
A Verified Compiler for a Functional Tensor Language

AMANDA LIU,Massachusetts Institute of Technology, USA

GILBERT BERNSTEIN, University of Washington, USA

ADAM CHLIPALA,Massachusetts Institute of Technology, USA

JONATHAN RAGAN-KELLEY,Massachusetts Institute of Technology, USA

Producing efficient array code is crucial in high-performance domains like image processing and machine

learning. It requires the ability to control factors like compute intensity and locality by reordering computations

into different stages and granularities with respect to where they are stored. However, traditional pure,

functional tensor languages struggle to do so. In a previous publication, we introduced ATL as a pure,

functional tensor language capable of systematically decoupling compute and storage order via a set of

high-level combinators known as reshape operators. Reshape operators are a unique functional-programming

construct since they manipulate storage location in the generated code by modifying the indices that appear

on the left-hand sides of storage expressions. We present a formal correctness proof for an implementation of

the compilation algorithm, marking the first verification of a lowering algorithm targeting imperative loop

nests from a source functional language that enables separate control of compute and storage ordering. One

of the core difficulties of this proof required properly formulating the complex invariants to ensure that these

storage-index remappings were well-formed. Notably, this exercise revealed a soundness bug in the original

published compilation algorithm regarding the truncation reshape operators. Our fix is a new type system

that captures safety conditions that were previously implicit and enables us to prove compiler correctness

for well-typed source programs. We evaluate this type system and compiler implementation on a range of

common programs and optimizations, including but not limited to those previously studied to demonstrate

performance comparable to established compilers like Halide.

CCS Concepts: • Software and its engineering → Formal software verification; Domain specific

languages.

Additional Key Words and Phrases: functional programming, array programming, formal verification, type

systems, tensors

ACM Reference Format:

Amanda Liu, Gilbert Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley. 2024. A Verified Compiler for

a Functional Tensor Language. Proc. ACM Program. Lang. 8, PLDI, Article 160 (June 2024), 23 pages. https:

//doi.org/10.1145/3656390

1 INTRODUCTION

Efficient programming with tensors in domains like image processing andmachine learning often re-

duces to optimizing computation on arrays. This optimization process requires careful management

of crucial performance factors such as computational intensity and data locality. It is invaluable

to be able to manipulate computation order directly through loop-nest arrangements and storage

Authors’ addresses: Amanda Liu, Massachusetts Institute of Technology, Cambridge, USA, lamanda@mit.edu; Gilbert

Bernstein, University of Washington, Seattle, USA, gilbo@cs.washington.edu; Adam Chlipala, Massachusetts Institute

of Technology, Cambridge, USA, adamc@csail.mit.edu; Jonathan Ragan-Kelley, Massachusetts Institute of Technology,

Cambridge, USA, jrk@csail.mit.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART160

https://doi.org/10.1145/3656390

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-5549-9177
HTTPS://ORCID.ORG/0000-0002-3016-1169
HTTPS://ORCID.ORG/0000-0001-7085-9417
HTTPS://ORCID.ORG/0000-0001-6243-9543
https://doi.org/10.1145/3656390
https://doi.org/10.1145/3656390
https://orcid.org/0000-0001-5549-9177
https://orcid.org/0000-0002-3016-1169
https://orcid.org/0000-0002-3016-1169
https://orcid.org/0000-0001-7085-9417
https://orcid.org/0000-0001-6243-9543
https://doi.org/10.1145/3656390

160:2 Amanda Liu, Gilbert Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley

patterns indicated by storage-access indices. However, the low-level detail required in specifying

these scheduling decisions is generally at odds with the high-level, functional representations of

algorithms. As a result, a common problem in functional array languages is that they conflate

compute and storage order, eliminating a large family of optimizations from the set of programs

these languages can describe, including but not limited to common, useful techniques like tiling.

To address this complaint, many user-scheduling frameworks for producing high-performance

code provide users with pure, high-level ways to describe the mathematical algorithms to be

computed and separately provide scheduling directives that describe compute and storage patterns

as part of incremental lowering processes [2, 20]. While this approach has been effective, conflating

the optimization and lowering processes makes it very difficult to implement new directives, in

addition to complicating any verification process onemight try to apply to these systems. ATL [14] is

a pure, functional high-level tensor programming language designedwith a set of combinators called

reshape operators to decouple compute and storage order in controlled, structured ways emulating

the high-level tensor operations they are named after such as transpose, flatten, concatenate,

etc. Previously, ATL was implemented as a shallowly embedded language within the Coq proof

assistant, allowing interactive program-optimization transformations to be expressed as verified

source-to-source scheduling rewrites that could introduce reshape operators. By implementing

scheduling decisions as source-to-source rewrites in ATL separate from its lowering process, the

separation of concerns afforded greater ease in verifying these optimizations, ensuring correctness

of the scheduling process itself, which can be justified using familiar equational reasoning on

functional programs.

We used a trusted lowering algorithm implemented in a destination-passing style to generate

flattened array programs in C to compile and benchmark ATL programs. While destination-passing

style has been established as useful for compiling functional array code [21], the ATL lowering

algorithm had to accommodate the compute and storage reordering effected in the source language.

A similar approach was used by Lin and Dubach [12] who introduced views in their IR during their

lowering process to express different storage-order choices. None of these compilers were formally

verified.

In this paper, we provide the first proof of correctness for a lowering algorithm of a functional

tensor language that enables separate compute and storage reordering. This proof is mechanized

using the Coq proof assistant. While carrying out the proof, we found a soundness bug in our

previously published lowering algorithm [14]. This bug involved the truncation reshape operators

that were necessary for expressing computations partitioning arrays to align with vectors and

cache lines. While this operator is generally unsafe, we expected it to be used and introduced in

programs only in an idiomatic way that would remain safe. Our fix is a new type system capturing

the essential safety property for correct compilation.

The implementation and proof are available open-source and as an artifact [13].

2 A MOTIVATING EXAMPLE

In this section, we will provide a review of fundamental ATL language constructs and their lowering

as previously proposed [14]. We will do so by walking through the lowering of a program as well as

its various derived, optimized forms and by introducing the specific implementation of the lowering

algorithm we will be using in the rest of the paper. This section and the following one are entirely

a review of previous work, sometimes introducing slightly different notations.
Tensors are defined recursively as either scalars (zero-rank tensors) or lists of tensors. One of the

primary building blocks in the ATL language is a tensor-comprehension, or generation, operator

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

https://github.com/ChezJrk/verified-scheduling

A Verified Compiler for a Functional Tensor Language 160:3

shown below.
=

8=0

<

9=0

4 (8, 9)

Two tensor-generation operators are used to produce a two-dimensional tensor of length =

and width<, where each element is some function 4 of variables 8 and 9 . We can interpret the

lowering algorithm as a function, L, that takes in an ATL program and produces a C program

that materializes the equivalent tensor into a previously allocated output buffer in memory as a

one-dimensional array. Additionally, this lowering function takes an argument > representing an

identifier to name the output buffer.

L

(
=

8=0

<

9=0
4 (8, 9)

)
>

When the lowering function encounters a tensor generation, it generates a for loop with

equivalent bounds for the iteration index 8 . Naturally, the body of the for loop contains the

lowering of the body of the tensor generation.

for (int i = 0; i < n; i++) {

L

(
<

9=0
4 (8, 9)

)
>

}

In this case, lowering encounters another tensor generation and produces the equivalent for

loop, this time with an index 9 and the bound<.

for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {

L (4 (8, 9)) >
}

}

Once the lowering encounters the body of the tensor generation, it must generate the flattened

storage expression indexing into the output buffer > . We cannot assign 4 (8, 9) directly to > , since

that buffer is the destination for the full array described by the original ATL program, not a single

scalar expression. The storage expression we are assigning to, denoted as > (8, 9), is some access

expression into > that is a function of 8 and 9 that would yield the logically two-dimensional access

into the equivalent flattened array.

for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {

> (8, 9) = L (4 (8, 9))
}

}

For this particular example, > (8, 9) should resolve to the following flattened access into > , given a

convention of linear, row-major memory layout.

for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {

o[i ∗m + j] = L (4 (8, 9));
}

}

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

160:4 Amanda Liu, Gilbert Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley

for (int io = 0; io < n / :1 ; io++) {
for (int jo = 0; jo < m / :2 ; jo++) {
for (int ii = 0; ii < :1 ; ii++) {
for (int ji = 0; ji < :2 ; ji++) {
o[(io ∗ k1 + ii) ∗m + jo ∗ k2 + ji] = ...

}
}

}
}

...

Fig. 1. A tiled program producing a matrix into untiled storage. Tiled computation order is shown in green

and the untiled storage order in grey.

More generally, we need an ordered list of index expressions introduced per logical dimension in

lowering, such as 8 and 9 , as well as the size of each associated dimension, such as = and<, in order

to derive the flattened, physical storage-index expression. We represent a destination storage index

as a list of 2-tuples of integer-valued expressions, with the first tuple component representing the

index and the second representing the size of the associated dimension. The corresponding index

data structure produced by the example above would be:
[(i,n);(j,m)] : [/4 ∗ /4]

The index data structure represents the logical multidimensional access into a tensor. This conven-

tion allows us to construct a fla�en_index function to generate the integer expression representing

the equivalent flattened access index into the physical flattened array.
fla�en_index : [/4 ∗ /4] → /4

fla�en_index [(i, n); (j,m)] = i ∗m + j

Therefore we equip our lowering function L with an additional argument I to represent the

destination index: the specific index in the output buffer into which the lowered value is to be

written.

2.1 Reshape Operators

Consider the computation order shown in Figure 1 in grey, which produces its output row-by-

row. We begin to investigate how the index structure is affected by reshape operators: a set of

operators in the ATL language, where each rearranges the elements of a tensor in accordance to

some idiomatic tensor operation such as transposition or flattening. What distinguishes reshape

operators from other ATL constructs and the reason for their conception is how they affect code

generation. Specifically, in the final storage statement generated at the center of a set of loop

nests, the computed value must be stored into a buffer at some index. Reshape operators allow for

manipulation of this index in accordance with the high-level tensor transformation it represents.
For our purposes in this example, we introduce the tiling reshape operator into this computation.

Tiling introduces a new dimension into a tensor by chunking up an existing tensor into tiles
of a fixed size. By tiling this computation into the computation order shown in green, we can
compute rectangular tiles of size :1 × :2, which can improve locality across iterations of 4 , keeping
intermediate data values in fast local memory. To do so, the loop for each tiled dimension must
be split into two new outer and inner loops with new outer and inner iteration indices. We want
to produce code where the final stage of computation represented by the loop nest writing into
the output buffer > has the structure shown in the code in Figure 1. To keep things simple in this
example, we assume that the tiling factors :1 and :2 evenly divide dimensions = and< respectively.
Note that the index-access expression used in storage here is the equivalent of calling fla�en_index
on the index [(io ∗ k1 + ii, n); (jo ∗ k2 + ji,m)]. However, we know from lowering tensor generations
before that to produce a programwith that looping structure wouldmean the storage index structure
passed to fla�en_index would have to be [(io, n/k1); (ko,m/k2); (ii, k1); (ji, k2)], and the resulting

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

A Verified Compiler for a Functional Tensor Language 160:5

flattened index expressions would not be equivalent. Thus, in order to perform any tiling-style
optimization, we need to decouple the compute order (loop structure) from the storage order (index-
storage expression). In the ATL framework, we do so by using scheduling rewrites to introduce
reshape operators, arriving at the following program for lowering.

L
©­­
«
fla�en

©­­
«
©­­
«
=/:1

8>=0

fla�en
©­
«
</:2

9>=0

:1

88=0

:2

98=0

...
ª®
¬
) ª®®
¬

) ª®®
¬
ª®®
¬
> I

Immediately, the lowering encounters a call to the reshape operator fla�en. As a reshape operator,

it generates no code in lowering–instead its effect is entirely on the index data structure. The

flatten reshape operator should modify a given index structure by collapsing the top two indices,

effectively flattening the top two dimensions. However, we run into a problem. This effect of flatten

on an index data structure should be applied on the index representing generation dimensions

downstream in the lowering process, related to the subexpression inside the flatten operator. This

index data structure is currently not accessible, since I only captures information on the indices

that have already been introduced upstream in lowering.

2.2 Introducing Reindexers

To fix this issue, rather than passing down an index data structure of type [/4 ∗/4] as an argument

to lowering, we pass down a function of type [/4 ∗ /4] → [/4 ∗ /4], which describes how to build

upon or modify an index. Logically, this function describes the ongoing transformation on the index

space, with one possible transformation being the expansion of the space by the introduction of

another dimension and index. We call this argument the reindexer.

We replace I with \ to represent the reindexer argument to L. This time when L encounters

the flatten, it produces no code and instead composes the index modification induced by flattening

that was described before with the current ongoing \ . The reindexer modification induced by a

flatten operation is defined below as the function \fla�en.

\fla�en idx := match idx with

| (i, dim1)::(j, dim2)::idx' ⇒ (i ∗ dim2 + j, dim1∗dim2)::idx'

| _ ⇒ idx end.

We arrive at the following call to L.

L
©­­«
©­«
=/:1

8>=0

fla�en
©­«
</:2

9>=0

:1

88=0

:2

98=0

[[[...]]] · ...
ª®¬
) ª®¬
) ª®®¬

> (\ . \fla�en)

The next construct encountered is the transpose operator. Again, since this is a reshape operator,

it serves only to modify the reindexer passed to the subsequent call to L. The transpose operator

swaps the top two dimensions of a tensor, essentially flipping its rows and columns. Therefore, the

transpose reindexer should swap the top two tuples of an index data structure. That reindexer is

defined below.

\transpose idx := match idx with

| t1::t2::idx' ⇒ t2::t1::idx'

| _ ⇒ idx end.

After flatten and transpose are lowered, we reach the following state in the lowering process.

L
©­«
=/:1

8>=0

fla�en
©­«
</:2

9>=0

:1

88=0

:2

98=0

[[[...]]] · ...
ª®¬
) ª®¬

> (\ . \fla�en . \transpose)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

160:6 Amanda Liu, Gilbert Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley

At this point, we encounter a tensor generation, the first construct in the lowering so far that is

not a reshape operator. A for loop is generated like in the variant of lowering we demonstrated

before, and the subsequent call to L must be made aware of the new loop iteration index and

dimension. Rather than adding onto an existing index data structure, the reindexer is composed

with a function that adds onto the index-dimension tuple.

for (int io = 0; io < n // :1; io++) {

L

(
fla�en

(
</:2

9>=0

:1

88=0

:2

98=0
[[[...]]] · ...

)
)

)
> (\ . \fla�en . \transpose . (_idx.(io, =/k1) :: idx))

}

We can proceed in lowering the remaining program structure. When we assume the default value
for the top-level \ passed in to be the identity function, finally applying the composed reindexer
produces the following index structure:

[(8> ∗ :1 + 88 , =/:1 ∗ :1); (9> ∗ :B + 98 ,</:2 ∗ :2)]

This structure is exactly what we wanted for tiled storage access.

To verify this lowering algorithm, much of our attention is given to characterizing an invariant on

\ to describe the well-formedness of a reindexer and the properties it may take on during lowering.

This invariant must capture the safety of the behavior of the reindexer under the transformations

that can be induced by reshape operators introduced in well-formed ATL programs. Rather than

exhaustively enumerating the possible reindexer modifications by reshape operators (a syntactic

and monolithic approach), we chose to define this invariant behaviorally in terms of the index

function that the reindexer fundamentally describes (a semantic and modular approach). This choice

ensures that our proof approach remains general and can accommodate future additions to the

language, as long as they adhere to the well-formedness constraint. By establishing this invariant,

we are able to provide a formal proof of correctness of the tensor-lowering algorithm for the ATL

language and its reshape operators.

3 THE COMPILER WE VERIFIED

3.1 Source Language: ATL

We provide in the appendix a formalization of the ATL language (after a precompilation normaliza-

tion process) and its operational semantics. These semantics are consistent with the previously

published denotational semantics provided for ATL [14]. All ATL programs are expressions that

describe the computation of elements of tensor type) . This type is defined inductively to contain

scalar values (i.e. real values) and lists of tensor elements.

) := ;8BC) | R

For an ATL program 4 , we use the notation ∥4 ∥ to denote the shape of the tensor computed from

this program, represented as a list of symbolic integer expressions. For simplicity’s sake, we will

use |4 | to represent the integer expression giving the size of the top-level dimension, or the length

of the tensor. Here we refer to symbolic expressions in the sense that a tensor’s dimensions may

depend on program variables. Similarly, we use ∥4 ∥E to signify the shape of the ATL program 4

where each of its symbolic dimensions has been evaluated to concrete integers under the index

context E that maps index variables to integers. Likewise, |4 |E represents the evaluated integer

of the first dimension. Finally, we define a function genpad that takes a list of integers Bℎ as an

argument and produces a tensor of that shape filled entirely with zeros.

While we previously defined ATL using a shallow embedding in Coq [14], in this work we

instead formalize ATL with a deep embedding, i.e. explicit syntax trees. This choice also forces

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

A Verified Compiler for a Functional Tensor Language 160:7

us to write an explicit formal semantics, which was only written on paper in our prior work. We

also implemented a Coq tactic that can reify shallowly embedded ATL programs into our deep

embedding, generating proof of semantic equivalence.

3.2 Target Language: A Subset of C

The lowering algorithm generates low-level, imperative loop nests. Previous work used this al-

gorithm to generate and benchmark C programs. In the appendix, we provide a formal big-step

semantics for the subset of the C language this algorithm generates. We include state modeled

as a stack and a heap. The stack stores scalar tensor values as floats1, and the heap stores higher-

dimensional tensors as flattened one-dimensional arrays of floats. The heap is modeled as a partial

map of identifiers to flat arrays. Arrays themselves are modeled as partial maps of integers to real

numbers. Notably, we do not model pointer arithmetic or aliasing, since code generated by ATL

lowering does not use these C features. The C language subset modeled in our semantics also

includes explicit memory allocation and deallocation, as well as standard C constructs like loop

nests, if statements, and assignment.

Previously we had only generated C code via string manipulation (within Coq tactic scripts),

with no formal syntax or semantics [14].

3.3 Lowering (Compilation)

We present here our implementation of the previously published lowering algorithm with explicit

manipulation of the reindexer and index datatype as proposed above. The previous compiler

implementation used Coq’s dynamically typed tactic language Ltac, which is not suitable as a

subject for Coq proofs [14]. Therefore, we reimplemented the algorithm in Coq’s dependently

typed logical language Gallina, operating on the two types of syntax trees introduced earlier in this

section.

We can define the reindexer functions for the reshape operators much like we did for the lowering

of the example in Section 2. These functions are shown in Figure 2. Each manipulates an index in a

way consistent with the functional semantics of the reshape operator it is associated with.

We define the lowering algorithm L shown in Figure 3. We include a new argument 0 that

indicates if the final storage into a buffer is an assignment (=) or reduction (+=) into memory to

accommodate summation. We also include a new argument 2 that maintains a mapping of identifiers

to shapes, represented as lists of integer expressions, used specifically to flatten multidimensional

tensor accesses in some scalar expression B , denoted as LBM2 . This lowering will make use of the

static symbolic integer expression representation of tensor dimension size. The size should not be

data-dependent nor a function of iteration indices, making it constant at compile time.

4 COMPILER CORRECTNESS

We can express the compiler-correctness theorem as something like the statement below, although

additional side conditions will be required. The first premise of the theorem states that a source ATL

program 4 evaluates to a tensor C . The conclusion states that executing the lowered equivalent of

this program will result in a state change described by the function tensor_to_array_delta. Variables

BC and ℎ stand for the C stack and heap.

⟨4, E, Γ⟩ ⇓ C → · · · → ⟨ (L 4 > 0 \ 2) , E, BC, ℎ⟩ ⇓� (BC, ℎ) ⊎ tensor_to_array_delta \ C E

The arguments to tensor_to_array_delta are a tensor C , a reindexer \ , and an index context E . The

function outputs an integer-domain partial map that contains a mapping for every element of

1The semantics actually represents floating-point numbers as mathematical real numbers, though it would be valuable

future work to extend to sound reasoning about floating point.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

160:8 Amanda Liu, Gilbert Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley

Definition \fla�en idx := match idx with

| (i1,dim1)::(i2::dim2)::idx' ⇒ (i1∗dim2+i1,dim1∗dim2)::idx'

| _ ⇒ idx end.

Definition \transpose idx := match idx with

| (i1,dim1)::(i2::dim2)::idx' ⇒ (i2,dim2)::(i1,dim1)::idx'

| _ ⇒ idx end.

Definition \split k idx := match idx with

| (i, dim)::idx' ⇒ (i/k,dim//k) ::(i % k, k) ::idx'

| _ ⇒ idx end.

Definition \truncr k idx := match idx with

| (i, dim)::idx' ⇒ (i, dim − k) ::idx'

| _ ⇒ idx end.

Definition \truncl k idx := match idx with

| (i, dim)::idx' ⇒ (i − k, dim − k) ::idx'

| _ ⇒ idx end.

Definition \padr k idx := match idx with

| (i, dim)::idx' ⇒ (i, dim + k) ::idx'

| _ ⇒ idx end.

Definition \padl k idx := match idx with

| (i, dim)::idx' ⇒ (i + k, dim + k) ::idx'

| _ ⇒ idx end.

Fig. 2. Reshape-Operator Reindexers

tensor C . The key for each element in this map represents the physical, flattened index in the array

that this element occupies.

This integer mapping is constructed for each element A at some multidimensional index �/ by

first building the corresponding index structure, by applying the zip function over �/ and the

dimensional size list representing the shape of the tensor, ∥C ∥. Here, zip is a function that takes two

lists and constructs a new list where each element is a tuple of the elements of the original lists at

that position. We then apply the reindexer to this index structure. Finally, we flatten the resulting

index structure and evaluate it under the index valuation E to produce the concrete integer index

for each mapping.

Although this intermediary mapping has the same type as an array in the heap, it is only

meaningful once it is added onto an existing array in the heap. Hence, we refer to this as an array

delta. In the theorem statement, we symbolize array addition as ⊎. Adding two arrays constructs a

new array containing the union of all integer value mappings in both original arrays. Indices that

are present in both original arrays are mapped to the sums of the original array mappings.

This definition decomposes very well to accommodate independent reasoning about the storage

reordering effected by each reshape operator. Consider a reshape operator ' with its associated

reindexer \' like those shown in Figure 2. We can produce an array delta representing the ap-

plication of ' on some tensor C by directly applying the tensor_to_array_delta transformation

with some reindexer \ . But we should be able to produce the same array delta by applying ten-

sor_to_array_delta directly on the tensor C with a reindexer that is the composition of \ and \' , as

when we apply tensor_to_array_delta composed with \' on the original tensor C .

This statement is very close to complete. The other conditions for correctness of lowering will

include some standard properties regarding the well-formedness of 4 and equivalence of states and

environments, among other invariants. Most notably, we will have to include invariants regarding

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

A Verified Compiler for a Functional Tensor Language 160:9

Fixpoint L e o a \ c := match e with

|
hi

8=lo
4′ ⇒ for (int i = lo; i < hi; i ++) { L 4′ o a (_ idx. \ ((i − lo, hi − lo) :: idx)) 2 }

|
hi∑
8=lo

4′ ⇒ for (int i = lo; i < hi; i ++) { L 4′ o (+=) \ 2 }

| [[[?]]] · 4′ ⇒ if (p) { L 4′ o a \ c }

| let G := 41 in 42 ⇒ match ∥41∥ with
| [] ⇒ (* Scalar *)

float x = 0; L 41 x (=) (_G .G) 2; L 42 o a \ (2 [G] = [])
| sh ⇒ (* Array *)

float ∗x = calloc (fold_left mul sh 1, sizeof float);

L 41 x (=) (_G .G) 2; L 42 o a \ (2 [G] = ∥41∥); free(x); end
| fla�en 4′ ⇒ L 4′ o a (\ . \fla�en) 2

| split : 4′ ⇒ L 4′ o a
(
\ . (\split :)

)
2

| 4) ⇒ L 4′ o a
(
\ . \transpose

)
2

| 41 ◦ 42 ⇒ match (∥41∥),(∥42∥) with

| n1::_,n2::_ ⇒ L 41 o a
(
\ . (\padr n2)

)
2; L 42 o a

(
\ . (\padl n1)

)
2

| _, _ ⇒ ; end

| padl : 4
′ ⇒ L 4′ o a

(
\ . (\padl :)

)
2

| padr : 4
′ ⇒ L 4′ o a

(
\ . (\padr :)

)
2

| truncl : 4
′ ⇒ L 4′ o a (\ . (\truncl :)) 2

| truncr : 4
′ ⇒ L 4′ o a (\ . (\truncr :)) 2

| B ⇒ o[flatten_index (\ [])] a LBM2 end.

Fig. 3. Lowering Algorithm

the behavioral properties and well-formedness of the reindexer \ , which is an entirely unconstrained

quantified value in the statement as written.

4.1 Context and State

This correctness statement would not be sound if either program were executing in arbitrary
environments. To begin, we must establish that the starting state in which the lowering is executing
and the context in which the ATL program is being evaluated are equivalent. The semantics
of both ATL interpretation and execution of C code include the iteration index valuation E as
one of their arguments, so we can impose direct equivalence on the valuation E . Establishing
equivalence between the ATL context Γ and the stack and heap is less straightforward. The ATL
context maintains a map of names to tensors computed from previous let bindings. The equivalent
flattened arrays of these tensors should also be present in the stack and heap. Formally, we can
define an equivalence between Γ and the stack and heap (BC, ℎ) in terms of tensor_to_array_delta.

Γ ∼∼ (BC, ℎ) := ∀G . Γ [G] = C −→ (BC, ℎ) [G] = tensor_to_array_delta (_8.8) C ∅

Note that we use a one-directional implication in formulating this invariant, because the presence

of a mapping for an identifier in the stack or heap does not necessarily mean it has been bound in

the context. Let us take a look at the code the lowering algorithm generates for let bindings.

L(let G := 41 in 42) > 0 \ 2
float ∗x = calloc (fold_left mul ∥41∥ 1, sizeof float);
L 41 G (=) (_8.8); L 42 > 0 \ 2; free(x);

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

160:10 Amanda Liu, Gilbert Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley

The mapping in the heap might have been the result of a memory allocation, while the lowering

of the let-bound expression has yet to be written to the allocated addresses, as is the case after

the allocation. From here on, G is visible in the low-level state as being mapped to an array in the

stack. However, there is no corresponding mapping in the ATL context yet. In a let binding, G is

only in scope in the body of the binding. Therefore, it is only in the ATL context after line 3. If ∼∼
were defined bidirectionally, this invariant would be broken by each let binding in between the

allocation and the writing of the bound tensor. Therefore we simply state that if a tensor is bound

in the ATL context, its equivalent flattened counterpart must be present in the low-level state’s

stack and heap.

4.2 Well-Formed Allocation

We also specify the presence and well-formedness of the allocated memory that a computation is

writing into. The lowering algorithm is implemented in a destination-passing style, meaning that

the argument > in L 4 > 0 \ 2 must be a pointer or reference to stack/heap space that has already

been allocated to accommodate the computation of 4 . The stack or heap must contain an existing

mapping to store the values of 4 , even if 0 is an assignment rather than a plus-equals, since even

an assignment to an index without an existing mapping is equivalent to attempting to write to

unallocated memory.

Additionally, not only must > include the mappings to accommodate the size of 4 , it must contain

the mappings for the indices to which \ may send the indices of 4 . In other words, if 4 computes a

scalar and \ is the identity reindexer, then the stack must contain a mapping for > . If 4 computes a

nonscalar, n-dimensional tensor C or \ constructs a nontrivial index space, the heap must contain

a mapping for > to an array with a mapping for any index reachable by applying \ on any index

within the index space of C . We define this property as follows, using the notation JJBℎC KK to denote

the set of indices in a tensor with some shape BℎC .

well_formed_allocation C \ BC ℎ > := match \ (zip [�0; ...; �=] ∥C ∥) with

| [] ⇒ ∃:. BC [>] = :

| _ ⇒

∃0. ℎ[>] = 0 ∧ ∀8 . 8 ∈ JJ∥C ∥KK → \ (zip 8 ∥C ∥) ∈ dom(0)

end

4.3 Well-Formed Reindexer

We impose a variety of constraints to define the well-formedness of reindexers. The overall well-
formedness of a reindexer \ depends on the iteration-index context E it is being evaluated in, as
well as the tensor C that it is acting on. To begin, we remind ourselves of the type of reindexers.

\ : [/4 ∗ /4] → [/4 ∗ /4]

Reindexers are functions from index to index, where indices are represented as lists of tuples of
syntactic integer expressions, denoted by the type /4 . For the purposes of being able to characterize
some functional properties of the flattening index function the reindexer actually represents, we
will define a way to evaluate a reindexer using ⇓E .

⇓E \ : [Z] → Z

By realizing the reindexer, we change it from a function that maps symbolic indices to symbolic

indices, into a function that takes in an actual integer index and returns the integer representing its

counterpart, physically flattened address. We must require properties including simple structural

ones that only depend on the reindexer and the symbolic index form. However, we must also

include behavioral properties that describe the functional properties of the interpreted reindexer.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

A Verified Compiler for a Functional Tensor Language 160:11

4.3.1 Preservation of Variables. When a reindexer generates an expression for a flat index, intu-

itively that expression may mix variables present in the reindexer with variables present in the

symbolic indexes that were given as input to the reindexer. In fact, the resulting expression should

contain exactly those free variables, not just a strict subset of them, intuitively because a reindexer

should only introduce and shuffle indices–it should not drop any.

∀; . vars_of (\ ;) = (vars_of (\ [])) ∪ (vars_of ;) (Variable Preservation)

4.3.2 Well-Scoped Variables. Another property we will use to characterize a well-formed reindexer

with respect to some valuation E is the proper scoping of its own variables. Each variable present

in the reindexer at a given point has been produced in the lowering process that binds that variable

to an integer value, such as an iteration index from a tensor generation or summation, so it must

be in scope.

vars_of (\ []) ⊆ dom E (Well-Scoped Variables)

4.3.3 Variable Substitution. In addition to preserving the variables of the reindexer’s arguments,

it should be possible for us to reason about the evaluation of those variables under the reindexer

independently of what the reindexer does. In other words, if we are substituting a variable on the

application of some opaque reindexer on an index, we should be able to distribute the variable

substitution onto the index itself. In the case where the substituted variable is not present within

the variables of the opaque reindexer itself, the substitution can be fully moved under the reindexer

application.

∀;, 8, G . 8 ∉ dom E → (\ ;) [G/8] = \ (; [G/8]) (Variable Substitution)

4.3.4 Determinism. Another characteristic of a well-formed reindexer is determinism. In other

words, if two indices are equivalent, then the results after applying the reindexer are equivalent.

However, since indices are represented as lists of syntactic integer expressions, we relax our notion

of equivalence. We need not require they be syntactically equivalent. Instead we define a notion of

equivalence of integer expressions that states that, for any valuation, the expressions evaluate to

the same integer.

G ∼/4 ~ := ∀E . ⟦G⟧E = ⟦~⟧E

From here, we can very naturally extend this equivalence from integer expressions to indices

themselves.

∀idx1, idx2. idx1 ∼[/4∗/4] idx2 → \ idx1 ∼[/4∗/4] \ idx2 (Determinism)

4.3.5 Injectivity. Another well-formedness property we define for reindexers is injectivity. Specif-

ically, the reindexer must be injective over the domain of possible indices over the shape of the

tensor C to be computed. In other words, if we evaluate the reindexer and apply it on two literal

integer indices in the index space of C , if the resulting integers are equal then the two integer indices

must be equal.

∀idx1, idx2 . idx1 ∈ JJ∥C ∥EKK → idx2 ∈ JJ∥C ∥EKK → ⇓E \ idx1 = ⇓E \ idx2 → idx1 = idx2
(Injectivity)

4.3.6 Non-destructive Assignment. The final well-formedness property we define for reindexers

is non-destructivity in the case of assignment storage operators. The reindexer must not be able

to produce an index and overwrite a value that was previously written. As a result, all indices to

which the reindexer could send the indices of the tensor C must not have been written previously,

so those indices retain their original value, which was 0 at the time of allocation.

ℎ[>] = arr → 0 = (=) → ∀idx. idx ∈ JJ∥C ∥EKK → arr[⇓E \ idx] = 0 (Non-destructivity)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

160:12 Amanda Liu, Gilbert Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley

Finally we can define the well_formed_reindexer property as the conjunction of the properties

described above.

4.4 Compiler Correctness

To return to our correctness theorem, we include the preconditions defined above. This includes

the well-formedness of the reindexer, the well-formedness of the allocation in the stack or heap,

and the equivalence of execution state between the functional evaluation context and the low-level

stack and heap. We have the following statement.

⟨4, E, Γ⟩ ⇓ C →

Γ ∼∼ (BC, ℎ) →

well_formed_allocation C \ BC ℎ > →

well_formed_reindexer \ E C ℎ > 0 →

⟨ (L 4 > 0 \ 2) , E, BC, ℎ⟩ ⇓� (BC, ℎ) ⊎ tensor_to_array_delta \ C E

5 A MOTIVATING COUNTEREXAMPLE

Let us revisit the example used to demonstrate lowering in Section 2. The optimized program was
tiled under the assumption that the tensor dimensions were evenly divisible by the tiling factor.
However, if we were to produce an optimized program without this assumption, it would look like
the one below.

truncr (:1 − = % :1)
©­­«
fla�en

©­­«
©­«
=//:1

8>=0

truncr (:2 −< % :2)
©­«
fla�en

©­«
<//:2

9>=0

:1

88=0

:2

98=0

[[[...]]] · ...
ª®¬
) ª®¬

ª®¬
) ª®®¬

ª®®¬
This program structure is similar to the optimized program shown before, but the outer loop-nest

bounds are calculated using ceiling division indicated by the // operator rather than floor division.

Thus, the computation accounts for the elements at the end of the tensor that are not evenly

divisible by the tile size. Without further adjustment, the output tensor would be larger than the

original. To produce the expected output, truncation operators are introduced around the flattened

tiled dimensions, to truncate the overcompute caused by the rounding. The body also contains a

guard to limit the actual loop computation to the domain of the original tensor size.

While this program generates the proper tiled imperative code, the usage of truncation operators

in general is unsafe, because the truncation reindexers reduce the dimension size, thereby reducing

the possible index storage space while leaving the iteration space untouched. In fact, the two

truncation reshape operators (truncl and truncr) do not satisfy the well-formedness conditions as

stated and can be used to write programs that produce unsound code.

Consider the following ATL program and its lowered C program. Here, the leftmost : elements

are removed from a tensor generation of length =. The lowering algorithm would produce the

following C code.

truncl :

=

8=0

4 (8)

for (int i = 0; i < n; i++) {

o[i − k] = 4 (8);
}

While the index offset of : in the storage expression shifts the :-th evaluation of 4 into the first

element of the buffer > , this program fails because this access is unguarded. The first : iterations of

the loop make out-of-bounds accesses.

The lowering of the right-truncation operator can also introduce unsoundness. The right-

truncation reindexer subtracts : from only the dimension in the index-dimension tuple, restricting

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

A Verified Compiler for a Functional Tensor Language 160:13

the index space. Consider the following usage of right-truncation and its corresponding lowered C

program.

=

8=0

truncr :

<

9=0

4′ (8, 9)

for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {

o[i ∗ (m − k) + j] = 4′ (8, 9);
}

}

The expected output of this program is a two-dimensional tensor of size = ∗ (<−:) with elements

4′ (8, 9) evaluated for 8 up to = and 9 up to< −: . The lowering algorithm would have only allocated

enough memory in the buffer > to store = ∗ (< − :) elements, so the last few iterations of this loop

nest would also result in out-of-bounds memory accesses.

We can conclude that this lowering algorithm is generally unsound for arbitrary ATL programs.

However, it was never intended for programmers to use reshape operators arbitrarily in their

programs. The conceit of the ATL scheduling framework was to be able to start with a program

written in core ATL constructs and to introduce reshape operators using verified scheduling rewrites

[14]. The tiled program example above was indeed derived in that way. The unsound examples

are unreachable using this derivation approach. Reshape operators should only be introduced in

adjoint pairs. Therefore, truncation should only be in a program if it had been introduced with a

complementary pad inside it, or some unfolded or downstream rewritten/optimized equivalent.

(Pad is truncation’s dual that adds extra zero values to array ends.)

The intuition behind why having a pad immediately inside a truncate would be a safe reindexing

transformation is relatively straightforward: the composition of a truncation reindexer and its

complementary pad reindexer (\truncr :)◦(\padr :) would yield the identity reindexer. The reasoning
for why an unfolded and subsequently rescheduled pad inside a complementary truncation is safe

is less obvious. It is safe because any program derived from the unfolding and rescheduling of a

pad would have some form of a guard that evaluates to false at the indices of the padded cells.

Likewise, pad reshape operators introduce padding since the increased dimension size increases the

amount of memory allocated for this tensor, but they do not expand the computational space. These

guarded and padded values take on the value of zero because our buffers are zeroed upon allocation.

Hence, zero values introduced by a pad or a guard are present exclusively due to the absence of

a storage operation being performed at that index. As a result, they are not to be included in the

index space to be considered when evaluating reindexer properties or when transforming tensors

to flattened heap representations.

6 PADDING

It is not the case that any zero value in a program is safe for truncating. A zero value may still

have been computed explicitly, so that it still results in a storage access. Therefore, we must be able

to make a formal distinction between zero values that were computed and zero values that were

introduced by padding at the time of allocation. By making this distinction, we would be able to

identify the tensor values that are safe to truncate, since a guarded or pad operator-induced zero

value at an index symbolizes that there is no storage being performed at that address. Introducing

explicit padding values allows our formalization to encode the safety property of a program only

ever truncating padding. In doing so, we would be able to represent formally and prove the implicit

safety properties we had in mind originally when designing the lowering algorithm. Therefore we

introduce a new pad type system for statically tracking a conservative estimate of the padding

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

160:14 Amanda Liu, Gilbert Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley

pattern within a tensor computation. Finally, we are able to prove correctness of the lowering

algorithm on properly pad-typed programs.

6.1 Pad Values and Semantics

In order to represent padded zero values, we modify the tensor type so the scalar value can either
be a real number or a pad value represented here as unit, ().

) := ;8BC) | R | ()

A pad value should have the same algebraic behavior as a computed zero value. However,

we do not need to concern ourselves with tracking pad values produced at the level of scalar

expression computations—scalar ATL expressions cannot produce pad values. We focus on the

padding produced by language constructs such as the pad operator and the guard. We modify ATL

semantics so that pad operators and the false guard generate tensors of padding values rather than

simply zeros.

6.2 Pad Type

We introduce pad type terms, notated as c , to track the padding of a tensor. Our pad type system can

afford to be incomplete and not perfectly precise in tracking the presence of pad values throughout

a tensor, since we are only ever truncating from the tensor ends. We only need a conservative

estimation of padding in a tensor to ensure these operations are safe.
To capture this pad pattern information, we define a new inductive structure for pad types

defined as Π shown below.
Π := (:, ;, c1, A , c2, 2) | (1)

In the recursive constructor, the arguments : and 2 are natural numbers denoting the numbers of

pad elements on the left and righthand sides of the tensor respectively. The argument ; represents

the number of elements following the padding on the left-hand side of the tensor that have the pad

type c1. Similarly, A represents the number of elements of the right side of the tensor that have the

pad type c2. This pad type does not constrain the inner tensor elements to the same pad type and

allows for reasoning about elements on the left and right sides independently with different pad

types. Additionally, we need not reason about the pad structure of all elements in this tensor since

; and A need not add to the remaining length of the tensor. The terminal pad type constructor is

meant to type a scalar value. It contains only one argument 1 that is a Boolean indicating whether

or not the scalar is a pad value.

We define the following function to relate a pad type to the padding pattern within a tensor.

Fixpoint has_pad pi t := match pi with

| (k, l, pi1,r, pi2,c) ⇒
match (∥C ∥) with
| _::s ⇒ Forall (fun x ⇒ x = genpad s) (firstn k t) ∧

Forall (fun x ⇒ x = genpad s) (firstn c (rev t)) ∧
Forall (has_pad pi1) (firstn l (skipn k t)) ∧
Forall (has_pad pi2) (firstn r (skipn c (rev t)))

| _ ⇒ False end

| (true) ⇒ t = () | (false) ⇒ True end

6.3 Pad Type Inference

We construct the following set of typing-judgment rules to infer the pad type of an ATL program

in a largely syntax-directed manner. The inference rules are presented in Figure 4 and Figure 5.

We formally enforce the colloquial constraint of only truncating padding in rules TruncrPad and

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

A Verified Compiler for a Functional Tensor Language 160:15

: + 2 + ; + A ≤ ⟦ℎ8 − ;>⟧E

∀G . ⟦;>⟧E + : ≤ G →

G < ⟦;>⟧E + : + ; →

Γc , E [8 ↦→ G] ⊢ 4 : c1

∀G . ⟦ℎ8⟧E − 2 − A ≤ G →

G < ⟦ℎ8⟧E − 2 →

Γc , E [8 ↦→ G] ⊢ 4 : c2

∀G . ⟦;>⟧E ≤ G →

G < ⟦ℎ8⟧E →

G − ⟦;>⟧E < : ∨ ⟦ℎ8⟧E − 2 ≤ G →

Γc , E [8 ↦→ G] ⊢ 4 : c ∥4 ∥
GenPad

Γc , E ⊢
ℎ8

8=;>

4 : (:, ;, c1, A , c2, 2)

∀G . ⟦;>⟧E ≤ G < ⟦ℎ8⟧E →

Γc , E [8 ↦→ G] ⊢ 4 : c ⟦;>⟧E < ⟦ℎ8⟧E
SumPad

Γc , E ⊢
ℎ8∑
8=;>

4 : c

⟦ℎ8⟧E ≤ ⟦;>⟧E
EmptySumPad

Γc , E ⊢
ℎ8∑
8=;>

4 : c∥4 ∥

∥4 ∥ = Bℎ ⟦?⟧E = false
FalseGuardPad

Γc , E ⊢ [[[?]]] · 4 : cBℎ

Γc , E ⊢ 4 : c
GuardPad

Γc , E ⊢ [[[?]]] · 4 : c

Γc , E ⊢ 41 : c1 Γc [G ↦→ c1], E ⊢ 42 : c2
LetPad

Γc , E ⊢ let G := 41 in 42 : c2

ScalarNotPad
Γc , E ⊢ B : (false)

Fig. 4. Core ATL Pad Type Inference

TrunclPad. The truncation operator only type-checks if the number of elements to be truncated 0

is less than or equal to the amount of padding that exists on the end of the tensor to be truncated.

The pad type used to describe a multidimensional tensor of entirely padding is not unique.

Any pad type with the same depth as dimensionality of an entirely padded tensor is semantically

sound. However, this pad type will underspecify the amount of padding unless the numbers at

each pad-type level sum to at least the size of that dimension. Although there are still numerous

representations of an appropriate pad type, we will use the notation cBℎ to represent a tensor

pad type for a tensor of shape Bℎ that is entirely padding, where each pad-type level includes left

padding that is equivalent to that dimension size.

6.4 Pad Type Soundness

We prove the following soundness theorem of the pad type system using the Coq proof assistant.

The theorem states that if a program types to a pad type c , then the tensor computed from that

same program has the pad pattern indicated by c , defined by the relation has_pad.

Theorem 6.1 (Pad Type Soundness).

∀4, C, E, Γ, c . ⟨4, E, Γ⟩ ⇓ C → Γ, E ⊢ 4 : c → has_pad c C

6.5 Strengthening Semantics and Main Compiler Theorem

By distinguishing pad values from standard computed tensor values, we strengthen various defini-

tions of conditions and semantics given previously for the overall compiler-correctness theorem.

6.5.1 Tensor to Array Delta. We first revisit the function tensor_to_array_delta. The function of

an array delta is to represent a map of tensor values to the flattened integer indices where the

computation is meant to be stored. However, a pad value is meant to represent a zero value that

was allocated but not actually computed and written. Therefore, we modify our original definition

of tensor_to_array_delta to account for the distinction between scalar values and pad values by

only mapping scalar values.

6.5.2 Injectivity. We similarly redefine our domain required for injectivity of well-formed reindex-
ers. Previously, a well-formed reindexer over a tensor C had to be injective over the entire index

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

160:16 Amanda Liu, Gilbert Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley

Γc , E ⊢ 41 : (:1, ;1, c1, A1, c3, 21) Γc , E ⊢ 42 : (:2, ;2, c4, A2, c2, 22) :1 + ;1 + A1 + 21 ≤ |41 |E :2 + ;2 + A2 + 22 ≤ |42 |E
ConcatPad

Γc , E ⊢ 41 ◦ 42 : (:1, ;1, c1, A2, c2, 22)

Γc , E ⊢ 4 : (:, ;, c1, A , c2, 2) 0 ≤ ⟦0⟧E ≤ 2
TruncrPad

Γc , E ⊢ truncr 0 4 : (:, ;, c1, A , c2, 2 − 0)

Γc , E ⊢ 4 : (:, ;, c1, A , c2, 2) 0 ≤ ⟦0⟧E ≤ :
TrunclPad

Γc , E ⊢ truncr 0 4 : (: − 0, ;, c1, A , c2, 2)

let G ′ := G ∗ ⟦<⟧E+ (min 1 ;) ∗ 0 in
let ~′ := ~ ∗ ⟦<⟧E+ (min 1 A) ∗ 1 in

let ; ′ := (min 1 ;) ∗ match 0, 2, (;1 =?⟦<⟧E) with
|0, 0, true => ; ∗ ⟦<⟧E
|_,_,_ => ;1
end in

let A ′ := (min 1 A) ∗ match 3,1, (A2 =?⟦<⟧E) with
|0, 0, true => A ∗ ⟦<⟧E
|_,_,_ => A2
end in

let c := (G, ;, (0, ;1,
′ c1, A

′
1
, c2, 2), A , (3, ; ′

2
, c3, A

′
2
, c4, 1), ~) in

Γc , E ⊢ 4 : c ∥4 ∥E = = ::< :: Bℎ 0 + 2 + ;1 + A1 ≤ < 3 + 1 + ;2 + A2 ≤ < G + ~ + ; + A ≤ =
FlattenPad

Γc , E ⊢ fla�en 4 : (G
′, ; ′, c1, A

′, c4, ~
′)

let ;2 := min 0 3 in

let A2 := min 1 2 in

let c := (G, ;, (0, ;1,
′ c1, A

′
1
, c2, 2), A , (3, ; ′

2
, c3, A

′
2
, c4, 1), ~) in

Γc , E ⊢ 4 : c ∥4 ∥E = = ::< :: Bℎ = − G − ~ ≤ ; + A < − ;2 − A2 ≤ ;3 + A3
TransposePadStrong

Γc , E ⊢ 4
) : (;2, ;3, (G, 0, c1, 0, c2, ~), A3, (G, 0, c3, 0, c4, ~), A2)

let ;3 := min 0 3 in

let A3 := min 1 2 in

let c := (G, ;, (0, ;1, c1, A1, c2, 2), A , (3, ;2, c3, A2, ?84, 1), ~) in

Γc , E ⊢ 4 : c ∥4 ∥E = = ::< :: Bℎ
TransposePadWeak

Γc , E ⊢ 4
) : (0, ;3, (G + ;, 0, c1, 0, c2, ~ + A), A3, (G + ;, 0, c3, 0, c4, ~ + A), 0)

let 0 := ⟦a⟧E in

let 2′ := 2 + ((0 − = % 0) % 0) in

let c ′
1

:= (: % 0,min ; (0 − : % 0), c1, 0, c1, 0) in

let c ′
2

:= (0, 0, c2,min A (0 − 2 % 0), c2, 2
′%0) in

Γc , E ⊢ 4 : (:, ;, c1, A , c2, 2) : + 2 + ; + A ≤ |4 |E 0 < 0
SplitPad

Γc , E ⊢ split a 4 : (:/0, ://0 − :/0, c
′
1
, 2′//0 − 2′/0, c ′

2
, 2′/0)

Γc , E ⊢ 4 : (:, ;, c1, A , c2, 2) 0 < |4 |E 0 < ⟦0⟧E : + ; + A + 2 ≤ |4 |E
PadrPad

Γc , E ⊢ padr 0 4 : (:, ;, c1, A , c2, 2 + 0)

Γc , E ⊢ 4 : (:, ;, c1, A , c2, 2) 0 < |4 |E 0 < ⟦0⟧E : + ; + A + 2 ≤ |4 |E
PadlPad

Γc , E ⊢ padl 0 4 : (: + 0, ;, c1, A , c2, 2)

Fig. 5. Reshape Operator Pad Type Inference

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

A Verified Compiler for a Functional Tensor Language 160:17

space of C . With the static knowledge of some distribution of padding values, we can constrain the
domain of indices we consider reindexers to be transforming. We redefine the domain for injectivity
to be the indices of a tensor C that contain non-padding values.

∀idx1, idx2 . idx1 ∈ JJ∥C ∥EKK → idx2 ∈ JJ∥C ∥EKK → C [idx1] ≠ () → C [idx2] ≠ () → ⇓E \ idx1 = ⇓E \ idx2 →

idx1 = idx2 (Injectivity)

6.5.3 Non-destructive Assignment. We similarly constrain the domain required for non-destructive

assignments produced by the reindexer, since we reduced the domain of injectivity.

ℎ[>] = arr → 0 = (=) → ∀idx. idx ∈ JJ∥C ∥EKK → C [idx] ≠ () → arr[⇓E \ idx] = 0

(Non-destructivity)

6.5.4 Context and State Equivalence. We also modify the equivalence property between the func-
tional evaluation context and the stack and heap. The previous definition of equivalence equated
any tensor mapped in the functional context to the array delta produced by the application of
tensor_to_array_delta. However, this condition no longer applies for our new definition of ten-
sor_to_array_delta since it omits pad values. Although pad values are not present in the array
delta, they should have still been present in the heap upon its original allocation. Therefore, the
restatement of equivalence shown below adds the array delta produced from C and its original
allocation.

Γ ∼∼ (BC, ℎ) := ∀G . Γ [G] = C →

(BC, ℎ) [G] = tensor_to_array_delta (_8.8) C ∅ ⊎ tensor_to_array_delta (_8.8) (genpad ∥C ∥) ∅
(Environment Eqivalence)

6.5.5 Correctness Theorem. In addition to the redefinitions stated above, we must also restate our

overall correctness theorem to include the precondition that an ATL program must be well-typed

within the pad type system.

Theorem 6.2 (Strengthened Compiler Correctness).

⟨4, E, Γ⟩ ⇓ C →

Γ ∼∼ (BC, ℎ) →

well_formed_allocation C \ BC ℎ > →

well_formed_reindexer \ E C ℎ > 0 →

Γc ⊢ 4 : c →

⟨ (L 4 > 0 \ 2) , E, BC, ℎ⟩ ⇓� (BC, ℎ) ⊎ tensor_to_array_delta \ C E

From here we use this strengthened correctness theorem equipped with all the proper invariants
to prove the following top-level correctness theorem, which corresponds to the top-level call to
lowering in an empty environment except for the initial allocation in which the tensor computation
is to be stored.

Theorem 6.3 (Compiler Correctness).

⟨4, ∅, ∅⟩ ⇓ C →

⊢ 4 : c →

⟨ (L 4 > (=) \ ∅) , E, (∅, ∅)[> ↦→ alloc ∥4 ∥∅]⟩ ⇓� (∅, ∅)[> ↦→ alloc ∥4 ∥∅] ⊎ tensor_to_array_delta (_8.8) C ∅

Note that most of the intricate invariants we defined earlier do not appear in this final theorem

statement, so bugs in their statements cannot lead us to accept unsound compilers. For a given

program, its concrete typing derivation can be constructed easily enough, and the specific action

of tensor_to_array_delta can be computed, so that we derive correct execution of the compiled

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

160:18 Amanda Liu, Gilbert Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley

Program # of Gen () # of Concat # of Truncate # of Transpose # of Flatten # of Split

Gather 3 - - - - -

Scatter 3 - - - - -

Im2col Conv 3 - - - - -

Im2col Mat 7 - - - - -

Matmul 2 - - - - -

Tiled Matmul 4 - 2 1 2 -

Tiled+Tails Matmul 10 2 2 1 2 -

Two-Stage Blur 4 - - - - -

Fused Blur 2 - - - - -

Fused+Tails Blur 8 4 - - - -

Tiled+Tails+Staged Blur 21 6 3 7 3 -

Tensor Add 4 - - - - -

Split Tensor Add 1 - - - - 3

Fig. 6. Reshape Complexity of Evaluation Programs

program without needing to trust either the type system or the auxiliary functions used to describe

action on the heap.

7 EVALUATION

We evaluate our implementation of the lowering algorithm and tactic machinery for type-checking

on various programs. We include the programs that were used in our previous work to evaluate the

scheduling expressivity of the ATL optimization framework, with scheduled programs for a number

of algorithms including the two-dimensional box blur and various convolutional programs that

demonstrate gather-to-scatter and im2col transformations [14]. We previously used these programs

to evaluate the performance and scheduling expressivity of the rewrite optimization framework

and lowering as a whole. In contrast, we use these programs to evaluate the implementation of the

lowering algorithm and the effectiveness of our pad-type system and associated tactic machinery

on various programs. We focus on optimizations that emphasize the use of reshape operators in

nontrivial ways. We also introduce a new collection of additional programs that represent other

common program structures and optimizations. Note that we do not report new performance results

here, because we implement the lowering algorithm that was already evaluated for its optimization

effectiveness [14].

In Figure 6 we list each program we used to evaluate our pad type system and compiler imple-

mentation along with occurrence counts for different language operators. We do so to try and

capture the diverse reshape complexity as well as the pad-pattern complexity that our type system

is able to account for to make a case for its applicability on desirable real-world optimizations.

To explore the extent to which certain reshape-operator patterns and idiomatic optimizations

affect padding, compute order, and storage order, we will discuss in-depth the two new evaluation

programs for computing matrix multiplication and tensor addition, as well as the most sophisticated

prior example, the tiled box-blur program.

7.1 Matrix Multiplication

Matrix multiplication is a fundamental operation in linear algebra. It involves multiplying corre-

sponding elements of each row of one matrix with the elements of the corresponding column from

the second matrix and summing up these products.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

A Verified Compiler for a Functional Tensor Language 160:19

7.1.1 Standard Matrix Multiplication. The following program is a standard matrix multiplication
written in ATL.

"

8=0

#

9=0

 ∑
:=0

<1 [8;:] ∗<2 [: ; 9]

Provided that the tensor-generation bounds match input matrices’ dimensions, this program

trivially typechecks and passes our safety preconditions for compilation as it introduces no padding

and performs no truncation operations.

7.1.2 Tiled Matrix Multiplication. For our optimized evaluation program, we focus on the technique

of tiling, a common optimization that increases data locality within a program. It also involves a

sophisticated usage of reshape operators. As we have discussed, it introduces padding when the

tiling factor does not evenly divide the tiled dimension. The optimized program below is the tiled

equivalent of the matrix-multiplication program from above that we achieved through applying

rewrites from ATL’s verified scheduling framework.

truncr (� −"%�)

(
fla�en(
"//�

8>=0

(
truncr (� − #%�)

(
fla�en(
//�

9>=0

�

88=0

�

98=0

[[[9> ∗� + 88 < # ∧ 8> ∗� + 88 < "]]]·
 ∑
:=0

<1 [8> ∗� + 88 ;:] ∗<2 [: ; 9> ∗� + 98]

))))))

The program structure includes two right-truncations–one per tiled dimension to accommodate

the case where the dimensions" and # are not divisible by the tiling factor � . There is a flatten

operator for each tiled dimension that collapses the storage of the new outer and inner loop

dimensions. The transpose operator moves the outer loops next to each other and the inner loops

next to each other.

This program properly type-checks in our pad type system. This result is notable since it is not

obvious upon inspection that the truncations are safe, as they do not have matching explicit padr
operators. It would not even suffice to limit the value of one explicit loop index. Instead, the safety

of the truncation is determined by the guard conditions in the loop body that involve reasoning

about the two inner and outer loop-index pairs.

7.1.3 Tiled Matrix Multiplication with Loop Separation. We can take our optimization a step further

to extend the evaluation of our type-checking and safety mechanisms. One might notice that the

innermost guard can only be false in one iteration of the index 8> and one iteration of the index

9> . Another common optimization technique in this case is to split these loops into two segments

where the guard is always true in one of the segments and can be removed. When the segment

in which the guard is always true dominates the latter in size, as in this case, the optimization

is very useful: it reduces the number of times the guard has to be executed and produces a main

loop structure more amenable to vectorization. We can schedule this optimization to produce the

program below.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

160:20 Amanda Liu, Gilbert Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley

truncr (� −"%)

(
fla�en(
"/�

8>=0

(
truncr (� − #%�)(
fla�en

(
/�

9>=0

�

88=0

�

98=0

[[[9> ∗� + 88 < # ∧ 8> ∗� + 88 < "]]] ·

 ∑
:=0

<1 [8> ∗� + 88 ;:] ∗<2 [: ; 9> ∗� + 98]

)
◦
//�

9>=# /�
...

))) ª®
¬
◦
"//�

8>="/�
...

ª®
¬

In addition to the reshape-operator complexity involved in the previous tiled matrix-multiplication

example, this program uses the concatenation reshape operator to join the main loop with its tail

regions. Being able to use concatenation in a nontrivially reshaped program like this one with

padding is one of the primary cases that motivated us to adopt a tree-like pad type, decoupling

the inner pad term on the left from the right. Our system is indeed able to type and compile this

program.

7.2 Tensor Addition

In another example, we compute the sum of two tensors. We use an elementwise sum between two

tensors with a different loop iterating for each tensor dimension. This kind of loop with a pointwise

inner computation is a common target for optimization through parallelization.

"

8=0

#

9=0

:=0

�

;=0

C1 [8; 9 ;: ; ;] ∗ C2 [8; 9 ;: ; ;]

The depth of this loop nest will increase linearly with the dimensionality of the input tensors.
The control-flow complexity is excessive since physically we will be iterating straight through the
flattened tensors in the heap. As a result, there will be unnecessary overhead introduced by each
loop—especially high if we want to parallelize them all. Instead, we can use scheduling rewrites to
produce the following program.

split

(
split #

(
split �

(
"# �

8=0

C1 [8/(# �); 8/(#�)% ; 8/�%# ; 8%�] ∗ C2 [8/(# �); 8/(#�)% ; 8/�%# ; 8%�]

)))

The loop nest has been flattened into one loop. The split reshape operator allows us to tile the

storage, thereby producing the desired higher-dimensional tensor sum. Although we demonstrate

this optimization on four-dimensional tensors, it can be applied to tensors of any dimension. Both

the initial and optimized program here are properly safety- and type-checked by our system and

are properly compiled.

7.3 Blur

A stencil is a common programming pattern that applies a fixed-sized, predefined computation

pattern to a tensor. The two-dimensional box-blur is one such algorithm. An image is blurred

by computing for each pixel the average of a rectangular region of surrounding pixels. Typical

scheduled forms of this algorithm are exhibited in previous work [14]. All these programs were

derived and proven to be equivalent within the ATL scheduling framework, including a fully fused

schedule where the average of the surrounding window is computed at once for each output pixel.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

A Verified Compiler for a Functional Tensor Language 160:21

Another version is a two-stage computation, where one direction of the blur is computed for the

full image before being used to compute the other direction. There is also the tiled, staged program

with loop separation to maximally eliminate guarded expressions. This optimized program was

derived to incorporate the same set of optimizations that Halide performs on the blur algorithm.

Like the tiled matrix-multiplication example, tiling introduces guards. However, the tiling in

this program occurs across computational stages, which yields additional guards since a stencil

involves a neighborhood of computation. These guards are individually split into separate loop

segments to produce one main, steady-state loop without any guards. Not only does this example

cover a common programming pattern and optimization, it uses reshape operators extensively to

achieve this structure. This reordering interacts nontrivially with the loop-splitting optimizations

that separate out loop tails, thereby sharding padding within the tensor. We found that our pad type

system is able to accept each of these scheduled forms of the blur algorithm and that compilation

succeeds.

8 RELATED WORK

Compiler verification has become an extremely broad area, but the best-known example is Comp-

Cert [11], which compiles C to assembly. Tensor kernels could be written directly in C, but at

dramatically increased cost in developer effort and risk of certain kinds of bugs. ATL [14] instead

allows these kernels to be written in Coq’s native functional language and thus amenable to

comfortable equational reasoning to prove correctness of programs and program transformations.

Verified compilation for functional programs has also received attention, perhaps most thoroughly

in the CakeML [8] project, which compiles an ML language to use a verified garbage collector,

imposing a performance cost. However, compute and storage order are conflated, as they are with

most functional-language compilers, so that purely functional programs cannot be compiled to

achieve competitive performance, even if we imagine that garbage-collection overhead dropped

to zero. Fiat Cryptography [6] compiles a functional language to more idiomatic C code after

extensive partial evaluation, but that partial evaluation must eliminate lists at compile time, making

it unsuitable for tensor kernels.

There is other recent work that applies to programs with loop nests and mutable arrays. Courant

and Leroy [4] produced a verified compiler for the polyhedral model with a common loop-nest

IR. Clément and Cohen [3] verify the lowering of a subset of Halide programs using translation

validation, meaning that there may be compiler soundness bugs that go uncaught until a novel test

case (source program) triggers a failure of translation validation, in contrast to a classic compiler

proof’s coverage of all valid input programs. Kovach et al. [7] introduced indexed streams as an

intermediate representation for tensor contractions (generalizations of matrix multiplication). They

handle sparse tensors, whereas ATL and thus our work focus on dense tensors. However, their

compiler is also unverified as in the past ATL work, and contractions, while an important and

common operator family, are insufficient to express most of our case-study programs.

Another line of work within proof assistants uses tactics to drive generation of imperative pro-

grams from functional ones. Myreen and Owens [16] pioneered generation of functional-language

ASTs from native functional programs of proof assistants, paving the way for integration with veri-

fied compilers, for instance more recently with CakeML [1]. CertiCoq [17] realizes a similar recipe

in Coq. Lammich [10] showed how to refine functional programs into imperative programs with tac-

tics in Isabelle/HOL, connecting to work on automatic refinement with efficient data structures [9].

The Fiat framework [5] used Coq to translate specifications into efficient functional programs via

stepwise refinement, followed by more tactic-driven generation of imperative code [19]. The project

Rupicola [18] improved some of these ergonomics. As far as we know, those frameworks have not

been applied to tensor kernels. Some of the techniques we have introduced may be applicable to

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

160:22 Amanda Liu, Gilbert Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley

them, though we have phrased our compiler as a standalone functional program with a traditional

correctness theorem. As a result, we always have a formal guarantee of compiler correctness, which

is hard to be sure of in frameworks like the ones we just summarized, which do compilation with

tactic scripts.

Lowering algorithms for functional languages generally must tie the storage order with the

compute order to generate code, because traditional high-level, functional languages only describe

compute order in a program. Thus functional-language implementations are limited in their ability

to produce high-performance array code that needs to make very specific decisions regarding

compute and storage order in order to produce the performance gains required in these domains.

As a result, there have been efforts to introduce low-level detail such as storage into functional

array languages. Examples include allowing explicit memory allocation in the functional source

language [15] as well as the introduction of views in lowering to control storage expressions [12].

However, all of these approaches are unverified.

9 CONCLUSION

We provide the first rigorous proof (mechanized or otherwise) of correctness for a lowering

algorithm of a functional language that is able to generate high-performance array code through

the use of combinators that decouple compute and storage order. To do so, we formulated a

behavioral invariant on reindexer functions in compilation to ensure that the generated imperative

storage-index remappings induced by any reshape operator are well-formed. We also implement a

type system to capture formally the desired safety properties of the functional tensor language

ATL.

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation under grants CCF-1846502,

CCF-2217064, and CCF-2313022 / CCF-2313023 and the National Science Foundation Graduate

Research Fellowship Program under Grant No. 1745302. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

REFERENCES

[1] Oskar Abrahamsson, Son Ho, Hrutvik Kanabar, Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Yong Kiam

Tan. 2020. Proof-Producing Synthesis of CakeML from Monadic HOL Functions. J. Autom. Reason. 64, 7 (oct 2020),

1287–1306. https://doi.org/10.1007/s10817-020-09559-8

[2] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen Shen, Leyuan

Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-

end Optimizing Compiler for Deep Learning. In Proceedings of the 12th USENIX Conference on Operating Systems

Design and Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX Association, Berkeley, CA, USA, 579–594. http:

//dl.acm.org/citation.cfm?id=3291168.3291211

[3] Basile Clément and Albert Cohen. 2022. End-to-End Translation Validation for the Halide Language. Proc. ACM

Program. Lang. 6, OOPSLA1, Article 84 (apr 2022), 30 pages. https://doi.org/10.1145/3527328

[4] Nathanaël Courant and Xavier Leroy. 2021. Verified Code Generation for the Polyhedral Model. Proc. ACM Program.

Lang. 5, POPL, Article 40 (jan 2021), 24 pages. https://doi.org/10.1145/3434321

[5] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. 2015. Fiat: Deductive Synthesis of Abstract

Data Types in a Proof Assistant. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (Mumbai, India) (POPL ’15). Association for Computing Machinery, New York, NY, USA,

689–700. https://doi.org/10.1145/2676726.2677006

[6] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. 2019. Simple High-Level Code for

Cryptographic Arithmetic - With Proofs, Without Compromises. 2019 IEEE Symposium on Security and Privacy (SP) 54,

1 (May 2019), 1202–1219. https://doi.org/10.1109/sp.2019.00005

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

https://doi.org/10.1007/s10817-020-09559-8
http://dl.acm.org/citation.cfm?id=3291168.3291211
http://dl.acm.org/citation.cfm?id=3291168.3291211
https://doi.org/10.1145/3527328
https://doi.org/10.1145/3434321
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1109/sp.2019.00005

A Verified Compiler for a Functional Tensor Language 160:23

[7] Scott Kovach, Praneeth Kolichala, Tiancheng Gu, and Fredrik Kjolstad. 2023. Indexed Streams: A Formal Intermediate

Representation for Fused Contraction Programs. Proc. ACM Program. Lang. 7, PLDI, Article 154 (jun 2023), 25 pages.

https://doi.org/10.1145/3591268

[8] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: A Verified Implementation

of ML. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San

Diego, California, USA) (POPL ’14). Association for Computing Machinery, New York, NY, USA, 179–191. https:

//ts.data61.csiro.au/publications/nicta_full_text/7494.pdf 10.1145/2535838.2535841.

[9] Peter Lammich. 2013. Automatic Data Refinement. In Interactive Theorem Proving - 4th International Conference,

ITP 2013, Rennes, France, July 22-26, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7998), Sandrine Blazy,

Christine Paulin-Mohring, and David Pichardie (Eds.). Springer, Berlin, Heidelberg, 84–99. https://doi.org/10.1007/978-

3-642-39634-2_9

[10] Peter Lammich. 2019. Refinement to Imperative HOL. J. Autom. Reason. 62, 4 (apr 2019), 481–503. https://doi.org/10.

1007/s10817-017-9437-1

[11] Xavier Leroy. 2009. A Formally Verified Compiler Back-End. Journal of Automated Reasoning 43, 4 (Dec. 2009), 363–446.

https://doi.org/10.1007/s10817-009-9155-4

[12] Zhitao Lin and Christophe Dubach. 2022. From Functional to Imperative: Combining Destination-Passing Style and

Views. In Proceedings of the 8th ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for Array

Programming (San Diego, CA, USA) (ARRAY 2022). Association for Computing Machinery, New York, NY, USA, 25–36.

https://doi.org/10.1145/3520306.3534502

[13] Amanda Liu. 2024. Verified Lowering Artifact. https://doi.org/10.5281/zenodo.10932109

[14] Amanda Liu, Gilbert Louis Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley. 2022. Verified Tensor-Program

Optimization via High-Level Scheduling Rewrites. Proc. ACM Program. Lang. 6, POPL, Article 55 (jan 2022), 28 pages.

https://doi.org/10.1145/3498717

[15] Philip Munksgaard, Cosmin Oancea, and Troels Henriksen. 2023. Compiling a Functional Array Language with

Non-Semantic Memory Information. In Proceedings of the 34th Symposium on Implementation and Application of

Functional Languages (Copenhagen, Denmark) (IFL ’22). Association for Computing Machinery, New York, NY, USA,

Article 2, 13 pages. https://doi.org/10.1145/3587216.3587218

[16] Magnus O. Myreen and Scott Owens. 2012. Proof-producing synthesis of ML from higher-order logic. In International

Conference on Functional Programming (ICFP), Peter Thiemann and Robby Bruce Findler (Eds.). ACM, New York, NY,

USA, 115–126.

[17] Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel. 2021. Compositional Optimizations for CertiCoq. Proc. ACM

Program. Lang. 5, ICFP, Article 86 (aug 2021), 30 pages. https://doi.org/10.1145/3473591

[18] Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen, and Adam Chlipala. 2022. Relational Compilation

for Performance-Critical Applications: Extensible Proof-Producing Translation of Functional Models into Low-Level

Code. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and

Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 918–933.

https://doi.org/10.1145/3519939.3523706

[19] Clément Pit-Claudel, Peng Wang, Benjamin Delaware, Jason Gross, and Adam Chlipala. 2020. Extensible Extraction

of Efficient Imperative Programs with Foreign Functions, Manually Managed Memory, and Proofs. In IJCAR’20:

Proceedings of the 9th International Joint Conference on Automated Reasoning. Springer, Paris, France, 119–137. https:

//doi.org/10.1007/978-3-030-51054-1_7

[20] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.

2013. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing

Pipelines. SIGPLAN Not. 48, 6 (jun 2013), 519–530. https://doi.org/10.1145/2499370.2462176

[21] Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones, and Dimitrios Vytiniotis. 2017. Destination-Passing Style

for Efficient Memory Management. In Proceedings of the 6th ACM SIGPLAN International Workshop on Functional

High-Performance Computing (Oxford, UK) (FHPC 2017). Association for Computing Machinery, New York, NY, USA,

12–23. https://doi.org/10.1145/3122948.3122949

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 160. Publication date: June 2024.

https://doi.org/10.1145/3591268
https://ts.data61.csiro.au/publications/nicta_full_text/7494.pdf
https://ts.data61.csiro.au/publications/nicta_full_text/7494.pdf
https://doi.org/10.1007/978-3-642-39634-2_9
https://doi.org/10.1007/978-3-642-39634-2_9
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/3520306.3534502
https://doi.org/10.5281/zenodo.10932109
https://doi.org/10.1145/3498717
https://doi.org/10.1145/3587216.3587218
https://doi.org/10.1145/3473591
https://doi.org/10.1145/3519939.3523706
https://doi.org/10.1007/978-3-030-51054-1_7
https://doi.org/10.1007/978-3-030-51054-1_7
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/3122948.3122949

	Abstract
	1 Introduction
	2 A Motivating Example
	2.1 Reshape Operators
	2.2 Introducing Reindexers

	3 The Compiler We Verified
	3.1 Source Language: ATL
	3.2 Target Language: A Subset of C
	3.3 Lowering (Compilation)

	4 Compiler Correctness
	4.1 Context and State
	4.2 Well-Formed Allocation
	4.3 Well-Formed Reindexer
	4.4 Compiler Correctness

	5 A Motivating Counterexample
	6 Padding
	6.1 Pad Values and Semantics
	6.2 Pad Type
	6.3 Pad Type Inference
	6.4 Pad Type Soundness
	6.5 Strengthening Semantics and Main Compiler Theorem

	7 Evaluation
	7.1 Matrix Multiplication
	7.2 Tensor Addition
	7.3 Blur

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

