The Bedrock
Structured
Programming System

Combining Generative
Metaprogramming and Hoare
Logic in an Extensible
Program Verifier

Adam Chlipala
MIT CSAIL

ICFP 2013
September 27, 2013

In the beginning, there was assembly language....

®@® ©®

A= pa—

Low “High-Level” Languages (e.g., Haskell, ML, Scheme Harder to |
programmer predict/control
effort performance
e implementation |
“Fine-grained “Low-Level” Languages (e.g., C) High
~control over programmer
performance effort
implementaton |

movl 5+heap(%ebx),%edx
movl %edx,%edi

movl heap(%ebx), %edx
movl %edx,%esi

jmp bar

The high cost of abstraction

1 + 1

VS.

f 11

Is there a performance cost to functional abstraction?
higher-order functions?
modules?
laziness?
garbage collection?
exceptions?

Having your cake & eating it, too: code generators

A s u(u B u)" | C
B ::= “foo” | “bar"”
C :i:i= “baz” | C A

We pay In
performance for Parser generator
this abstraction

gap OI’_]|y a_t Conventional implementations
complle time! with string munging are awfully
hard to get right....

Steaming pile of C code

\

assembly

Enter embedded domain-specific languages!

The type system of the
metalanguage (e.g., Haskell) helps

A = “4(" B 4" | C us guarantee that the translation

always generates reasonable code
B ::= “foo” | “bar” in the object language (e.g., C)!
C ::= “baz” | C A | |

v Basic syntactic well-formedness

* v Variable binding
v Type checking
Parser generator (4 FunCtionaI CorrECtness...?
>
>

Haskell term of type
Grammar -> CProgram

Steaming pile of C code

\

assembly -

What this talk Iis probably about

The big picture

Inside Coq

Functional program, drawing
on libraries of dependently
typed combinators

A / \ 4
Ingredients for verifying that
program against specifications

The Bedrock IL

\/
Very low-level program

representation in higher-order logic
assembl Essential goal:
y From these ingredients, we can

verify the program without knowing
how the code generator works!

The Bedrock IL

Why not LLVM or a similar IR?

Answer: Builds in a host of features:

W ::= (* width-32 bitvectors *) & Types
L ::= (* program code block labels *) ¢ Variables
+ Functions
Reg ::=Sp | Rp | Rv
Loc ::= Reg | W | Reg + W We will implement all of these as
Lvalue ::= Reg | [LOC]32 | [LOC]8 libraries in Bedrock!
Rvalue ::= Lvalue [W | L A simple language makes it easier
Binop:=+|-|* to prove foundational program

Test :::_: |1I=|<| <= correctness theorems in Coq.
Instr ::= Lvalue := Rvalue | Lvalue := Rvalue Binop Rvalue

Jump ;= goto Rvalue | if Rvalue Test Rvalue then goto L else goto L
Block ::= Instr*; Jump

Spec ::= (* assertion language of XCAP *)
Module ::= (L: {Spec} Block)*

One-slide sketch of the formal detalls

An extensible C-like language based
on macros that produce chunks
encapsulating control-flow graphs: L

|

|

| a0 R I
A Verification
| condition

|

|

If..then..else combinator (functional program):

Details omitted here:

Plumbing of connecting CFGs
Predicate transformers
Formal connection to Hoare logic

Bedrock version of linked list length

Specification

Program

Proof

Definition lengthS : spec := SPEC("X") reserving 1
Al 1s,
PRE[V] sll 1ls (V "x")

POST[R] [| R = length 1ls |] * sll 1s (V "x").

bfunction "length"("x", "n") [lengthS]
" <— Q3 Loop invariant
[Al 1s,
PRE[V] sll 1s (V "x")
POST[R] [| R = V "n" "+ length 1s |[] * sll 1ls (V "x")]
While ("x" <> 0) {
"n" <- "n" + 1;; __ — —

Nt <—% "x" 4+ 4 - This is all Coq COde, taklng - >

¢ advantage of Coq's extensible)
Return "n" N parser! 7~

S~
end. —= -

T e o — — —

e o
rrs

Theorem s11MOk : moduleOk sll1M.
Proof.

vcgen; abstract (sep hints; finish).
Qed.

10

Pattern matching for network protocols

"pos" <- 0;;
Match "reqg" Size "len" Position
Case (0 ++ "x")
Return "x"
end; ;
Case (1 ++ "x" ++ "y")
Return "x" + "y"
end
} Default {
Fail

n pos n

{

11

Declarative querying of arrays

"acc" <- 0;;

-

Fancy macro-specific loop invariant form

[After prefix Approaching all
PRE[V] [| V "acc" = countNonzero prefix |]
POST[R] [| R = countNonzero all |]]

For "index" Holding "value" in "arr" Size "len"
Where (Value <> Ok}{
"acc" <- "acc" + 1 O

bi D

Return "acc"

Loop has filter
condition that the
macro analyzes

syntactically to decide
on optimizations.

12

Build toolchain

Coq program of “chunk” type

:

Coq program of “list of basic blocks” type

:

OCaml program of “list of basic blocks” type

:

. s assembly file

ELF binary

Apply Coqg function from Bedrock library

Cog program extraction

OCaml execution (with side effects)

Normal GNU build tools

13

Running time comparison on a database-inspired
benchmark

All programs parse and execute the same set of 200 random
“queries over a random array of length 100,000.

1.2
1
0.8
0.6
0.4

" _
0

OCaml (10) OCaml (HO) Bedrock

(50 LoC) (36 LoC) (106 LoC, (50 LoC)

incl. library
code) 14

Bedrock on the web

http://plv.csail.mit.edu/bedrock/

15

