Mercurial > cpdt > repo
changeset 248:8bd90fe41acd
Automated LocallyNameless
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Fri, 11 Dec 2009 15:00:42 -0500 |
parents | ecfa8eec3852 |
children | 0f45421cae21 |
files | src/Firstorder.v |
diffstat | 1 files changed, 83 insertions(+), 54 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Firstorder.v Fri Dec 11 14:05:56 2009 -0500 +++ b/src/Firstorder.v Fri Dec 11 15:00:42 2009 -0500 @@ -682,13 +682,16 @@ Hint Constructors lclosed. + Ltac ln := crush; + repeat (match goal with + | [ |- context[if ?E then _ else _] ] => destruct E + | [ _ : context[if ?E then _ else _] |- _ ] => destruct E + end; crush); eauto. + Lemma lclosed_S : forall x e n, lclosed n (open x n e) -> lclosed (S n) e. - induction e; inversion 1; crush; - repeat (match goal with - | [ _ : context[if ?E then _ else _] |- _ ] => destruct E - end; crush). + induction e; inversion 1; ln. Qed. Hint Resolve lclosed_S. @@ -711,13 +714,12 @@ | S n' => primes n' ++ "'" end. - Check fold_left. - Fixpoint sumLengths (L : list free_var) : nat := match L with | nil => O | x :: L' => String.length x + sumLengths L' end. + Definition fresh (L : list free_var) := primes (sumLengths L). Theorem freshOk' : forall x L, String.length x > sumLengths L @@ -751,16 +753,25 @@ Lemma lclosed_open : forall n e, lclosed n e -> forall x, open x n e = e. - induction 1; crush; - repeat (match goal with - | [ |- context[if ?E then _ else _] ] => destruct E - end; crush). + induction 1; ln. Qed. Hint Resolve lclosed_open hasType_lclosed. Open Scope list_scope. + Lemma In_cons1 : forall T (x x' : T) ls, + x = x' + -> In x (x' :: ls). + crush. + Qed. + + Lemma In_cons2 : forall T (x x' : T) ls, + In x ls + -> In x (x' :: ls). + crush. + Qed. + Lemma In_app1 : forall T (x : T) ls2 ls1, In x ls1 -> In x (ls1 ++ ls2). @@ -773,9 +784,21 @@ induction ls1; crush. Qed. - Hint Resolve In_app1 In_app2. + Lemma freshOk_app1 : forall L1 L2, + ~ In (fresh (L1 ++ L2)) L1. + intros; generalize (freshOk (L1 ++ L2)); crush. + Qed. + + Lemma freshOk_app2 : forall L1 L2, + ~ In (fresh (L1 ++ L2)) L2. + intros; generalize (freshOk (L1 ++ L2)); crush. + Qed. + + Hint Resolve In_cons1 In_cons2 In_app1 In_app2. Section subst. + Hint Resolve freshOk_app1 freshOk_app2. + Variable x : free_var. Variable e1 : exp. @@ -793,15 +816,17 @@ Definition disj x (G : ctx) := In x (map (@fst _ _) G) -> False. Infix "#" := disj (no associativity, at level 90). + Ltac disj := crush; + match goal with + | [ _ : _ :: _ = ?G0 ++ _ |- _ ] => destruct G0 + end; crush; eauto. + Lemma lookup_disj' : forall t G1, G1 |-v x : t -> forall G, x # G -> G1 = G ++ (x, xt) :: nil -> t = xt. - unfold disj; induction 1; crush; - match goal with - | [ _ : _ :: _ = ?G0 ++ _ |- _ ] => destruct G0 - end; crush; eauto. + unfold disj; induction 1; disj. Qed. Lemma lookup_disj : forall t G, @@ -816,10 +841,7 @@ -> forall G, G1 = G ++ (x, xt) :: nil -> v <> x -> G |-v v : t. - induction 1; crush; - match goal with - | [ _ : _ :: _ = ?G0 ++ _ |- _ ] => destruct G0 - end; crush. + induction 1; disj. Qed. Lemma lookup_ne : forall G v t, @@ -841,13 +863,18 @@ lclosed n e1 -> x <> x0 -> open x0 n (subst e') = subst (open x0 n e'). - induction e'; crush; - repeat (match goal with - | [ |- context[if ?E then _ else _] ] => destruct E - end; crush); eauto 6. + induction e'; ln. Qed. - Hint Rewrite open_subst : cpdt. + Lemma hasType_open_subst : forall G x0 e t, + G |-e subst (open x0 0 e) : t + -> x <> x0 + -> lclosed 0 e1 + -> G |-e open x0 0 (subst e) : t. + intros; rewrite open_subst; eauto. + Qed. + + Hint Resolve hasType_open_subst. Lemma disj_push : forall x0 (t : type) G, x # G @@ -856,13 +883,13 @@ unfold disj; crush. Qed. - Hint Immediate disj_push. + Hint Resolve disj_push. Lemma lookup_cons : forall x0 dom G x1 t, G |-v x1 : t - -> x0 # G + -> ~In x0 (map (@fst _ _) G) -> (x0, dom) :: G |-v x1 : t. - unfold disj; induction 1; crush; + induction 1; crush; match goal with | [ H : _ |-v _ : _ |- _ ] => inversion H end; crush. @@ -871,18 +898,23 @@ Hint Resolve lookup_cons. Hint Unfold disj. + Lemma TAbs_specialized : forall G e' dom ran L x1, + (forall x, ~In x (x1 :: L ++ map (@fst _ _) G) -> (x, dom) :: G |-e open x O e' : ran) + -> G |-e Abs e' : dom --> ran. + eauto. + Qed. + Lemma hasType_subst' : forall G1 e t, G1 |-e e : t -> forall G, G1 = G ++ (x, xt) :: nil -> x # G -> G |-e e1 : xt -> G |-e subst e : t. - induction 1; crush; eauto. - - destruct (string_dec v x); crush. - - apply TAbs with (x :: L ++ map (@fst _ _) G0); crush; eauto 7. - apply H0; eauto 6. + induction 1; ln; + match goal with + | [ L : list free_var, _ : ?x # _ |- _ ] => + apply TAbs_specialized with L x; eauto 20 + end. Qed. Theorem hasType_subst : forall e t, @@ -897,6 +929,16 @@ Notation "[ x ~> e1 ] e2" := (subst x e1 e2) (no associativity, at level 60). + Lemma alpha_open : forall x1 x2 e1 e2 n, + ~In x1 (freeVars e2) + -> ~In x2 (freeVars e2) + -> [x1 ~> e1](open x1 n e2) = [x2 ~> e1](open x2 n e2). + induction e2; crush; + repeat (match goal with + | [ |- context[if ?E then _ else _] ] => destruct E + end; crush). + Qed. + Inductive val : exp -> Prop := | VConst : forall b, val (Const b) | VAbs : forall e, val (Abs e). @@ -939,27 +981,16 @@ intros; eapply progress'; eauto. Qed. - Lemma alpha_open : forall x1 x2 e1 e2 n, - ~In x1 (freeVars e2) - -> ~In x2 (freeVars e2) - -> [x1 ~> e1](open x1 n e2) = [x2 ~> e1](open x2 n e2). - induction e2; crush; - repeat (match goal with - | [ |- context[if ?E then _ else _] ] => destruct E - end; crush). + Hint Resolve freshOk_app1 freshOk_app2. + + Lemma hasType_alpha_open : forall G L e0 e2 x t, + ~ In x (freeVars e0) + -> G |-e [fresh (L ++ freeVars e0) ~> e2](open (fresh (L ++ freeVars e0)) 0 e0) : t + -> G |-e [x ~> e2](open x 0 e0) : t. + intros; rewrite (alpha_open x (fresh (L ++ freeVars e0))); auto. Qed. - Lemma freshOk_app1 : forall L1 L2, - ~ In (fresh (L1 ++ L2)) L1. - intros; generalize (freshOk (L1 ++ L2)); crush. - Qed. - - Lemma freshOk_app2 : forall L1 L2, - ~ In (fresh (L1 ++ L2)) L2. - intros; generalize (freshOk (L1 ++ L2)); crush. - Qed. - - Hint Resolve freshOk_app1 freshOk_app2. + Hint Resolve hasType_alpha_open. Lemma preservation' : forall G e t, G |-e e : t -> G = nil @@ -969,8 +1000,6 @@ match goal with | [ H : _ |-e Abs _ : _ |- _ ] => inversion H end; eauto. - - rewrite (alpha_open x (fresh (L ++ freeVars e0))); eauto. Qed. Theorem preservation : forall e t, nil |-e e : t