Interactive Computer Theorem Proving

Lecture 1: Why ICTP?
About Me

- 4th year CS PhD student in programming languages
- Started doing interactive computer theorem proving in Spring 2004, as part of the Open Verifier project
- Now it's the main focus of my research.
- Specifically, developing programming language tools with proofs of correctness
This Class

- A practical perspective on computer theorem proving
- Designed to be accessible to anyone who's taken a basic logic and discrete math class
- Experience with functional programming is a plus
 - Scheme/Lisp good, ML/Haskell better :-)

Administrivia

• Usually meet only on Thursdays
• One homework assignment a week during the first half of the course
 – Exercises using Coq (a proof assistant)
• For people taking the class for 3 units, a standard research project in a small group
 – Probably some application of interactive computer theorem proving
Administrivia II

- No required text, but the *Coq'Art* book is a useful reference
 - We have a few copies that we can loan out as needed
- This class probably won't satisfy any CS PhD breadth requirement, but see us if this is a problem for you.
What is a Proof?

- **Proof by example**
 - The author gives only the case $n = 2$ and suggests that it contains most of the ideas of the general proof.
- **Proof by intimidation**
 - "Trivial."
- **Proof by vigorous handwaving**
 - Works well in a classroom or seminar setting.
- **Proof by cumbersome notation**
 - Best done with access to at least four alphabets and special symbols.
- **Proof by exhaustion**
 - An issue or two of a journal devoted to your proof is useful.

[excerpt from a popular e-mail forwarding bonanza]
Classical Motivations

• Mathematicians and philosophers want to formalize their reasoning processes.

• Interest in formal methods driven by how difficult it is to be sure that a mathematical system corresponds to our intuitions.

• Want to come up with tiny but very expressive systems to study very carefully.
Don't Worry!

- This class is not about sitting around debating the metaphysics of “1 + 1 = 2.”
- We'll focus on a variety of practical applications of theorem proving technology.
- ...not that those philosophers didn't have some ideas that have turned out to be very practical. ;-)

Correctness is Nice

- Expensive mistakes
 - Pentium FDIV bug
 - Ariane rocket crash
 - etc.

- Programming language semantics
 - The POPLmark Challenge
The Age of "Security"

- The Internet isn't a friendly place anymore.
- "We want to make sure our software can't be exploited."
 - Verification of cryptographic protocols, etc.
- "We want to use software written by someone we don't trust."
 - Proof-carrying code
Software Engineering

• Developing programs and their correctness proofs simultaneously is an alternative to test-based development.
• The more intricate the system, the more likely it is that proof is more effective than testing.
• Exactly how to do this is a very active research topic today.
Goals for This Course

• Learn how to use the **Coq proof assistant** to:
 – Formalize most any kind of math
 – Formalize theory related to your research
 – Develop practical functional programs with total correctness proofs

• Learn exactly what it means for a proof to be rock solid, so that even a computer believes it.
The World of Computer Theorem Proving

First-Order Logic
- Untyped
 - Many systems...
- Automated
- Interactive
- ACL2

Higher-Order Logic
- Typed
 - Not so many systems...
- Functional Programming
- Ad-Hoc Proof Language
 - PVS
- Small Proof Language
 - Classical Logic
 - Isabelle
 - /HOL
 - Constructive Logic
 - Coq, NuPRL

Twelf

Logic Programming
• **Theorem**: There exist irrational numbers a and b such that a^b is rational.

• If $\sqrt{2}^{\sqrt{2}}$ is rational, then we have the theorem with $a = b = \sqrt{2}$.

• If $\sqrt{2}^{\sqrt{2}}$ is irrational, then we have the theorem with $a = \sqrt{2}^{\sqrt{2}}$ and $b = \sqrt{2}$.

\[- \sqrt{2}^{\sqrt{2}} \cdot 2^{(\sqrt{2}^{\sqrt{2}})} = \sqrt{2}^2 = 2\]
A Constructive Proof

• **Theorem:** Every degree-one rational polynomial \(y = mx + b \) has a rational root if \(m \) is not 0.

• **Proof:** \(-b/m\) is the answer, because:
 \[
 -m(-b/m) + b = -b + b = 0
 \]

 rational root(rational m, rational b) {
 return -b / m;
 }

• **Precondition:** \(m \) is not 0.

• **Postcondition:** The return value is a root of \(y = mx + b \).
An Even Nicer Idea

• Theorem: Every Java program has an equivalent x86 machine language program.

• By choosing a suitable constructive logic, we guarantee that any proof of this theorem can be converted into a genuine Java compiler!

• By using a generic program extraction mechanism, we get the “free” theorem that our compiler preserves the semantics of programs.
 – ...which saves us a huge amount of testing.
Example: Alias Analysis

```c
int x, y;
int *p;
p = &y;
x = 1;
*p = 2;
return x;
```

Compiler Optimizer

```
return 1;
```

Empty intersection!

The path `x` only ever denotes elements of `{&x}`.
The path `y` only ever denotes elements of `{&y}`.
The path `*p` only ever denotes elements of `{&y}`.
Andersen's Analysis

\[L: x = \text{new} \quad \ Quadr.
Andersen in Coq

• A Coq implementation of Andersen's Analysis for this toy language, with a proof of total correctness

• Not quite so convoluted as you may be expecting from the slides on constructive logic, thanks to connections between proofs and functional programs that I haven't presented yet
But First...

How would you prove the correctness of Andersen's Analysis?

(if you had to convince someone who can only be convinced by a series of “obvious” steps)
Conclusion

• The full code of this example is available on the course web site.

• HW0 is posted
 – Install Coq and make sure you can run some simple examples through it.

• Next lecture: Revisiting freshman logic class
 – Natural deduction and interactive Coq proofs of theorems in propositional and first-order logic