Mercurial > cpdt > repo
changeset 64:739c2818d6e2
Co-inductive evaluation example
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Tue, 30 Sep 2008 17:47:59 -0400 |
parents | fe7d37dfbd26 |
children | 21bb59c56b98 |
files | src/Coinductive.v src/Tactics.v |
diffstat | 2 files changed, 119 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Coinductive.v Tue Sep 30 17:07:57 2008 -0400 +++ b/src/Coinductive.v Tue Sep 30 17:47:59 2008 -0400 @@ -305,3 +305,121 @@ Abort. (** The standard [auto] machinery sees that our goal matches an assumption and so applies that assumption, even though this violates guardedness. One usually starts a proof like this by [destruct]ing some parameter and running a custom tactic to figure out the first proof rule to apply for each case. Alternatively, there are tricks that can be played with "hiding" the co-inductive hypothesis. We will see examples of effective co-inductive proving in later chapters. *) + + +(** * Simple Modeling of Non-Terminating Programs *) + +(** We close the chapter with a quick motivating example for more complex uses of co-inductive types. We will define a co-inductive semantics for a simple assembly language and use that semantics to prove that an optimization function is sound. We start by defining a type of instructions. *) + +Inductive reg : Set := R1 | R2. +Definition label := nat. + +Inductive instrs : Set := +| Const : reg -> nat -> instrs -> instrs +| Add : reg -> reg -> reg -> instrs -> instrs +| Halt : reg -> instrs +| Jeq : reg -> reg -> label -> instrs -> instrs. + +Definition program := list instrs. + +Section regmap. + Variable A : Set. + + Record regmap : Set := Regmap { + VR1 : A; + VR2 : A + }. + + Definition empty v : regmap := Regmap v v. + Definition get (rm : regmap) (r : reg) : A := + match r with + | R1 => VR1 rm + | R2 => VR2 rm + end. + Definition set (rm : regmap) (r : reg) (v : A) : regmap := + match r with + | R1 => Regmap v (VR2 rm) + | R2 => Regmap (VR1 rm) v + end. +End regmap. + +Section run. + Variable prog : program. + + CoInductive run : regmap nat -> instrs -> nat -> Prop := + | RConst : forall rm r n is v, + run (set rm r n) is v + -> run rm (Const r n is) v + | RAdd : forall rm r r1 r2 is v, + run (set rm r (get rm r1 + get rm r2)) is v + -> run rm (Add r r1 r2 is) v + | RHalt : forall rm r, + run rm (Halt r) (get rm r) + | RJeq_eq : forall rm r1 r2 l is is' v, + get rm r1 = get rm r2 + -> nth_error prog l = Some is' + -> run rm is' v + -> run rm (Jeq r1 r2 l is) v + | RJeq_neq : forall rm r1 r2 l is v, + get rm r1 <> get rm r2 + -> run rm is v + -> run rm (Jeq r1 r2 l is) v. +End run. + +Fixpoint constFold (rm : regmap (option nat)) (is : instrs) {struct is} : instrs := + match is with + | Const r n is => Const r n (constFold (set rm r (Some n)) is) + | Add r r1 r2 is => + match get rm r1, get rm r2 with + | Some n1, Some n2 => Const r (n1 + n2) (constFold (set rm r (Some (n1 + n2))) is) + | _, _ => Add r r1 r2 (constFold (set rm r None) is) + end + | Halt _ => is + | Jeq r1 r2 l is => Jeq r1 r2 l (constFold rm is) + end. + +Definition regmapCompat (rm : regmap nat) (rm' : regmap (option nat)) := + forall r, match get rm' r with + | None => True + | Some v => get rm r = v + end. + +Ltac compat := unfold regmapCompat in *; crush; + match goal with + | [ |- match get _ ?R with Some _ => _ | None => _ end ] => destruct R; crush + end. + +Lemma regmapCompat_set_None : forall rm rm' r n, + regmapCompat rm rm' + -> regmapCompat (set rm r n) (set rm' r None). + destruct r; compat. +Qed. + +Lemma regmapCompat_set_Some : forall rm rm' r n, + regmapCompat rm rm' + -> regmapCompat (set rm r n) (set rm' r (Some n)). + destruct r; compat. +Qed. + +Require Import Arith. + +Section constFold_ok. + Variable prog : program. + + Theorem constFold_ok : forall rm is v, + run prog rm is v + -> forall rm', regmapCompat rm rm' + -> run prog rm (constFold rm' is) v. + Hint Resolve regmapCompat_set_None regmapCompat_set_Some. + Hint Constructors run. + + cofix. + destruct 1; crush; eauto; + repeat match goal with + | [ H : regmapCompat _ _ |- run _ _ (match get ?RM ?R with Some _ => _ | None => _ end) _ ] => + generalize (H R); destruct (get RM R); crush + end. + Qed. +End constFold_ok. + +Print constFold_ok.
--- a/src/Tactics.v Tue Sep 30 17:07:57 2008 -0400 +++ b/src/Tactics.v Tue Sep 30 17:47:59 2008 -0400 @@ -103,7 +103,7 @@ end. Ltac crush' lemmas invOne := - let sintuition := simpl in *; intuition; repeat (simplHyp invOne; intuition); try congruence + let sintuition := simpl in *; intuition; subst; repeat (simplHyp invOne; intuition; subst); try congruence in (sintuition; rewriter; repeat ((app ltac:(fun L => inster L L) lemmas || appHyps ltac:(fun L => inster L L)); repeat (simplHyp invOne; intuition));