Mercurial > cpdt > repo
changeset 247:ecfa8eec3852
Proved preservation for LocallyNameless
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Fri, 11 Dec 2009 14:05:56 -0500 |
parents | cca30734ab40 |
children | 8bd90fe41acd |
files | src/Firstorder.v |
diffstat | 1 files changed, 254 insertions(+), 120 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Firstorder.v Fri Dec 11 10:18:45 2009 -0500 +++ b/src/Firstorder.v Fri Dec 11 14:05:56 2009 -0500 @@ -628,14 +628,14 @@ end. End open. - Inductive notFreeIn (x : free_var) : exp -> Prop := - | NfConst : forall c, notFreeIn x (Const c) - | NfFreeVar : forall y, y <> x -> notFreeIn x (FreeVar y) - | NfBoundVar : forall y, notFreeIn x (BoundVar y) - | NfApp : forall e1 e2, notFreeIn x e1 -> notFreeIn x e2 -> notFreeIn x (App e1 e2) - | NfAbs : forall e1, (forall y, y <> x -> notFreeIn x (open y O e1)) -> notFreeIn x (Abs e1). - - Hint Constructors notFreeIn. + Fixpoint freeVars (e : exp) : list free_var := + match e with + | Const _ => nil + | FreeVar x => x :: nil + | BoundVar _ => nil + | App e1 e2 => freeVars e1 ++ freeVars e2 + | Abs e1 => freeVars e1 + end. Inductive hasType : ctx -> exp -> type -> Prop := | TConst : forall G b, @@ -647,38 +647,133 @@ G |-e e1 : dom --> ran -> G |-e e2 : dom -> G |-e App e1 e2 : ran - | TAbs : forall G e' dom ran, - (forall x, notFreeIn x e' -> (x, dom) :: G |-e open x O e' : ran) + | TAbs : forall G e' dom ran L, + (forall x, ~In x L -> (x, dom) :: G |-e open x O e' : ran) -> G |-e Abs e' : dom --> ran where "G |-e e : t" := (hasType G e t). Hint Constructors hasType. - (** We prove roughly the same weakening theorems as before. *) + Lemma lookup_push : forall G G' x t x' t', + (forall x t, G |-v x : t -> G' |-v x : t) + -> (x, t) :: G |-v x' : t' + -> (x, t) :: G' |-v x' : t'. + inversion 2; crush. + Qed. - Lemma weaken_lookup : forall G' v t G, - G |-v v : t - -> G ++ G' |-v v : t. + Hint Resolve lookup_push. + + Theorem weaken_hasType : forall G e t, + G |-e e : t + -> forall G', (forall x t, G |-v x : t -> G' |-v x : t) + -> G' |-e e : t. + induction 1; crush; eauto. + Qed. + + Hint Resolve weaken_hasType. + + Inductive lclosed : nat -> exp -> Prop := + | CConst : forall n b, lclosed n (Const b) + | CFreeVar : forall n v, lclosed n (FreeVar v) + | CBoundVar : forall n v, v < n -> lclosed n (BoundVar v) + | CApp : forall n e1 e2, lclosed n e1 -> lclosed n e2 -> lclosed n (App e1 e2) + | CAbs : forall n e1, lclosed (S n) e1 -> lclosed n (Abs e1). + + Hint Constructors lclosed. + + Lemma lclosed_S : forall x e n, + lclosed n (open x n e) + -> lclosed (S n) e. + induction e; inversion 1; crush; + repeat (match goal with + | [ _ : context[if ?E then _ else _] |- _ ] => destruct E + end; crush). + Qed. + + Hint Resolve lclosed_S. + + Lemma lclosed_weaken : forall n e, + lclosed n e + -> forall n', n' >= n + -> lclosed n' e. induction 1; crush. Qed. - Hint Resolve weaken_lookup. + Hint Resolve lclosed_weaken. + Hint Extern 1 (_ >= _) => omega. - Theorem weaken_hasType' : forall G' G e t, - G |-e e : t - -> G ++ G' |-e e : t. - induction 1; crush; eauto. + Open Scope string_scope. + + Fixpoint primes (n : nat) : string := + match n with + | O => "x" + | S n' => primes n' ++ "'" + end. + + Check fold_left. + + Fixpoint sumLengths (L : list free_var) : nat := + match L with + | nil => O + | x :: L' => String.length x + sumLengths L' + end. + Definition fresh (L : list free_var) := primes (sumLengths L). + + Theorem freshOk' : forall x L, String.length x > sumLengths L + -> ~In x L. + induction L; crush. Qed. - Theorem weaken_hasType : forall e t, - nil |-e e : t - -> forall G', G' |-e e : t. - intros; change G' with (nil ++ G'); - eapply weaken_hasType'; eauto. + Lemma length_app : forall s2 s1, String.length (s1 ++ s2) = String.length s1 + String.length s2. + induction s1; crush. Qed. - Hint Resolve weaken_hasType. + Hint Rewrite length_app : cpdt. + + Lemma length_primes : forall n, String.length (primes n) = S n. + induction n; crush. + Qed. + + Hint Rewrite length_primes : cpdt. + + Theorem freshOk : forall L, ~In (fresh L) L. + intros; apply freshOk'; unfold fresh; crush. + Qed. + + Hint Resolve freshOk. + + Lemma hasType_lclosed : forall G e t, + G |-e e : t + -> lclosed O e. + induction 1; eauto. + Qed. + + Lemma lclosed_open : forall n e, lclosed n e + -> forall x, open x n e = e. + induction 1; crush; + repeat (match goal with + | [ |- context[if ?E then _ else _] ] => destruct E + end; crush). + Qed. + + Hint Resolve lclosed_open hasType_lclosed. + + Open Scope list_scope. + + Lemma In_app1 : forall T (x : T) ls2 ls1, + In x ls1 + -> In x (ls1 ++ ls2). + induction ls1; crush. + Qed. + + Lemma In_app2 : forall T (x : T) ls2 ls1, + In x ls2 + -> In x (ls1 ++ ls2). + induction ls1; crush. + Qed. + + Hint Resolve In_app1 In_app2. Section subst. Variable x : free_var. @@ -692,10 +787,115 @@ | App e1 e2 => App (subst e1) (subst e2) | Abs e' => Abs (subst e') end. + + Variable xt : type. + + Definition disj x (G : ctx) := In x (map (@fst _ _) G) -> False. + Infix "#" := disj (no associativity, at level 90). + + Lemma lookup_disj' : forall t G1, + G1 |-v x : t + -> forall G, x # G + -> G1 = G ++ (x, xt) :: nil + -> t = xt. + unfold disj; induction 1; crush; + match goal with + | [ _ : _ :: _ = ?G0 ++ _ |- _ ] => destruct G0 + end; crush; eauto. + Qed. + + Lemma lookup_disj : forall t G, + x # G + -> G ++ (x, xt) :: nil |-v x : t + -> t = xt. + intros; eapply lookup_disj'; eauto. + Qed. + + Lemma lookup_ne' : forall G1 v t, + G1 |-v v : t + -> forall G, G1 = G ++ (x, xt) :: nil + -> v <> x + -> G |-v v : t. + induction 1; crush; + match goal with + | [ _ : _ :: _ = ?G0 ++ _ |- _ ] => destruct G0 + end; crush. + Qed. + + Lemma lookup_ne : forall G v t, + G ++ (x, xt) :: nil |-v v : t + -> v <> x + -> G |-v v : t. + intros; eapply lookup_ne'; eauto. + Qed. + + Hint Extern 1 (_ |-e _ : _) => + match goal with + | [ H1 : _, H2 : _ |- _ ] => rewrite (lookup_disj H1 H2) + end. + Hint Resolve lookup_ne. + + Hint Extern 1 (@eq exp _ _) => f_equal. + + Lemma open_subst : forall x0 e' n, + lclosed n e1 + -> x <> x0 + -> open x0 n (subst e') = subst (open x0 n e'). + induction e'; crush; + repeat (match goal with + | [ |- context[if ?E then _ else _] ] => destruct E + end; crush); eauto 6. + Qed. + + Hint Rewrite open_subst : cpdt. + + Lemma disj_push : forall x0 (t : type) G, + x # G + -> x <> x0 + -> x # (x0, t) :: G. + unfold disj; crush. + Qed. + + Hint Immediate disj_push. + + Lemma lookup_cons : forall x0 dom G x1 t, + G |-v x1 : t + -> x0 # G + -> (x0, dom) :: G |-v x1 : t. + unfold disj; induction 1; crush; + match goal with + | [ H : _ |-v _ : _ |- _ ] => inversion H + end; crush. + Qed. + + Hint Resolve lookup_cons. + Hint Unfold disj. + + Lemma hasType_subst' : forall G1 e t, + G1 |-e e : t + -> forall G, G1 = G ++ (x, xt) :: nil + -> x # G + -> G |-e e1 : xt + -> G |-e subst e : t. + induction 1; crush; eauto. + + destruct (string_dec v x); crush. + + apply TAbs with (x :: L ++ map (@fst _ _) G0); crush; eauto 7. + apply H0; eauto 6. + Qed. + + Theorem hasType_subst : forall e t, + (x, xt) :: nil |-e e : t + -> nil |-e e1 : xt + -> nil |-e subst e : t. + intros; eapply hasType_subst'; eauto. + Qed. End subst. + Hint Resolve hasType_subst. - Notation "[ x ~> e1 ] e2" := (subst x e1 e2) (no associativity, at level 80). + Notation "[ x ~> e1 ] e2" := (subst x e1 e2) (no associativity, at level 60). Inductive val : exp -> Prop := | VConst : forall b, val (Const b) @@ -706,9 +906,9 @@ Reserved Notation "e1 ==> e2" (no associativity, at level 90). Inductive step : exp -> exp -> Prop := - | Beta : forall x e1 e2, + | Beta : forall e1 e2 x, val e2 - -> notFreeIn x e1 + -> ~In x (freeVars e1) -> App (Abs e1) e2 ==> [x ~> e2] (open x O e1) | Cong1 : forall e1 e2 e1', e1 ==> e1' @@ -722,96 +922,6 @@ Hint Constructors step. - Open Scope string_scope. - - Fixpoint vlen (e : exp) : nat := - match e with - | Const _ => 0 - | FreeVar x => String.length x - | BoundVar _ => 0 - | App e1 e2 => vlen e1 + vlen e2 - | Abs e1 => vlen e1 - end. - - Opaque le_lt_dec. - - Hint Extern 1 (@eq exp _ _) => f_equal. - - Lemma open_comm : forall x1 x2 e n1 n2, - open x1 n1 (open x2 (S n2 + n1) e) - = open x2 (n2 + n1) (open x1 n1 e). - induction e; crush; - repeat (match goal with - | [ |- context[if ?E then _ else _] ] => destruct E - end; crush). - - replace (S (n2 + n1)) with (n2 + S n1); auto. - Qed. - - Hint Rewrite plus_0_r : cpdt. - - Lemma open_comm0 : forall x1 x2 e n, - open x1 0 (open x2 (S n) e) - = open x2 n (open x1 0 e). - intros; generalize (open_comm x1 x2 e 0 n); crush. - Qed. - - Hint Extern 1 (notFreeIn _ (open _ 0 (open _ (S _) _))) => rewrite open_comm0. - - Lemma notFreeIn_open : forall x y, - x <> y - -> forall e, - notFreeIn x e - -> forall n, notFreeIn x (open y n e). - induction 2; crush; - repeat (match goal with - | [ |- context[if ?E then _ else _] ] => destruct E - end; crush). - Qed. - - Hint Resolve notFreeIn_open. - - Lemma infVar : forall x y, String.length x > String.length y - -> y <> x. - intros; destruct (string_dec x y); intros; subst; crush. - Qed. - - Hint Resolve infVar. - - Lemma inf' : forall x e, String.length x > vlen e -> notFreeIn x e. - induction e; crush; eauto. - Qed. - - Fixpoint primes (n : nat) : string := - match n with - | O => "x" - | S n' => primes n' ++ "'" - end. - - Lemma length_app : forall s2 s1, String.length (s1 ++ s2) = String.length s1 + String.length s2. - induction s1; crush. - Qed. - - Hint Rewrite length_app : cpdt. - - Lemma length_primes : forall n, String.length (primes n) = S n. - induction n; crush. - Qed. - - Hint Rewrite length_primes : cpdt. - - Lemma inf : forall e, exists x, notFreeIn x e. - intro; exists (primes (vlen e)); apply inf'; crush. - Qed. - - Lemma progress_Abs : forall e1 e2, - val e2 - -> exists e', App (Abs e1) e2 ==> e'. - intros; destruct (inf e1); eauto. - Qed. - - Hint Resolve progress_Abs. - Lemma progress' : forall G e t, G |-e e : t -> G = nil -> val e \/ exists e', e ==> e'. @@ -829,7 +939,29 @@ intros; eapply progress'; eauto. Qed. - (*Lemma preservation' : forall G e t, G |-e e : t + Lemma alpha_open : forall x1 x2 e1 e2 n, + ~In x1 (freeVars e2) + -> ~In x2 (freeVars e2) + -> [x1 ~> e1](open x1 n e2) = [x2 ~> e1](open x2 n e2). + induction e2; crush; + repeat (match goal with + | [ |- context[if ?E then _ else _] ] => destruct E + end; crush). + Qed. + + Lemma freshOk_app1 : forall L1 L2, + ~ In (fresh (L1 ++ L2)) L1. + intros; generalize (freshOk (L1 ++ L2)); crush. + Qed. + + Lemma freshOk_app2 : forall L1 L2, + ~ In (fresh (L1 ++ L2)) L2. + intros; generalize (freshOk (L1 ++ L2)); crush. + Qed. + + Hint Resolve freshOk_app1 freshOk_app2. + + Lemma preservation' : forall G e t, G |-e e : t -> G = nil -> forall e', e ==> e' -> nil |-e e' : t. @@ -837,12 +969,14 @@ match goal with | [ H : _ |-e Abs _ : _ |- _ ] => inversion H end; eauto. + + rewrite (alpha_open x (fresh (L ++ freeVars e0))); eauto. Qed. Theorem preservation : forall e t, nil |-e e : t -> forall e', e ==> e' -> nil |-e e' : t. intros; eapply preservation'; eauto. - Qed.*) + Qed. End LocallyNameless.