| Homework Assignment 6 Interactive Computer Theorem Proving CS294-9, Fall 2006 UC Berkeley | 
| Submit your solution file for this assignment as an attachment
  by e-mail with
  the subject "ICTP HW6" by the start of class on October 12.
  You should write your solutions entirely on your own, which includes not
  consulting any solutions to these problems that may be posted on the web. Template source file | 
Require Import Arith Bool List.
| This assignment involves building a certified boolean satisfiability solver
  based on the DPLL algorithm.  Your certified procedure will take as input a
  boolean formula in conjunctive normal form (CNF) and either return a
  satisfying assignment to the variables or a value signifying that the input
  formula is unsatisfiable.  Moreover, the procedure will be implemented with a
  rich specification, so you'll know that the answer it gives is correct.  By
  the end of the assignment, you'll have extracted OCaml code that can be used
  to solve some of the more modest classes of problems in the SATLIB archive. If you need to page in the relevant background material, try the Wikipedia pages on SAT and the DPLL algorithm. The implementation we'll develop here omits the pure literal heuristic mentioned on the Wikipedia page but is otherwise identical. | 
| Problem Definition | 
Definition var := nat.
| We identify propositional variables with natural numbers. | 
Definition lit := (bool * var)%type.
| A literal is a combination of a truth value and a variable. | 
Definition clause := list lit.
| A clause is a list (disjunction) of literals. | 
Definition formula := list clause.
| A formula is a list (conjunction) of clauses. | 
Definition asgn := var -> bool.
| An assignment is a function from variables to their truth values. | 
Definition satLit (l : lit) (a : asgn) :=
  a (snd l) = fst l.
| An assignment satisfies a literal if it maps it to true. | 
Fixpoint satClause (cl : clause) (a : asgn) {struct cl} : Prop :=
  match cl with
    | nil => False
    | l :: cl' => satLit l a \/ satClause cl' a
  end.
| An assignment satisfies a clause if it satisfies at least one of its literals. | 
Fixpoint satFormula (fm : formula) (a : asgn) {struct fm} : Prop :=
  match fm with
    | nil => True
    | cl :: fm' => satClause cl a /\ satFormula fm' a
  end.
| An assignment satisfies a formula if it satisfies all of its clauses. | 
| Subroutines | 
| This is the only section of this assignment where you need to provide your
  own solutions.  You will be implementing four crucial subroutines used by
  DPLL. I've provided a number of useful definitions and lemmas which you should feel free to take advantage of in your definitions. A few tips to keep in mind while writing these strongly specified functions: 
 You can also consult the sizeable example at the end of this file, which ties together the pieces you are supposed to write. | 
| You'll probably want to compare booleans for equality at some point. | 
Definition bool_eq_dec : forall (x y : bool), {x = y} + {x <> y}.
  decide equality.
Defined.
| A literal and its negation can't be true simultaneously. | 
Lemma contradictory_assignment : forall s l cl a,
  s <> fst l
  -> satLit l a
  -> satLit (s, snd l) a
  -> satClause cl a.
  intros.
  red in H0, H1.
  simpl in H1.
  subst.
  tauto.
Qed.
Hint Resolve contradictory_assignment.
| Augment an assignment with a new mapping. | 
Definition upd (a : asgn) (l : lit) : asgn :=
  fun v : var =>
    if eq_nat_dec v (snd l)
      then fst l
      else a v.
| Some lemmas about upd | 
Lemma satLit_upd_eq : forall l a,
  satLit l (upd a l).
  unfold satLit, upd; simpl; intros.
  destruct (eq_nat_dec (snd l) (snd l)); tauto.
Qed.
Hint Resolve satLit_upd_eq.
Lemma satLit_upd_neq : forall v l s a,
  v <> snd l
  -> satLit (s, v) (upd a l)
  -> satLit (s, v) a.
  unfold satLit, upd; simpl; intros.
  destruct (eq_nat_dec v (snd l)); tauto.
Qed.
Hint Resolve satLit_upd_neq.
Lemma satLit_upd_neq2 : forall v l s a,
  v <> snd l
  -> satLit (s, v) a
  -> satLit (s, v) (upd a l).
  unfold satLit, upd; simpl; intros.
  destruct (eq_nat_dec v (snd l)); tauto.
Qed.
Hint Resolve satLit_upd_neq2.
Lemma satLit_contra : forall s l a cl,
  s <> fst l
  -> satLit (s, snd l) (upd a l)
  -> satClause cl a.
  unfold satLit, upd; simpl; intros.
  destruct (eq_nat_dec (snd l) (snd l)); intuition.
  assert False; intuition.
Qed.
Hint Resolve satLit_contra.
| Here's the tactic that I used to discharge all proof obligations in my implementations of the four functions you will define. It comes with no warranty, as different implementations may lead to obligations that it can't solve, or obligations that it takes 42 years to solve. However, if you think enough like me, each of the four definitions you fill in should read like: | 
refine some_expression_with_holes; clear function_name; magic_solver.
| leaving out the clearinvocation for non-recursive function definitions. | 
Ltac magic_solver := simpl; intros; subst; intuition eauto; firstorder;
  match goal with
    | [ H1 : satLit ?l ?a, H2 : satClause ?cl ?a |- _ ] =>
      assert (satClause cl (upd a l)); firstorder
  end.
| OK, here's your first challenge. Write this strongly-specified function to update a clause to reflect the effect of making a particular literal true. | 
Definition setClause : forall (cl : clause) (l : lit),
  {cl' : clause |
    forall a, satClause cl (upd a l) <-> satClause cl' a}
  + {forall a, satLit l a -> satClause cl a}.
Admitted.
| For testing purposes, we define a weakly-specified function as a thin
  wrapper around setClause. | 
Definition setClauseSimple (cl : clause) (l : lit) :=
  match setClause cl l with
    | inleft (exist cl' _) => Some cl'
    | inright _ => None
  end.
| When your setClauseimplementation is done, you should be able to
  uncomment these test cases and verify that each one yields the correct answer.
  Be sure that yoursetClausedefinition ends inand not, as
  the former exposes the definition for use in computational reduction, while
  the latter doesn't. | 
| It's useful to have this strongly-specified nilness check. | 
Definition isNil : forall (A : Set) (ls : list A), {ls = nil} + {True}.
  destruct ls; eauto.
Defined.
Implicit Arguments isNil [A].
| Some more lemmas that I found helpful.... | 
Lemma satLit_idem_lit : forall l a l',
  satLit l a
  -> satLit l' a
  -> satLit l' (upd a l).
  unfold satLit, upd; simpl; intros.
  destruct (eq_nat_dec (snd l') (snd l)); congruence.
Qed.
Hint Resolve satLit_idem_lit.
Lemma satLit_idem_clause : forall l a cl,
  satLit l a
  -> satClause cl a
  -> satClause cl (upd a l).
  induction cl; simpl; intuition.
Qed.
Hint Resolve satLit_idem_clause.
Lemma satLit_idem_formula : forall l a fm,
  satLit l a
  -> satFormula fm a
  -> satFormula fm (upd a l).
  induction fm; simpl; intuition.
Qed.
Hint Resolve satLit_idem_formula.
| Challenge 2: Write this function that updates an entire formula to reflect setting a literal to true. | 
Definition setFormula : forall (fm : formula) (l : lit),
  {fm' : formula |
    forall a, satFormula fm (upd a l) <-> satFormula fm' a}
  + {forall a, satLit l a -> ~satFormula fm a}.
Admitted.
| Here's some code for testing your implementation. | 
Definition setFormulaSimple (fm : formula) (l : lit) :=
  match setFormula fm l with
    | inleft (exist fm' _) => Some fm'
    | inright _ => None
  end.
Hint Extern 1 False => discriminate.
Hint Extern 1 False =>
  match goal with
    | [ H : In _ (_ :: _) |- _ ] => inversion H; clear H; subst
  end.
| Challenge 3: Write this code that either finds a unit clause in a formula or declares that there are none. | 
Definition findUnitClause : forall (fm : formula),
  {l : lit | In (l :: nil) fm}
  + {forall l, ~In (l :: nil) fm}.
Admitted.
| The literal in a unit clause must always be true in a satisfying assignment. | 
Lemma unitClauseTrue : forall l a fm,
  In (l :: nil) fm
  -> satFormula fm a
  -> satLit l a.
  induction fm; intuition.
  inversion H.
  inversion H; subst; simpl in H0; intuition.
Qed.
Hint Resolve unitClauseTrue.
| Final challenge: Implement unit propagation.  The return type of unitPropagatesignifies that three results are possible:
 | 
Definition unitPropagate : forall (fm : formula), option (sigS (fun fm' : formula =>
  {l : lit |
    (forall a, satFormula fm a -> satLit l a)
    /\ forall a, satFormula fm (upd a l) <-> satFormula fm' a})
+ {forall a, ~satFormula fm a}).
Admitted.
Definition unitPropagateSimple (fm : formula) :=
  match unitPropagate fm with
    | None => None
    | Some (inleft (existS fm' (exist l _))) => Some (Some (fm', l))
    | Some (inright _) => Some None
  end.
| The SAT Solver | 
| This section defines a DPLL SAT solver in terms of the subroutines you've written. | 
| An arbitrary heuristic to choose the next variable to split on | 
Definition chooseSplit (fm : formula) :=
  match fm with
    | ((l :: _) :: _) => l
    | _ => (true, 0)
  end.
Definition negate (l : lit) := (negb (fst l), snd l).
Hint Unfold satFormula.
Lemma satLit_dec : forall l a,
  {satLit l a} + {satLit (negate l) a}.
  destruct l.
  unfold satLit; simpl; intro.
  destruct b; destruct (a v); simpl; auto.
Qed.
| We'll represent assignments as lists of literals instead of functions. | 
Definition alist := list lit.
Fixpoint interp_alist (al : alist) : asgn :=
  match al with
    | nil => fun _ => true
    | l :: al' => upd (interp_alist al') l
  end.
| Here's the final definition!  This is not the way you should write proof
  scripts. ;-) This implementation isn't quite what you would expect, since it takes an extra parameter expressing a search tree depth. Writing the function without that parameter would be trickier when it came to proving termination. In practice, you can just seed the bound with one plus the number of variables in the input, but the function's return type still indicates a possibility for a "time-out" by returning None. | 
Definition boundedSat (bound : nat) (fm : formula)
  : option ({al : alist | satFormula fm (interp_alist al)}
    + {forall a, ~satFormula fm a}).
  refine (fix boundedSat (bound : nat) (fm : formula) {struct bound}
    : option ({al : alist | satFormula fm (interp_alist al)}
      + {forall a, ~satFormula fm a}) :=
    match bound with
      | O => None
      | S bound' =>
        if isNil fm
          then Some (inleft _ (exist _ nil _))
          else match unitPropagate fm with
                 | Some (inleft (existS fm' (exist l _))) =>
                   match boundedSat bound' fm' with
                     | None => None
                     | Some (inleft (exist al _)) => Some (inleft _ (exist _ (l :: al) _))
                     | Some (inright _) => Some (inright _ _)
                   end
                 | Some (inright _) => Some (inright _ _)
                 | None =>
                   let l := chooseSplit fm in
                     match setFormula fm l with
                       | inleft (exist fm' _) =>
                         match boundedSat bound' fm' with
                           | None => None
                           | Some (inleft (exist al _)) => Some (inleft _ (exist _ (l :: al) _))
                           | Some (inright _) =>
                             match setFormula fm (negate l) with
                               | inleft (exist fm' _) =>
                                 match boundedSat bound' fm' with
                                   | None => None
                                   | Some (inleft (exist al _)) => Some (inleft _ (exist _ (negate l :: al) _))
                                   | Some (inright _) => Some (inright _ _)
                                 end
                               | inright _ => Some (inright _ _)
                             end
                         end
                       | inright _ =>
                         match setFormula fm (negate l) with
                           | inleft (exist fm' _) =>
                             match boundedSat bound' fm' with
                               | None => None
                               | Some (inleft (exist al _)) => Some (inleft _ (exist _ (negate l :: al) _))
                               | Some (inright _) => Some (inright _ _)
                             end
                           | inright _ => Some (inright _ _)
                         end
                     end
               end
    end); simpl; intros; subst; intuition; try generalize dependent (interp_alist al).
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  assert (satFormula fm (upd a0 l)); firstorder.
  assert (satFormula fm (upd a0 l)); firstorder.
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  destruct (satLit_dec l a);
    [assert (satFormula fm (upd a l))
      | assert (satFormula fm (upd a (negate l)))]; firstorder.
  destruct (satLit_dec l a);
    [assert (satFormula fm (upd a l))
      | assert (satFormula fm (upd a (negate l)))]; firstorder.
  destruct (satLit_dec l a);
    [assert (satFormula fm (upd a l))
      | assert (satFormula fm (upd a (negate l)))]; firstorder.
  destruct (satLit_dec l a);
    [assert (satFormula fm (upd a l))
      | assert (satFormula fm (upd a (negate l)))]; firstorder.
  destruct (satLit_dec l a); intuition eauto;
    assert (satFormula fm (upd a l)); firstorder.
  destruct (satLit_dec l a); intuition eauto;
    assert (satFormula fm (upd a l)); firstorder.
  firstorder.
  firstorder.
  destruct (satLit_dec l a); intuition eauto;
    assert (satFormula fm (upd a (negate l))); firstorder.
  destruct (satLit_dec l a); intuition eauto;
    assert (satFormula fm (upd a (negate l))); firstorder.
  destruct (satLit_dec l a);
    [assert (satFormula fm (upd a l))
      | assert (satFormula fm (upd a (negate l)))]; firstorder.
Defined.
Definition boundedSatSimple (bound : nat) (fm : formula) :=
  match boundedSat bound fm with
    | None => None
    | Some (inleft (exist a _)) => Some (Some a)
    | Some (inright _) => Some None
  end.
| We can extract an OCaml version of boundedSat: | 
Recursive Extraction boundedSat.
| You can test the OCaml version by saving the output of the to a fileSol6.mland grabbing the support code in
  Solver6.ml.  In the directory where you've put
  these files, start ocaml and run: | 
#use "Sol6.ml";;
#use "Solver6.ml";;
| After that, you can solve SAT problems in the SATLIB format. You can find lots of examples in the SATLIB benchmark problem archive. My implementation is quite speedy on the first few classes of formulas listed, so you should be able to test yours on these real problems without much hassle. To solve a problem in file testXX.cnf, run: | 
solve "testXX.cnf";;