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In the beginning, there was assembly language....
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Low “High-Level” Languages (e.g., Haskell, ML, Scheme Harder to |
programmer predict/control
effort performance
e implementation |
“Fine-grained “Low-Level” Languages (e.g., C) High
~control over programmer
performance effort
implementaton |

movl 5+heap(%ebx),%edx
movl %edx,%edi

movl heap(%ebx), %edx
movl %edx,%esi

jmp bar




The high cost of abstraction
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Is there a performance cost to functional abstraction?
higher-order functions?
modules?
laziness?
garbage collection?
exceptions?



Having your cake & eating it, too: code generators

A s u(u B u)" | C
B ::= “foo” | “bar"”
C :i:i= “baz” | C A

We pay In
performance for Parser generator
this abstraction

gap OI’_]|y a_t Conventional implementations
complle time! with string munging are awfully
hard to get right....

Steaming pile of C code
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Enter embedded domain-specific languages!

The type system of the
metalanguage (e.g., Haskell) helps

A = “4(" B 4" | C us guarantee that the translation

always generates reasonable code
B ::= “foo” | “bar” in the object language (e.g., C)!
C ::= “baz” | C A | |

v Basic syntactic well-formedness

* v Variable binding
v Type checking
Parser generator (4 FunCtionaI CorrECtness...?
>
>

Haskell term of type
Grammar -> CProgram

Steaming pile of C code
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What this talk Iis probably about




The big picture

Inside Coq

Functional program, drawing
on libraries of dependently
typed combinators
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Ingredients for verifying that
program against specifications

The Bedrock IL

\/
Very low-level program

representation in higher-order logic
assembl Essential goal:
y From these ingredients, we can

verify the program without knowing
how the code generator works!




The Bedrock IL

Why not LLVM or a similar IR?

Answer: Builds in a host of features:

W ::= (* width-32 bitvectors *) & Types
L ::= (* program code block labels *) ¢ Variables
+ Functions
Reg ::=Sp | Rp | Rv
Loc ::= Reg | W | Reg + W We will implement all of these as
Lvalue ::= Reg | [LOC]32 | [LOC]8 libraries in Bedrock!
Rvalue ::= Lvalue [ W | L A simple language makes it easier
Binop:=+|-|* to prove foundational program

Test :::_: |1I=|<| <= correctness theorems in Coq.
Instr ::= Lvalue := Rvalue | Lvalue := Rvalue Binop Rvalue

Jump ;= goto Rvalue | if Rvalue Test Rvalue then goto L else goto L
Block ::= Instr*; Jump

Spec ::= (* assertion language of XCAP *)
Module ::= (L: {Spec} Block)*



One-slide sketch of the formal detalls

An extensible C-like language based
on macros that produce chunks
encapsulating control-flow graphs: L

|

|

| a0 R I
A Verification
| condition

|

|

If..then..else combinator (functional program):

Details omitted here:

Plumbing of connecting CFGs
Predicate transformers
Formal connection to Hoare logic




Bedrock version of linked list length

Specification

Program

Proof

Definition lengthS : spec := SPEC("X") reserving 1
Al 1s,
PRE[V] sll 1ls (V "x")

POST[R] [| R = length 1ls |] * sll 1s (V "x").

bfunction "length"("x", "n") [lengthS]
" <— Q3 Loop invariant
[Al 1s,
PRE[V] sll 1s (V "x")
POST[R] [| R = V "n" "+ length 1s |[] * sll 1ls (V "x")]
While ("x" <> 0) {
"n" <- "n" + 1;;  __  — —

Nt <—% "x" 4+ 4 - This is all Coq COde, taklng - >

¢ advantage of Coq's extensible )
Return "n" N parser! 7~

S~
end. —= -

T e o — — —
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Theorem s11MOk : moduleOk sll1M.
Proof.

vcgen; abstract (sep hints; finish).
Qed.
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Pattern matching for network protocols

"pos" <- 0;;
Match "reqg" Size "len" Position
Case (0 ++ "x")
Return "x"
end; ;
Case (1 ++ "x" ++ "y")
Return "x" + "y"
end
} Default {
Fail

n pos n

{
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Declarative querying of arrays

"acc" <- 0;;

-

Fancy macro-specific loop invariant form

[After prefix Approaching all
PRE[V] [| V "acc" = countNonzero prefix |]
POST[R] [| R = countNonzero all |] ]

For "index" Holding "value" in "arr" Size "len"
Where (Value <> Ok}{
"acc" <- "acc" + 1 O

bi D

Return "acc"

Loop has filter
condition that the
macro analyzes

syntactically to decide
on optimizations.
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Build toolchain

Coq program of “chunk” type

:

Coq program of “list of basic blocks” type

:

OCaml program of “list of basic blocks” type

:

. s assembly file

ELF binary

Apply Coqg function from Bedrock library

Cog program extraction

OCaml execution (with side effects)

Normal GNU build tools
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Running time comparison on a database-inspired
benchmark

All programs parse and execute the same set of 200 random
“queries over a random array of length 100,000.
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Bedrock on the web

http://plv.csail.mit.edu/bedrock/
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