Mercurial > cpdt > repo
changeset 198:a35eaec19781
Templatize Generic
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Fri, 28 Nov 2008 14:21:38 -0500 |
parents | f6293ba66559 |
children | cadeb49dc1ef |
files | src/Generic.v |
diffstat | 1 files changed, 26 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Generic.v Fri Nov 28 14:10:23 2008 -0500 +++ b/src/Generic.v Fri Nov 28 14:21:38 2008 -0500 @@ -25,6 +25,9 @@ (** * Reflecting Datatype Definitions *) +(* EX: Define a reflected representation of simple algebraic datatypes. *) + +(* begin thide *) Record constructor : Type := Con { nonrecursive : Type; recursive : nat @@ -37,6 +40,7 @@ Definition bool_dt : datatype := Con unit 0 :: Con unit 0 :: nil. Definition nat_dt : datatype := Con unit 0 :: Con unit 1 :: nil. Definition list_dt (A : Type) : datatype := Con unit 0 :: Con A 1 :: nil. +(* end thide *) Section tree. Variable A : Type. @@ -46,6 +50,7 @@ | Node : tree -> tree -> tree. End tree. +(* begin thide *) Definition tree_dt (A : Type) : datatype := Con A 0 :: Con unit 2 :: nil. Section denote. @@ -56,12 +61,14 @@ Definition datatypeDenote := hlist constructorDenote. End denote. +(* end thide *) Notation "[ ! , ! ~> x ]" := ((fun _ _ => x) : constructorDenote _ (Con _ _)). Notation "[ v , ! ~> x ]" := ((fun v _ => x) : constructorDenote _ (Con _ _)). Notation "[ ! , r # n ~> x ]" := ((fun _ r => x) : constructorDenote _ (Con _ n)). Notation "[ v , r # n ~> x ]" := ((fun v r => x) : constructorDenote _ (Con _ n)). +(* begin thide *) Definition Empty_set_den : datatypeDenote Empty_set Empty_set_dt := hnil. Definition unit_den : datatypeDenote unit unit_dt := @@ -74,10 +81,14 @@ [!, ! ~> nil] ::: [x, r # 1 ~> x :: hd r] ::: hnil. Definition tree_den (A : Type) : datatypeDenote (tree A) (tree_dt A) := [v, ! ~> Leaf v] ::: [!, r # 2 ~> Node (hd r) (hd (tl r))] ::: hnil. +(* end thide *) (** * Recursive Definitions *) +(* EX: Define a generic [size] function. *) + +(* begin thide *) Definition fixDenote (T : Type) (dt : datatype) := forall (R : Type), datatypeDenote R dt -> (T -> R). @@ -121,10 +132,14 @@ | Node t1 t2 => (fst (snd cases)) tt (icons (F t1) (icons (F t2) inil)) end. Eval cbv beta iota delta -[plus] in fun A => size (@tree_fix A). +(* end thide *) (** ** Pretty-Printing *) +(* EX: Define a generic pretty-printing function. *) + +(* begin thide *) Record print_constructor (c : constructor) : Type := PI { printName : string; printNonrec : nonrecursive c -> string @@ -140,6 +155,7 @@ fx string (hmap (B1 := print_constructor) (B2 := constructorDenote string) (fun _ pc x r => printName pc ++ "(" ++ printNonrec pc x ++ foldr (fun s acc => ", " ++ s ++ acc) ")" r) pr). +(* end thide *) Eval compute in print hnil Empty_set_fix. Eval compute in print (^ "tt" (fun _ => "") ::: hnil) unit_fix. @@ -167,9 +183,13 @@ (** ** Mapping *) +(* EX: Define a generic [map] function. *) + +(* begin thide *) Definition map T dt (dd : datatypeDenote T dt) (fx : fixDenote T dt) (f : T -> T) : T -> T := fx T (hmap (B1 := constructorDenote T) (B2 := constructorDenote T) (fun _ c x r => f (c x r)) dd). +(* end thide *) Eval compute in map Empty_set_den Empty_set_fix. Eval compute in map unit_den unit_fix. @@ -186,6 +206,7 @@ (** * Proving Theorems about Recursive Definitions *) +(* begin thide *) Section ok. Variable T : Type. Variable dt : datatype. @@ -215,23 +236,27 @@ induction n; crush. generalize (IHn b); crush. Qed. +(* end thide *) Theorem size_positive : forall T dt (dd : datatypeDenote T dt) (fx : fixDenote T dt) (dok : datatypeDenoteOk dd) (fok : fixDenoteOk dd fx) (v : T), size fx v > 0. +(* begin thide *) Hint Rewrite hget_hmake : cpdt. Hint Resolve foldr_plus. unfold size; intros; pattern v; apply dok; crush. Qed. +(* end thide *) Theorem map_id : forall T dt (dd : datatypeDenote T dt) (fx : fixDenote T dt) (dok : datatypeDenoteOk dd) (fok : fixDenoteOk dd fx) (v : T), map dd fx (fun x => x) v = v. +(* begin thide *) Hint Rewrite hget_hmap : cpdt. unfold map; intros; pattern v; apply dok; crush. @@ -248,3 +273,4 @@ apply IHn; crush. apply (H (Some i0)). Qed. +(* end thide *)