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POPLmark 1A Solutions Using 
Coq

Representation Lemmas Proof Steps
30 402

locally nameless 49 495
levels/names 56 938

49 1574
locally nameless 23 75
locally nameless 22 101

de Bruijn

de Bruijn (nested)

(from Aydemir/Chargueraud/Pierce/Pollack/Weirich 2007)

on paper 2 2 pages
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What's Wrong?

The Realm of the Obvious

The Interesting Part

    Your Proof

(basic facts 
about variables, 
typing 
judgments, etc.)

Everyone at POPL 
believes these 

lemmas without even 
needing to see them 

stated formally....
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What We Really Want

Metatheory Wizard

Language syntax
and type system

Substitution operation,
weakening lemma,

permutation lemma,
....
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But Isn't That Twelf?
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Write It in OCaml?

Metatheory Wizard

Language syntax
and type system

Substitution operation,
weakening lemma,

permutation lemma,
....

You really don't want 
to write a code 
generator this 
complicated in ML.
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Write It with Dependent Types?

Metatheory Wizard

Language syntax
and type system

Substitution operation,
weakening lemma,

permutation lemma,
....

Once you satisfy the 
type checker, you 
know your “wizard” is 
sound!We can do this 

in Coq itself!
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Generic Programming with 
Universes in Type Theory

● Altenkirch and McBride with Oleg
● Pfeifer and Rueß with Lego
● Benke et al. with Agda



9

Universes

Universe Type
(A type that can be used

to represent the types in C)
Class C of Types

Injection function
(written in the same type theory!)

Inverse Injection Function
(implemented outside the type theory)

Implementations
of Generic

Function F for
Class C

Generic Function F
(written in the same type theory!)

Types Guarantee
Compatibility!In past work, implemented for:

● Simple inductive types
● Polymorphic inductive types
● Indexed dependent type families
● ....
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Universes for ASTs
(* De Bruijn indices *)
type dbvar = int

(* Untyped lambda calculus terms *)
type term =

| Const of int
| Var of dbvar
| App of term * term
| Lam of term

(* Universe for AST constructors *)
type constructor = {

vars : int;         (* How many variables? *)
terms : int list; (* How many new binders around each subterm? *)
data : Type;    (* What other arguments? *)

}

(* Universe for AST languages *)
type language = constructor list

[const; var; app; lam]
const = {vars = 0; terms = [];       data = int  }
var =    {vars = 1; terms = [];       data = unit}
app =   {vars = 0; terms = [0; 0]; data = unit}
lam =   {vars = 0; terms = [1];     data = unit}
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Evidence
type term =

| Const of int
| Var of dbvar
| App of term * term
| Lam of term

(* What do we need to know about a constructor? *)
let constructor_evidence (con : constructor) (term : Type) : Type =

repeat dbvar con.vars
-> type_map (fun _ -> term) con.terms
-> con.data
-> term

(* What do we need to know about an AST language? *)
let language_evidence (lang : language) (term : Type) : Type =

type_map (fun con -> constructor_evidence con term) lang

(const_in, (var_in, (app_in, (lam_in, ()))))
const_in = fun _ _ n -> Const n
var_in =    fun (v, ()) _ _ -> Var v
app_in =   fun _ (e1, (e2, ())) _ -> App (e1, e2)
lam_in =   fun _ (e, ()) _ -> Lam e

let rec repeat (t : Type) (n : int) : Type =
match n with

| 0 -> unit
| _ -> t * repeat t (n - 1)

let rec type_map (f : 'a -> Type) (ls : 'a list) : Type =
match ls with

| [] -> unit
| h :: t -> f h * type_map f t

lam_in : constructor_evidence lam term
term_rep : language_evidence lang term

What is the type of 
evidence that would 
convince us that con 
is really a constructor 

of term?



12

Reflecting Recursion
type term =

| Const of int
| Var of dbvar
| App of term * term
| Lam of term

(* Build the type of one branch of a recursive definition. *)
let branch (con : constructor) (term : Type) (result : Type) : Type =

repeat dbvar con.vars
-> type_map (fun _ -> term * result) con.terms
-> con.data
-> result

(* Build the type of a recursor for an AST language. *) 
let recursor_of_language (lang : language) (term : Type) : Type =

forall result : Type.
type_map (fun con -> branch con term result) lang
-> (term -> result)

The recursive value on 
each subterm...

let term_rec _ (const, (var, (app, (lam, ())))) =
let rec f = function

| Const n -> const () () n
| Var x -> var (x, ()) () ()
| App (e1, e2) -> app () ((e1, f e1), ((e2, f e2), ())) ()
| Lam e -> app () ((e, f e), ()) ()

in f

let rec f : term -> result = function
| Const n -> (* type = branch const term result *)
| Var x -> (* type = branch var term result *)
| App (e1, e2) -> (* type = branch app term result *)
| Lam e -> (* type = branch lam term result *)
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Reflecting Recursion
type term =

| Const of int
| Var of dbvar
| App of term * term
| Lam of term

(* What do we need to know about an AST language? *)
let language_evidence (lang : language) (term : Type) : Type =

type_map (fun con -> constructor_evidence con term) lang
* recursor_of_language lang term

term_rep : language_evidence lang term =
(const_in, (var_in, (app_in, (lam_in, ())))),
term_rec
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A Generic Lift Function
let lift'_var (min : int) (x : dbvar) : dbvar =

if x >= min then x + 1 else x

(* Helper function that lifts within a range of De Bruijn indices *)
let lift' (lang : language) (term : Type)

((builders, recurse) : language_evidence lang term)
: int -> term -> term =
recurse term

(type_remap (fun (con : constructor)
(build : constructor_evidence con term) ->
fun vars terms data (min : int) ->
build

(repeat_map (lift'_var min) vars)
(type_remap (fun binders (_, call) ->

call (min + binders)) terms)
data)

(* Increment De Bruijn index of every free variable. *)
let lift (lang : language) (term : Type) (ev : language_evidence lang term)

: term -> term =
lift' lang term ev 0

let rec repeat_map (t : Type) (n : int) (f : t -> 'a) (vs : repeat t n)
: repeat 'a n =
match n with

| 0 -> ()
| _ -> let (x, rest) = vs in (f x, repeat_map t (n-1) f rest)

let rec type_remap (f : 'a -> Type) (ls : 'a list) (f' : 'a -> Type)
(trans : forall 'a. f 'a -> f' 'a)
(vs : type_map f ls) : type_map f' ls =
match ls with

| [] -> ()
| h :: t -> let (x, rest) = vs in (trans x, type_remap f t f' trans rest)

Tweak every 
variable's 
index....

Use each subterm's 
recursive function 

with min 
incremented by the 

number of new 
binders....

Keep the same 
uninterpreted 

data....

Loop over the 
constructors' 

evidence packages, 
using each to 

produce a pattern 
matching branch....
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Generic Proofs
We have generic lift.

lift e = e with every free variable's De Bruijn index incremented
Assume we also have generic subst:

subst x e
1
 e

2
 = e

2
 with e

1
 substituted for free variable x 

Theorem subst_lift_commute :
8 e

1
 e

2
. lift (subst 0 e

1
 e

2
) = subst 1 (lift e

1
) (lift e

2
)

Proof shouldn't depend in any deep way on specific language!

We can prove this generically if we force language evidence to include 
proofs of a theorem like this:

recursor branches (c vars terms data)
=    branches.c

vars
(map (fun term -> (term, recursor branches term)) terms)
data
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Dependently-Typed ASTs
type ty =

| Int
| Arrow of ty * ty

type (¡, ¿) var = ...
(* Type of a variable of type ¿  found within ¡  *)

type (¡, ¿) term =
| Const : forall ¡. (¡, Int) term
| Var : forall ¡ ¿. (¡, ¿) var -> (¡, ¿) term
| App : forall ¡ ¿

1
 ¿

2
. (¡, Arrow (¿

1
, ¿

2
)) term -> (¡, ¿

1
) term -> (¡, ¿

2
) term

| Lam : forall ¡ ¿
1
 ¿

2
. (¿

1
 :: ¡, ¿

2
) term -> (¡, Arrow (¿

1
, ¿

2
)) term

let ty_denote : ty -> Type = ...
(* Denotational semantics of types *)

let subst_denote : ty list -> Type = type_map ty_denote
(* Denotational semantics of contexts *)

let term_denote : forall ¡ ¿. term ¡ ¿ -> subst_denote ¡ -> ty_denote ¿ = ...
(* Denotational semantics of terms *)

Prove theorems like this 
generically:

term_denote (lift e) (x, ¾) 
= term_denote e ¾
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Implemented in Lambda Tamer 
System

● Used in the construction of a certified 
type-preserving compiler from lambda 
calculus to assembly language [PLDI07]

● Flagship example: A certified CPS 
transformation for simply-typed lambda 
calculus in 250 LoC
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Summary
1. Write generic functions that operate on AST universes. 

[entirely inside the type theory]

2. Write generic proofs about those functions. [entirely 
inside the type theory]

3. Then reflect individual language definitions into the AST 
universe type. [outside the type theory]

4. Construct evidence that your reflection is sound. [outside 
the type theory]

5. Start using the generic functions and theorems! [entirely 
inside the type theory]

Code and documentation on the web at:
http://ltamer.sourceforge.net/


