ctypeDenote fvs) with + match fvs return (Closed.typeDenote (envType (envT := first :: rest) fvs) + -> envOf (envT := first :: rest) Closed.typeDenote fvs) with | (false, fvs') => fun env => makeEnv rest fvs' env | (true, fvs') => fun env => (fst env, makeEnv rest fvs' (snd env)) end end. - Theorem unpackExp_correct : forall (envT : list ptype) (fvs : isfree envT) - (ps : cprimops ctypeDenote (envType fvs)) - (e : envOf ctypeDenote fvs -> cterm ctypeDenote result) k, - ctermDenote (unpackExp ps e) k - = ctermDenote (e (makeEnv _ _ (cprimopsDenote ps))) k. - induction envT; my_matching. + Implicit Arguments makeEnv [envT fvs]. + + Theorem unpackExp_correct : forall t (envT : list Source.type) (fvs : isfree envT) + (e1 : Closed.exp Closed.typeDenote (envType fvs)) + (e2 : envOf Closed.typeDenote fvs -> Closed.exp Closed.typeDenote t), + Closed.expDenote (unpackExp e1 e2) + = Closed.expDenote (e2 (makeEnv (Closed.expDenote e1))). + induction envT; my_crush. Qed. Lemma lookup_type_more : forall v2 envT (fvs : isfree envT) t b v, (v2 = length envT -> False) -> lookup_type v2 (envT := t :: envT) (b, fvs) = v -> lookup_type v2 fvs = v. - equation. + my_crush. Qed. Lemma lookup_type_less : forall v2 t envT (fvs : isfree (t :: envT)) v, (v2 = length envT -> False) -> lookup_type v2 (snd fvs) = v -> lookup_type v2 (envT := t :: envT) fvs = v. - equation. + my_crush. Qed. + Hint Resolve lookup_bound_contra. + Lemma lookup_bound_contra_eq : forall t envT (fvs : isfree envT) v, lookup_type v fvs = Some t -> v = length envT -> False. - simpler; eapply lookup_bound_contra; eauto. - Defined. + my_crush; elimtype False; eauto. + Qed. - Lemma lookup_type_inner : forall result t envT v t' (fvs : isfree envT) e, - wfTerm (envT := t :: envT) (true, fvs) e - -> lookup_type v (snd (fvsTerm (result := result) e (t :: envT))) = Some t' - -> lookup_type v fvs = Some t'. - Hint Resolve lookup_bound_contra_eq fvsTerm_minimal + Lemma lookup_type_inner : forall t t' envT v t'' (fvs : isfree envT) e, + wfExp (envT := t' :: envT) (true, fvs) e + -> lookup_type v (snd (fvsExp (t := t) e (t' :: envT))) = Some t'' + -> lookup_type v fvs = Some t''. + Hint Resolve lookup_bound_contra_eq fvsExp_minimal lookup_type_more lookup_type_less. - Hint Extern 2 (Some _ = Some _) => contradictory. + Hint Extern 2 (Some _ = Some _) => elimtype False. eauto 6. Qed. Lemma cast_irrel : forall T1 T2 x (H1 H2 : T1 = T2), - (x :? H1) = (x :? H2). - equation. + match H1 in _ = T return T with + | refl_equal => x + end + = match H2 in _ = T return T with + | refl_equal => x + end. + intros; generalize H1; crush; + repeat match goal with + | [ |- context[match ?pf with refl_equal => _ end] ] => + rewrite (UIP_refl _ _ pf) + end; + reflexivity. Qed. Hint Immediate cast_irrel. - Lemma cast_irrel_unit : forall T1 T2 x y (H1 : T1 = T2) (H2 : unit = T2), - (x :? H1) = (y :? H2). - intros; generalize H1; - rewrite <- H2 in H1; - equation. - Qed. - - Hint Immediate cast_irrel_unit. - - Hint Extern 3 (_ = _) => + Hint Extern 3 (_ == _) => match goal with | [ |- context[False_rect _ ?H] ] => apply False_rect; exact H end. - Theorem packExp_correct : forall v2 t envT (fvs1 fvs2 : isfree envT) - Heq1 (Heq2 : ctypeDenote <| lookup_type v2 fvs2 = ptypeDenote t) + Theorem packExp_correct : forall v envT (fvs1 fvs2 : isfree envT) Hincl env, - (lookup ctypeDenote v2 env :? Heq2) - = (lookup ctypeDenote v2 - (makeEnv envT fvs1 - (cprimopsDenote - (packExp fvs1 fvs2 Hincl env))) :? Heq1). - induction envT; my_equation. + lookup_type v fvs1 <> None + -> lookup Closed.typeDenote v env + == lookup Closed.typeDenote v + (makeEnv (Closed.expDenote + (packExp fvs1 fvs2 Hincl env))). + induction envT; my_crush. Qed. End packing_correct. +(*Lemma typeDenote_same : forall t, + Closed.typeDenote (ccType t) = Source.typeDenote t. + induction t; crush. +Qed.*) + +Lemma typeDenote_same : forall t, + Source.typeDenote t = Closed.typeDenote (ccType t). + induction t; crush. +Qed. + +Hint Resolve typeDenote_same. + Lemma look : forall envT n (fvs : isfree envT) t, lookup_type n fvs = Some t - -> ctypeDenote <| lookup_type n fvs = ptypeDenote t. - equation. + -> Closed.typeDenote <| lookup_type n fvs = Source.typeDenote t. + crush. Qed. Implicit Arguments look [envT n fvs t]. +Lemma cast_jmeq : forall (T1 T2 : Set) (pf : T1 = T2) (T2' : Set) (v1 : T1) (v2 : T2'), + v1 == v2 + -> T2' = T2 + -> match pf in _ = T return T with + | refl_equal => v1 + end == v2. + intros; generalize pf; subst. + intro. + rewrite (UIP_refl _ _ pf). + auto. +Qed. -Theorem ccTerm_correct : forall result G - (e1 : pterm ptypeDenote result) - (e2 : pterm natvar result), - pterm_equiv G e1 e2 - -> forall (envT : list ptype) (fvs : isfree envT) - (env : envOf ctypeDenote fvs) (Hwf : wfTerm fvs e2) k, - (forall t (v1 : ptypeDenote t) (v2 : natvar t), - In (vars (x := t) (v1, v2)) G +Hint Resolve cast_jmeq. + +Theorem ccTerm_correct : forall t G + (e1 : Source.exp Source.typeDenote t) + (e2 : Source.exp natvar t), + exp_equiv G e1 e2 + -> forall (envT : list Source.type) (fvs : isfree envT) + (env : envOf Closed.typeDenote fvs) (wf : wfExp fvs e2), + (forall t (v1 : Source.typeDenote t) (v2 : natvar t), + In (existT _ _ (v1, v2)) G -> v2 < length envT) - -> (forall t (v1 : ptypeDenote t) (v2 : natvar t), - In (vars (x := t) (v1, v2)) G + -> (forall t (v1 : Source.typeDenote t) (v2 : natvar t), + In (existT _ _ (v1, v2)) G -> lookup_type v2 fvs = Some t - -> forall Heq, (lookup ctypeDenote v2 env :? Heq) = v1) - -> ptermDenote e1 k - = ctermDenote (cfuncsDenote (ccTerm e2 fvs Hwf) k env) k. + -> lookup Closed.typeDenote v2 env == v1) + -> Closed.expDenote (funcsDenote (ccExp e2 fvs wf) env) + == Source.expDenote e1. - Hint Rewrite splicePrim_correct spliceTerm_correct - spliceFuncs_correct inside_correct : ltamer. - - Hint Rewrite unpackExp_correct : ltamer. + Hint Rewrite spliceFuncs_correct unpackExp_correct : cpdt. Hint Resolve packExp_correct lookup_type_inner. - Hint Extern 1 (_ = _) => push_vars. + induction 1. - Hint Extern 1 (_ = _) => - match goal with - | [ Hvars : forall t v1 v2, _, - Hin : In _ _ |- _ ] => - rewrite (Hvars _ _ _ Hin) - end. + crush. + crush. + crush. + crush. - Hint Extern 1 (wfPrimop _ _) => tauto. + Lemma app_jmeq : forall dom1 dom2 ran1 ran2 + (f1 : dom1 -> ran1) (f2 : dom2 -> ran2) + (x1 : dom1) (x2 : dom2), + ran1 = ran2 + -> f1 == f2 + -> x1 == x2 + -> f1 x1 == f2 x2. + crush. + assert (dom1 = dom2). + inversion H1; trivial. + crush. + Qed. + + Lemma app_jmeq : forall dom ran + (f1 : Closed.typeDenote (ccType dom) -> Closed.typeDenote (ccType ran)) + (f2 : Source.typeDenote dom -> Source.typeDenote ran) + (x1 : dom1) (x2 : dom2), + ran1 = ran2 + -> f1 == f2 + -> x1 == x2 + -> f1 x1 == f2 x2. + crush. + assert (dom1 = dom2). + inversion H1; trivial. + crush. + Qed. - Hint Extern 1 (_ < _) => - match goal with - | [ Hvars : forall t v1 v2, _, - Hin : In _ _ |- _ ] => - exact (Hvars _ _ _ Hin) - end. - - Hint Extern 1 (lookup_type _ _ = _) => tauto. - - Hint Extern 1 (_ = _) => - match goal with - | [ Hvars : forall t v1 v2, _, - Hin : In (vars (_, length ?envT)) _ |- _ ] => - contradictory; assert (length envT < length envT); [auto | omega] - end. - - Hint Extern 5 (_ = _) => symmetry. - - Hint Extern 1 (_ = _) => - match goal with - | [ H : lookup_type ?v _ = Some ?t, fvs : isfree _ |- (lookup _ _ _ :? _) = _ ] => - let Hty := fresh "Hty" in - (assert (Hty : lookup_type v fvs = Some t); - [eauto - | eapply (trans_cast (look Hty))]) - end. - - Hint Extern 3 (ptermDenote _ _ = ctermDenote _ _) => - match goal with - | [ H : _ |- ptermDenote (_ ?v1) _ - = ctermDenote (cfuncsDenote (ccTerm (_ ?v2) (envT := ?envT) ?fvs _) _ _) _ ] => - apply (H v1 v2 envT fvs); my_simpler - end. - - intro. - apply (pterm_equiv_mut - (fun G (e1 : pterm ptypeDenote result) (e2 : pterm natvar result) => - forall (envT : list ptype) (fvs : isfree envT) - (env : envOf ctypeDenote fvs) (Hwf : wfTerm fvs e2) k, - (forall t (v1 : ptypeDenote t) (v2 : natvar t), - In (vars (x := t) (v1, v2)) G - -> v2 < length envT) - -> (forall t (v1 : ptypeDenote t) (v2 : natvar t), - In (vars (x := t) (v1, v2)) G - -> lookup_type v2 fvs = Some t - -> forall Heq, (lookup ctypeDenote v2 env :? Heq) = v1) - -> ptermDenote e1 k - = ctermDenote (cfuncsDenote (ccTerm e2 fvs Hwf) k env) k) - (fun G t (p1 : pprimop ptypeDenote result t) (p2 : pprimop natvar result t) => - forall (envT : list ptype) (fvs : isfree envT) - (env : envOf ctypeDenote fvs) (Hwf : wfPrimop fvs p2) Hwf k, - (forall t (v1 : ptypeDenote t) (v2 : natvar t), - In (vars (x := t) (v1, v2)) G - -> v2 < length envT) - -> (forall t (v1 : ptypeDenote t) (v2 : natvar t), - In (vars (x := t) (v1, v2)) G - -> lookup_type v2 fvs = Some t - -> forall Heq, (lookup ctypeDenote v2 env :? Heq) = v1) - -> pprimopDenote p1 k - = cprimopsDenote (cfuncsDenote (ccPrimop p2 fvs Hwf) k env))); - my_simpler; eauto. + simpl. + refine (app_jmeq _ _ _). + apply app_jmeq. + dependent rewrite <- IHexp_equiv1. Qed.
--- a/src/Tactics.v Sun Nov 16 14:01:33 2008 -0500 +++ b/src/Tactics.v Sun Nov 16 15:04:21 2008 -0500 @@ -121,18 +121,19 @@ end. Ltac crush' lemmas invOne := - let sintuition := simpl in *; intuition; try subst; repeat (simplHyp invOne; intuition; try subst); try congruence - in (sintuition; - autorewrite with cpdt in *; - repeat (match goal with - | [ H : _ |- _ ] => (rewrite H; []) - || (rewrite H; [ | solve [ crush' lemmas invOne ] ]) - end; autorewrite with cpdt in *); + let sintuition := simpl in *; intuition; try subst; repeat (simplHyp invOne; intuition; try subst); try congruence in + let rewriter := autorewrite with cpdt in *; + repeat (match goal with + | [ H : _ |- _ ] => (rewrite H; []) + || (rewrite H; [ | solve [ crush' lemmas invOne ] ]) + || (rewrite H; [ | solve [ crush' lemmas invOne ] | solve [ crush' lemmas invOne ] ]) + end; autorewrite with cpdt in *) + in (sintuition; rewriter; match lemmas with | false => idtac | _ => repeat ((app ltac:(fun L => inster L L) lemmas || appHyps ltac:(fun L => inster L L)); repeat (simplHyp invOne; intuition)); un_done - end; sintuition; try omega; try (elimtype False; omega)). + end; sintuition; rewriter; sintuition; try omega; try (elimtype False; omega)). Ltac crush := crush' false fail.