Generic Programming and Proving for Programming Language Metatheory

Adam Chlipala WMM 2007

POPLmark 1A Solutions Using Coq

Representation	Lemmas Proof	Steps
de Bruijn	30	402
locally nameless	49	495
levels/names	56	938
de Bruijn (nested)	49	1574
locally nameless	23	75
locally nameless	22	101
on paper	2 2	pages

(from Aydemir/Chargueraud/Pierce/Pollack/Weirich 2007)

What's Wrong?

The Realm of the Obvious

(basic facts about variables, typing judgments, etc.)

Your Proof

Everyone at POPL believes these lemmas without even needing to see them stated formally....

The Interesting Part

What We Really Want

But Isn't That Twelf?

Write It in OCaml?

Generic Programming with Universes in Type Theory

- Altenkirch and McBride with Oleg
- Pfeifer and Rueß with Lego
- Benke et al. with Agda

Universes for ASTs

```
(* De Bruijn indices *)
type dbvar = int
```

```
(* Untyped lambda calculus terms *)
type term = — [const; var; app; lam]
    Const of int \longrightarrow const = {vars = 0; terms = []; data = int }
    Var of dbvar — var = {vars = 1; terms = []; data = unit}
    App of term * term \rightarrow app = {vars = 0; terms = [0; 0]; data = unit}
    Lam of term \longrightarrow lam = {vars = 0; terms = [1]; data = unit}
(* Universe for AST constructors *)
type constructor = {
   vars : int; (* How many variables? *)
   terms : int list; (* How many new binders around each subterm? *)
   data : Type; (* What other arguments? *)
}
```

```
(* Universe for AST languages *)

type language = constructor list
```


Reflecting Recursion

type term =
 | Const of int
 | Var of dbvar
 | App of term * term
 | Lam of term

term_rep : language_evidence lang term =
 (const_in, (var_in, (app_in, (lam_in, ())))),
 term_rec

(* What do we need to know about an AST language? *)
let language_evidence (lang : language) (term : Type) : Type =
 type_map (fun con -> constructor_evidence con term) lang
 * recursor_of_language lang term

Generic Proofs

We have generic *lift*. *lift* e = e with every free variable's De Bruijn index incremented Assume we also have generic *subst*:

subst x $e_1 e_2 = e_2$ with e_1 substituted for free variable x

Theorem subst_lift_commute :

```
\forall e_1 e_2. lift (subst 0 e_1 e_2) = subst 1 (lift e_1) (lift e_2)
```

Proof shouldn't depend in any deep way on specific language!

We can **prove this generically** if we force language evidence to include proofs of a theorem like this:

recursor branches (c vars terms data)

```
= branches.c
```

vars (map (fun term -> (term, recursor branches term)) terms) data

Dependently-Typed ASTs

```
type ty =

| Int

| Arrow of ty * ty

type (\Gamma, \tau) var = ...

(* Type of a variable of type \tau found within T,

(* Type of a variable of type \tau found within T,

type (\Gamma, \tau) term =

| Const : forall \Gamma. (\Gamma, Int) term

| Var : forall \Gamma \tau. (\Gamma, \tau) var -> (\Gamma, \tau) term

| App : forall \Gamma \tau_1 \tau_2. (\Gamma, Arrow (\tau_1, \tau_2)) term -> (\Gamma, \tau_1) term -> (\Gamma, \tau_2) term

| Lam : forall \Gamma \tau_1 \tau_2. (\tau_1 :: \Gamma, \tau_2) term -> (\Gamma, Arrow (\tau_1, \tau_2)) term
```

let ty_denote : ty -> Type = ...
(* Denotational semantics of types *)

```
let subst_denote : ty list -> Type = type_map ty_denote
(* Denotational semantics of contexts *)
```

let term_denote : **forall** $\Gamma \tau$. term $\Gamma \tau \rightarrow$ subst_denote $\Gamma \rightarrow$ ty_denote $\tau = ...$ (* *Denotational semantics of terms* *)

Implemented in Lambda Tamer System

- Used in the construction of a certified type-preserving compiler from lambda calculus to assembly language [PLDI07]
- Flagship example: A certified CPS transformation for simply-typed lambda calculus in 250 LoC

Summary

- 1. Write **generic functions** that operate on **AST universes**. [entirely inside the type theory]
- 2. Write **generic proofs** about those functions. *[entirely inside the type theory]*
- 3. Then **reflect** individual language definitions into the AST universe type. [outside the type theory]
- 4. Construct **evidence** that your reflection is sound. [outside the type theory]
- 5. Start using the generic functions and theorems! [entirely inside the type theory]

Code and documentation on the web at: http://ltamer.sourceforge.net/