Interactive Computer Theorem Proving

Lecture 3: Data structures and Induction

CS294-9
September 7, 2006
Adam Chlipala
UC Berkeley
The Peano Axioms

0 ∈ \mathbb{N}

∀ n ∈ \mathbb{N}, S(n) ∈ \mathbb{N}

∀ n ∈ \mathbb{N}, S(n) ≠ 0

∀ a, b ∈ \mathbb{N}, a = b ↔ S(a) = S(b)

For any property P:

P(0) \land (\forall n ∈ \mathbb{N}, P(n) \rightarrow P(S(n)))) \rightarrow \forall n ∈ \mathbb{N}, P(n)

We can define \mathbb{N} (up to isomorphism) as the least set satisfying these properties.
The Set Theory Approach

“Now that we have natural numbers, let's use them to define some data structures....”

\[
\text{natlist}(0) = \{\emptyset\}
\]

\[
\text{natlist}(S(n)) = \{\emptyset\} \cup \mathcal{N} \times \text{natlist}(n)
\]

\[
\text{natlist} = \bigcup_{n \in \mathcal{N}} \text{natlist}(n)
\]

\[
\text{nil} = \emptyset
\]

\[
\text{cons}(n, ls) = \langle n, ls \rangle
\]

Derived induction principle: For any property \(P \):

\[
P(\text{nil}) \land (\forall n \in \mathcal{N}, \forall ls \in \text{natlist}, P(ls) \rightarrow P(\text{cons}(n, ls)))
\]

\[
\rightarrow \forall ls \in \text{natlist}, P(ls)
\]
Why This Isn't Such a Great Idea

- These definitions are pretty awkward!
 - Set theorists usually don't write all their proofs formally, so they can get away with it.

- Proofs at this level of detail must be very large.
 - Mathematicians aren't used to optimizing for space!

- What about more complicated data structures?
Type Theory's Great Idea

Functions and **data structures** should be the fundamental building blocks of math, not sets!

Coq
- Function types
- **Inductive types**
- Constructors
- Case analysis
- **Recursive functions**

ZF Set Theory
- Negation
- Conjunction
- Universal quantifier
- Equality
- Natural deduction proof rules
- Empty set
- Set equality
- Set pairing
- Set union
- Natural numbers
- Mathematical induction
...
Back to the Beginning...

Inductive \(\text{nat} : \text{Set} := \)

\(| \text{O} : \text{nat} \)
\(| \text{S} : \text{nat} \rightarrow \text{nat}. \)

What we get:

- A type \(\text{nat} \)
- Two **constructors** \(\text{O} \) and \(\text{S} \) for building \(\text{nats} \)
- **Case analysis** (pattern matching) on \(\text{nats} \)
- The ability to write **recursive functions** over \(\text{nats} \)
Verifying the Peano Axioms

There exists set \(\mathcal{N} \)...

\[
0 \in \mathcal{N}
\]

\[
\forall n \in \mathcal{N}, \ S(n) \in \mathcal{N}
\]

Check nat.
- \(\text{nat} : \text{Set} \).

Check O.
- \(O : \text{nat} \).

Check S.
- \(S : \text{nat} \rightarrow \text{nat} \).
Pattern Matching

General form for nat:

```plaintext
match n with
  | O => e1
  | S n' => e2(n')
end
```

And with anonymous function notation (like Scheme `lambda` and OCaml `fun`):

```plaintext
fun n => match n with
  | O => O
  | S n' => n'
end
```

Examples

```plaintext
match O with
  | O => O
  | S n' => n'
end
Evaluates to: O
```

```plaintext
match S (S O) with
  | O => O
  | S n' => n'
end
Evaluates to: S O
```
Peano Axiom #3

\[\forall n \in \mathbb{N}, S(n) \neq 0 \]

\[
\text{fun } n \Rightarrow \text{match } n \text{ with }
\]

Define \(f \) as:

- \(O \Rightarrow \text{True} \)
- \(S\ n' \Rightarrow \text{False} \)

• **Proof.** Let \(n \) be given.

• Assume for a contradiction that \(S\ n = 0 \).

• Assert True.

• By **computation**, we have the equivalent \(f\ 0 \).

• By the assumption, \(f\ (S\ n) \).

• **Contradiction!**
Peano Axiom #4
\[\forall a, b \in \mathbb{N}, S(a) = S(b) \rightarrow a = b \]

fun \(n \rightarrow \) match \(n \) with

Define \(p \) as:
\[
\begin{align*}
\mid O & \Rightarrow O \\
\mid S \ n' & \Rightarrow n'
\end{align*}
\]

end

• **Proof.** Let \(a \) and \(b \) be given.

• Assume \(S \ a = S \ b \).

• By reflexivity, \(p \ (S \ b) = p \ (S \ b) \).

• By the assumption, \(p \ (S \ a) = p \ (S \ b) \).

• **By computation**, \(a = b \).
Peano Axiom #5

\[P(0) \land (\forall n \in \mathbb{N}, P(n) \rightarrow P(S(n))) \rightarrow \forall n \in \mathbb{N}, P(n) \]

We could prove this manually using recursive functions, but...

Check nat_ind.

\[
\text{nat}_\text{ind} : \text{forall } P : \text{nat} \rightarrow \text{Prop}, \n\]

\[
P \ 0 \n\]

\[
\rightarrow \ (\text{forall } n : \text{nat}, P \ n \rightarrow P \ (S \ n)) \n\]

\[
\rightarrow \text{forall } n : \text{nat}, P \ n \n\]
Recursive Functions

Analogue of the standard named function definition syntax in most programming languages:

Two arguments of type \(\text{nat} \)

Return type \(\text{nat} \)

Fixpoint \(\text{add} \ (n \ m : \text{nat}) \ \{\text{struct} \ n\} : \text{nat} := \)

\[
\text{match } n \ \text{with} \\
| O \Rightarrow m \\
| S \ n' \Rightarrow S \ (\text{add} \ n' \ m) \\
\text{end.}
\]

No recursive calls allowed in this \text{match} branch

Recursion over argument \(n \)

Only \textbf{recursive calls with first argument equal to} \(n' \) allowed in this branch
Aside: Why So Fussy About Termination?

Imagine that Coq allowed this definition:

```coq
Fixpoint f (n : nat) {struct n} : nat :=
    S (f n).
```

- We would then have \(f(n) = S(f(n)) \), for all \(n \).
- But we can also prove \(m \neq S(m) \), for all \(m \).
- So \(f(0) = S(f(0)) \) and \(f(0) \neq S(f(0)) \).
- **Contradiction!** Our logic is unsound!
More Datatypes: Booleans

Inductive bool : Set :=

| false : bool
| true : bool.

Check bool_ind.

bool_ind : **forall** P : bool -> Prop,

P false

-> P true

-> **forall** b : bool, P b
More Datatypes: Lists

Inductive natlist : Set :=

| nil : natlist
| cons : nat -> natlist -> natlist.

Check natlist_ind.

natlist_ind : forall P : natlist -> Prop,

P nil

-> (forall (n : nat) (ls : natlist),

P ls -> P (cons n ls))

-> forall ls : natlist, P ls
More Datatypes: Trees

Inductive nattree : Set :=
 | Leaf : nattree
 | Node : nattree -> nat -> nattree -> nattree.

Check nattree_ind.

nattree_ind : forall P : nattree -> Prop,
 P Leaf
 -> (forall (t1 : nattree) (n : nat)
 (t2 : nattree),
 P t1 -> P t2 -> P (Node t1 n t2))
 -> forall t : nattree, P t

Check nattree_ind.
Simple Inductive Types in General

$$\text{Inductive } \text{tname} : \text{Set} :=$$

- $$c_1 : t_{1,1} \rightarrow \ldots \rightarrow t_{1,k_1} \rightarrow \text{tname}$$
- $$\ldots$$
- $$\ldots$$
- $$c_n : t_{n,1} \rightarrow \ldots \rightarrow t_{n,k_n} \rightarrow \text{tname}.$$
Using an Inductive Type

Pattern matching

match e with
| c₁ x₁ ... xₖ₁ => e₁(x₁, ..., xₖ₁)
| ...
| cₙ x₁ ... xₖₙ => eₙ(x₁, ..., xₖₙ)
end

Inductive tname : Set :=
| c₁ : t₁₁ -> ... -> t₁ₖ₁ -> tname
| ...
| cₙ : tₙ₁ -> ... -> tₙₖₙ -> tname.

Must use a match somewhere to obtain a strict subterm of x to use in a recursive call.

Recursive functions

Fixpoint f (x : tname) : T := e(x).
Fixpoint f (x₁ : T₁) ... (xₖ : tname) ... (xₙ : Tₙ)
{struct xₖ} : T := e(x₁, ..., xₙ).
(fix f (x : tname) : T := e(x))
Using an Inductive Type II

Inductive tname : Set :=

\[| c_1 : t_{1,1} \rightarrow ... \rightarrow t_{1,k_1} \rightarrow tname \\
| ... \]

Induction principle

“For every predicate \(P \) over \(tname \) s,

If for every constructor \(c_i \) of \(tname \):

For every set \(e_{i,j} \) of arguments to \(c_i \),

Assuming \(P e_{i,j} \) for every \(e_{i,j} \) of type \(tname \),

We can prove \(P (c_i e_{i,1} \ldots e_{i,k_i}) \)

Then

For every value \(e \) of type \(tname \),

We can prove \(P e. \)”
So what's the deal with this “by computation” stuff, anyway?

Coq considers to be interchangeable any two expressions that evaluate to a common result.

Atomic evaluation step: Applying a function

\[(\text{fun } x \Rightarrow S
\ append x) \ (S \ O) \Rightarrow S \ (S \ O)\]

\[(\text{fix } f \ (x : \text{nat}) : \text{nat} \Rightarrow S \ x) \ (S \ O) \Rightarrow S \ (S \ O)\]

Atomic evaluation step: Simplifying a case analysis

\[(\text{match } S \ x \ \text{with } O \Rightarrow O \ | \ S \ n \Rightarrow n \ \text{end}) \Rightarrow x\]

Atomic evaluation step: Expanding a definition

\[f \ O \Rightarrow (\text{fun } x \Rightarrow S \ (S \ x)) \ O\]

\[\text{Definition } f := \text{fun } x \Rightarrow S \ (S \ x)\]
Reduction Order

Reductions can happen *anywhere in an expression*, so:

\[
(fun\ x \Rightarrow (fun\ y \Rightarrow S\ y)\ x) \Rightarrow (fun\ x \Rightarrow S\ x)
\]

\[
(match\ x\ with\ O \Rightarrow O \mid S\ n \Rightarrow (fun\ y \Rightarrow S\ y)\ n\ end) \\
\Rightarrow (match\ x\ with\ O \Rightarrow O \mid S\ n \Rightarrow S\ n\ end)
\]

Important meta-theorem about Coq: For any expression, *any order of reductions leads to the same result.*
Why Should I Care?

All of these theorems can be proved by reflexivity:

- $1 + 1 = 2$
- $0 + x = x$
- $\text{length} (\text{cons} \ 0 \ (\text{cons} \ 1 \ \text{nil})) = 2$
- $\text{append} \ (\text{cons} \ 0 \ \text{nil}) \ (\text{cons} \ 1 \ \text{nil}) = \text{cons} \ 0 \ (\text{cons} \ 1 \ \text{nil})$
- $\text{append} \ \text{nil} \ ls = ls$
- compiler $myProgram = outputAssemblyCode$

Proving theorems about programs and math in general is much more pleasant when these things come for free.
Conclusion

- Sample HW1 solution is on the web site.
- HW2 is posted
 - Fun with data structures and induction
- Next lecture: Using inductive types to define new logical predicates and the rules that can be used to prove them