Mercurial > cpdt > repo
changeset 166:73279a8aac71
More easy syntactic examples
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Wed, 05 Nov 2008 09:21:11 -0500 |
parents | cf60d8dc57c9 |
children | ef485f86a7b6 |
files | src/Hoas.v |
diffstat | 1 files changed, 93 insertions(+), 268 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Hoas.v Wed Nov 05 08:56:11 2008 -0500 +++ b/src/Hoas.v Wed Nov 05 09:21:11 2008 -0500 @@ -57,6 +57,94 @@ Definition Abs dom ran (B : Exp1 dom ran) : Exp (dom --> ran) := fun _ => Abs' (B _). +Definition zero := Const 0. +Definition one := Const 1. +Definition one_again := Plus zero one. +Definition ident : Exp (Nat --> Nat) := Abs (fun _ X => Var X). +Definition app_ident := App ident one_again. +Definition app : Exp ((Nat --> Nat) --> Nat --> Nat) := fun _ => + Abs' (fun f => Abs' (fun x => App' (Var f) (Var x))). +Definition app_ident' := App (App app ident) one_again. + +Fixpoint countVars t (e : exp (fun _ => unit) t) {struct e} : nat := + match e with + | Const' _ => 0 + | Plus' e1 e2 => countVars e1 + countVars e2 + | Var _ _ => 1 + | App' _ _ e1 e2 => countVars e1 + countVars e2 + | Abs' _ _ e' => countVars (e' tt) + end. + +Definition CountVars t (E : Exp t) : nat := countVars (E _). + +Eval compute in CountVars zero. +Eval compute in CountVars one. +Eval compute in CountVars one_again. +Eval compute in CountVars ident. +Eval compute in CountVars app_ident. +Eval compute in CountVars app. +Eval compute in CountVars app_ident'. + +Fixpoint countOne t (e : exp (fun _ => bool) t) {struct e} : nat := + match e with + | Const' _ => 0 + | Plus' e1 e2 => countOne e1 + countOne e2 + | Var _ true => 1 + | Var _ false => 0 + | App' _ _ e1 e2 => countOne e1 + countOne e2 + | Abs' _ _ e' => countOne (e' false) + end. + +Definition CountOne t1 t2 (E : Exp1 t1 t2) : nat := + countOne (E _ true). + +Definition ident1 : Exp1 Nat Nat := fun _ X => Var X. +Definition add_self : Exp1 Nat Nat := fun _ X => Plus' (Var X) (Var X). +Definition app_zero : Exp1 (Nat --> Nat) Nat := fun _ X => App' (Var X) (Const' 0). +Definition app_ident1 : Exp1 Nat Nat := fun _ X => App' (Abs' (fun Y => Var Y)) (Var X). + +Eval compute in CountOne ident1. +Eval compute in CountOne add_self. +Eval compute in CountOne app_zero. +Eval compute in CountOne app_ident1. + +Section ToString. + Open Scope string_scope. + + Fixpoint natToString (n : nat) : string := + match n with + | O => "O" + | S n' => "S(" ++ natToString n' ++ ")" + end. + + Fixpoint toString t (e : exp (fun _ => string) t) (cur : string) {struct e} : string * string := + match e with + | Const' n => (cur, natToString n) + | Plus' e1 e2 => + let (cur', s1) := toString e1 cur in + let (cur'', s2) := toString e2 cur' in + (cur'', "(" ++ s1 ++ ") + (" ++ s2 ++ ")") + | Var _ s => (cur, s) + | App' _ _ e1 e2 => + let (cur', s1) := toString e1 cur in + let (cur'', s2) := toString e2 cur' in + (cur'', "(" ++ s1 ++ ") (" ++ s2 ++ ")") + | Abs' _ _ e' => + let (cur', s) := toString (e' cur) (cur ++ "'") in + (cur', "(\" ++ cur ++ ", " ++ s ++ ")") + end. + + Definition ToString t (E : Exp t) : string := snd (toString (E _) "x"). +End ToString. + +Eval compute in ToString zero. +Eval compute in ToString one. +Eval compute in ToString one_again. +Eval compute in ToString ident. +Eval compute in ToString app_ident. +Eval compute in ToString app. +Eval compute in ToString app_ident'. + Section flatten. Variable var : type -> Type. @@ -73,6 +161,11 @@ Definition Subst t1 t2 (E1 : Exp t1) (E2 : Exp1 t1 t2) : Exp t2 := fun _ => flatten (E2 _ (E1 _)). +Eval compute in Subst one ident1. +Eval compute in Subst one add_self. +Eval compute in Subst ident app_zero. +Eval compute in Subst one app_ident1. + (** * A Type Soundness Proof *) @@ -329,271 +422,3 @@ -> E ===> V. induction 1; crush; eauto. Qed. - - -(** * Constant folding *) - -Section cfold. - Variable var : type -> Type. - - Fixpoint cfold t (e : exp var t) {struct e} : exp var t := - match e in exp _ t return exp _ t with - | Const' n => Const' n - | Plus' e1 e2 => - let e1' := cfold e1 in - let e2' := cfold e2 in - match e1', e2' with - | Const' n1, Const' n2 => Const' (n1 + n2) - | _, _ => Plus' e1' e2' - end - - | Var _ x => Var x - | App' _ _ e1 e2 => App' (cfold e1) (cfold e2) - | Abs' _ _ e' => Abs' (fun x => cfold (e' x)) - end. -End cfold. - -Definition Cfold t (E : Exp t) : Exp t := fun _ => cfold (E _). -Definition Cfold1 t1 t2 (E : Exp1 t1 t2) : Exp1 t1 t2 := fun _ x => cfold (E _ x). - -Lemma fold_Cfold : forall t (E : Exp t), - (fun _ => cfold (E _)) = Cfold E. - reflexivity. -Qed. - -Hint Rewrite fold_Cfold : fold. - -Lemma fold_Cfold1 : forall t1 t2 (E : Exp1 t1 t2), - (fun _ x => cfold (E _ x)) = Cfold1 E. - reflexivity. -Qed. - -Hint Rewrite fold_Cfold1 : fold. - -Lemma fold_Subst_Cfold1 : forall t1 t2 (E : Exp1 t1 t2) (V : Exp t1), - (fun _ => flatten (cfold (E _ (V _)))) - = Subst V (Cfold1 E). - reflexivity. -Qed. - -Axiom cheat : forall T, T. - - -Lemma fold_Const : forall n, (fun _ => Const' n) = Const n. - reflexivity. -Qed. -Lemma fold_Plus : forall (E1 E2 : Exp _), (fun _ => Plus' (E1 _) (E2 _)) = Plus E1 E2. - reflexivity. -Qed. -Lemma fold_App : forall dom ran (F : Exp (dom --> ran)) (X : Exp dom), - (fun _ => App' (F _) (X _)) = App F X. - reflexivity. -Qed. -Lemma fold_Abs : forall dom ran (B : Exp1 dom ran), - (fun _ => Abs' (B _)) = Abs B. - reflexivity. -Qed. - -Hint Rewrite fold_Const fold_Plus fold_App fold_Abs : fold. - -Lemma fold_Subst : forall t1 t2 (E1 : Exp1 t1 t2) (V : Exp t1), - (fun _ => flatten (E1 _ (V _))) = Subst V E1. - reflexivity. -Qed. - -Hint Rewrite fold_Subst : fold. - -Section Closed1. - Variable xt : type. - - Definition Const1 (n : nat) : Exp1 xt Nat := - fun _ _ => Const' n. - Definition Var1 : Exp1 xt xt := fun _ x => Var x. - Definition Plus1 (E1 E2 : Exp1 xt Nat) : Exp1 xt Nat := - fun _ s => Plus' (E1 _ s) (E2 _ s). - Definition App1 dom ran (F : Exp1 xt (dom --> ran)) (X : Exp1 xt dom) : Exp1 xt ran := - fun _ s => App' (F _ s) (X _ s). - Definition Abs1 dom ran (B : forall var, var dom -> Exp1 xt ran) : Exp1 xt (dom --> ran) := - fun _ s => Abs' (fun x => B _ x _ s). - - Inductive Closed1 : forall t, Exp1 xt t -> Prop := - | CConst1 : forall n, - Closed1 (Const1 n) - | CPlus1 : forall E1 E2, - Closed1 E1 - -> Closed1 E2 - -> Closed1 (Plus1 E1 E2) - | CApp1 : forall dom ran (E1 : Exp1 _ (dom --> ran)) E2, - Closed1 E1 - -> Closed1 E2 - -> Closed1 (App1 E1 E2) - | CAbs1 : forall dom ran (E1 : forall var, var dom -> Exp1 _ ran), - Closed1 (Abs1 E1). - - Axiom closed1 : forall t (E : Exp1 xt t), Closed1 E. -End Closed1. - -Hint Resolve closed1. - -Ltac ssimp := unfold Subst, Cfold in *; simpl in *; autorewrite with fold in *; - repeat match goal with - | [ xt : type |- _ ] => - rewrite (@fold_Subst xt) in * - end; - autorewrite with fold in *. - -Lemma cfold_thorough : forall var t (e : exp var t), - cfold (cfold e) = cfold e. - induction e; crush; try (f_equal; ext_eq; eauto); - match goal with - | [ e1 : exp _ Nat, e2 : exp _ Nat |- _ ] => - dep_destruct (cfold e1); crush; - dep_destruct (cfold e2); crush - end. -Qed. - -Lemma Cfold_thorough : forall t (E : Exp t), - Cfold (Cfold E) = Cfold E. - intros; unfold Cfold, Exp; ext_eq; - apply cfold_thorough. -Qed. - -Hint Resolve Cfold_thorough. - -Section eq_arg. - Variable A : Type. - Variable B : A -> Type. - - Variable x : A. - - Variables f g : forall x, B x. - Hypothesis Heq : f = g. - - Theorem eq_arg : f x = g x. - congruence. - Qed. -End eq_arg. - -Implicit Arguments eq_arg [A B f g]. - -Lemma Cfold_Subst_thorough : forall t1 (V : Exp t1) t2 (B : Exp1 t1 t2), - Subst (Cfold V) (Cfold1 B) = Cfold (Subst (Cfold V) (Cfold1 B)). - -Lemma Cfold_Step_thorough' : forall t (E V : Exp t), - E ===> V - -> forall E', E = Cfold E' - -> Cfold V = V. - induction 1; crush. - apply IHBigStep3 with (Subst V2 B). - - generalize (closed E'); inversion 1; my_crush. - - generalize (eq_arg (fun _ => Set) H2); ssimp. - dep_destruct (cfold (E0 (fun _ => Set))); try discriminate; - dep_destruct (cfold (E3 (fun _ => Set))); discriminate. - - ssimp; my_crush. - - rewrite <- (IHBigStep2 _ (refl_equal _)). - generalize (IHBigStep1 _ (refl_equal _)). - my_crush. - ssimp. - assert (B = Cfold1 B). - generalize H2; clear_all; my_crush. - unfold Exp1; ext_eq. - generalize (eq_arg x H2); injection 1; my_crush. - - rewrite H8. - - - my_crush. - -Lemma Cfold_thorough : forall t (E V : Exp t), - Cfold E ===> V - -> V = Cfold V. - -Lemma Cfold_Subst' : forall t (E V : Exp t), - E ===> V - -> forall t' B (V' : Exp t') V'', E = Cfold (Subst V' B) - -> V = Cfold V'' - -> Closed1 B - -> Subst (Cfold V') (Cfold1 B) ===> Cfold V''. - induction 1; inversion 3; my_crush; ssimp; my_crush. - - rewrite <- H0; auto. - - apply cheat. - apply cheat. - apply cheat. - - repeat rewrite (@fold_Subst_Cfold1 t') in *. - repeat rewrite fold_Cfold in *. - apply SApp with (Cfold1 B) V2. - - unfold Abs, Subst, Cfold, Cfold1 in *. - match goal with - | [ |- _ ===> ?F ] => - replace F with (fun var => cfold (Abs' (fun x : var _ => B var x))) - end. - apply IHBigStep1; auto. - ssimp. - apply cheat. - reflexivity. - - replace V2 with (Cfold V2). - unfold Cfold, Subst. - apply IHBigStep2; auto. - apply cheat. - apply cheat. - - replace V2 with (Cfold V2). - unfold Subst, Cfold. - apply IHBigStep3; auto. - apply cheat. - apply cheat. - - apply cheat. -Qed. - -Theorem Cfold_Subst : forall t1 t2 (V : Exp t1) B (V' : Exp t2), - Subst (Cfold V) (Cfold1 B) ===> Cfold V' - -> Subst (Cfold V) (Cfold1 B) ===> Cfold V'. - Hint Resolve Cfold_Subst'. - - eauto. -Qed. - -Hint Resolve Cfold_Subst. - -Theorem Cfold_correct : forall t (E V : Exp t), - E ===> V - -> Cfold E ===> Cfold V. - induction 1; crush; ssimp; eauto. - - change ((fun H1 : type -> Type => - match Cfold E1 H1 with - | Const' n3 => - match Cfold E2 H1 with - | Const' n4 => Const' (var:=H1) (n3 + n4) - | Plus' _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) - | Var _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) - | App' _ _ _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) - | Abs' _ _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) - end - | Plus' _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) - | Var _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) - | App' _ _ _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) - | Abs' _ _ _ => Plus' (cfold (E1 H1)) (cfold (E2 H1)) - end) ===> Const (n1 + n2)). - - Ltac simp := - repeat match goal with - | [ H : _ = Cfold _ |- _ ] => rewrite <- H in * - | [ H : Const _ ===> Const _ |- _ ] => - inversion H; clear H; my_crush - end. - - generalize (closed (Cfold E1)); inversion 1; my_crush; simp; - try solve [ ssimp; simp; eauto ]; - generalize (closed (Cfold E2)); inversion 1; my_crush; simp; ssimp; simp; eauto. -Qed.