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Abstract
Several recent projects have shown the feasibility of verifying low-
level systems software. Verifications based on automated theorem-
proving have omitted reasoning about first-class code pointers,
which is critical for tasks like certifying implementations of threads
and processes. Conversely, verifications that deal with first-class
code pointers have featured long, complex, manual proofs. In
this paper, we introduce the Bedrock framework, which supports
mostly-automated proofs about programs with the full range of
features needed to implement, e.g., language runtime systems.

The heart of our approach is in mostly-automated discharge of
verification conditions inspired by separation logic. Our take on
separation logic is computational, in the sense that function speci-
fications are usually written in terms of reference implementations
in a purely functional language. Logical quantifiers are the most
challenging feature for most automated verifiers; by relying on
functional programs (written in the expressive language of the Coq
proof assistant), we are able to avoid quantifiers almost entirely.
This leads to some dramatic improvements compared to both past
work in classical verification, which we compare against with im-
plementations of data structures like binary search trees and hash
tables; and past work in verified programming with code pointers,
which we compare against with examples like function memoiza-
tion and a cooperative threading library.

Categories and Subject Descriptors F.3.1 [Logics and meanings
of programs]: Mechanical verification; D.2.4 [Software Engineer-
ing]: Correctness proofs, formal methods

General Terms Languages, Verification

Keywords interactive proof assistants, separation logic, low-level
programming languages, functional programming

1. Introduction
The desirability of verifying systems infrastructure software has
long been recognized. If our operating systems and runtime sys-
tems are not correct, then we can hope for little guarantee about
the behavior of our applications. Thus, the pay-off of formal cor-
rectness verification of systems software is large, but the human
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cost of verification has been considered to be so great as to offset
the benefit. Several recent projects have given reason to reconsider
that position. The L4.verified project [18] has finished a complete
functional correctness verification for a realistic operating system
microkernel, based on a quite non-trivial amount of proof code for
the Isabelle/HOL proof assistant [27]. The Verve project [30] has
completed a mostly-automated Boogie [1] verification of the core
of an operating system which is designed to serve as a kind of run-
time system for code written in C#.

The productivity advantage of mostly-automated verification
over manual tactic-based proving seems clear. Unfortunately, the
well-known automated verification systems restrict specifications
to first-order logic, which creates a dramatic restriction on which
specifications may be expressed compactly, or even expressed at
all. For instance, it seems unlikely that these first-order systems
will ever be able to handle a proof of type safety for a non-trivial
programming language, but exactly that kind of proof is required
to complete the Verve project. It is possible to use different tools
for different parts of a verification, but the programmer’s task is
certainly made simpler by sticking to a single environment. This
choice should also help to minimize the trusted code base, which
seems quite relevant, given the security consequences of operating
system bugs.

There has been a significant amount of work on low-level veri-
fication systems that are higher-order in at least two distinct senses:
they allow higher-order logic in specifications, and they allow rea-
soning about code pointers as data. For instance, the Certified As-
sembly Programming project has suggested several such program
logics, including XCAP [24] and SCAP [13]. These systems have
been used to complete complex verifications of threading libraries
and other examples involving first-class code pointers. Unfortu-
nately, the Coq [8] proofs involved are very long, complex, de-
tailed, and brittle to changes of specification.

In this paper, we introduce Bedrock, a Coq library in which
we have attempted to reconcile the above concerns. In particular,
Bedrock is:

• Low-level: The framework supports verification of programs
that, for performance reasons or otherwise, cannot tolerate any
abstraction beyond that associated with assembly language.

• Foundational: The output of a Bedrock verification is a theo-
rem whose statement depends only on the predicates chosen for
the key specifications and on the operational semantics of some
machine language. That is, there is no need to trust that the ver-
ification framework is bug-free; rather, one need only trust the
usual Coq proof-checker and the formalization of the machine
language semantics.

• Higher-order: Bedrock facilitates quite pleasant reasoning
about code pointers as data.



• Computational: Many useful functions are specified most ef-
fectively by comparing with “reference implementations” in a
pure functional language. Bedrock supports that model, backed
by the full expressive power of Coq’s usual programming lan-
guage.

• Structured: Bedrock is an extensible programming language:
any client program may add new control flow constructs by
providing their (sound) proof rules. For example, adding high-
level syntax for your own calling convention or exception han-
dling construct is relatively straightforward and does not require
tweaking the core library code. Unfortunately, for reasons of
space, we will not discuss this aspect of Bedrock more in the
present paper.

• Mostly-automated: Tactics (proof procedures) automate veri-
fication condition generation (in a form inspired by separation
logic [28]) and most of the process of discharging those condi-
tions. Manual proof effort is generally confined to, first, annota-
tions specifying which simplification rules for abstract impure
predicates should be applied at which program points; and, sec-
ond, hint lemmas about mathematical objects like sets, maps,
and lists. Crucially, neither kind of manual work deals explic-
itly with program syntax, memories, or program states.

The next section of the paper introduces Bedrock with the com-
plete code for two simple examples: swapping two values in mem-
ory and incrementing the integer value in every node of a linked
list. After walking through the examples, we explain how the rea-
soning we applied may be generalized into a mechanical procedure
for reducing verification conditions in separation logic to simpler
conditions that deal only with normal mathematical objects. This
forms the basis of a very effective verification framework. To back
up that claim, we perform two main sorts of comparison.

First, we compare against some examples implemented with
Jahob [32], a representative of recent developments in mostly-
automated functional correctness verification of data structure im-
plementations. While Jahob deals with high-level Java programs, in
Bedrock we must implement a malloc and free library before get-
ting started, and all programs must contain explicit memory man-
agement code for both the heap and the stack. Despite that hand-
icap, our annotation burden is comparable to that documented for
Jahob, and we even achieve much more compact proofs for some
examples, including hash tables, thanks to the computational spec-
ification approach we adopt.

Second, we implement a set of interesting programs that use
code pointers in ways beyond usual function calling conventions.
These examples cannot even be specified, let alone verified, in clas-
sical verifiers. In Bedrock, each of our higher-order examples re-
quires only about a page of annotation, compared to thousands of
lines in related work. The examples are an abstract memoization
module, operating on imperative functions that compute pure func-
tions over machine words, using arbitrary persistent local state;
destructive concatenation of linked lists, written in continuation-
passing style using explicit closures, which is the largest example
from the first XCAP paper [24]; and a simple cooperative thread-
ing library, similar to an earlier XCAP implementation [25, 26]. For
the examples where we compare against past XCAP implementa-
tions, we reduce annotation overhead by a factor of about 100, and
we also pass the qualitative threshold of giving mostly-automated
proofs that often adapt automatically to specification changes.

The complete code for the framework and the examples is
available online at:

http://adam.chlipala.net/bedrock/

2. Bedrock by Example
The C programming language is often described as a “macro as-
sembly language.” Bedrock fits that description taken literally. The
Bedrock Coq library is parametrized over a machine language with
some concept of a basic block. In this paper, we deal with the
framework instantiated to a simple idealized machine language.
The language is idealized in that it has infinite-sized words and
an infinite memory. In other respects, it is a realistic machine lan-
guage, with a finite supply of global registers, a memory that can
be modeled as an infinite array of words, and so on. Further details
of this language will not be critical for what follows, and our code
examples will provide further demonstrations. We expect that the
Bedrock framework is applicable both to more realistic machine
languages and, for slightly higher-level programs that do not need
to manipulate machine contexts, to common compiler intermediate
languages.

Bedrock generalizes the XCAP program logic [24], in the sense
that, in place of deduction rules for particular instructions of a fixed
machine language, Bedrock can be thought of as having a single
rule that operates a basic block at a time. The rule (and the other
deductive parts of Bedrock) is parametrized over a standard opera-
tional semantics for the machine language in use. Every basic block
is assigned a logical precondition, and the basic block rule requires
that, if execution enters a block in a state satisfying its precondition,
then execution must proceed safely and reach a jump to some block
whose precondition is then satisfied. In our idealized language, ex-
ecution only “goes wrong” when a jump is made to a label that does
not exist in the (unverified) program. Therefore, the block precon-
ditions are the main component of program correctness theorems.

XCAP is based on an assertion logic (the language in which
preconditions are written) whose design involves some subtleties
which we will mostly ignore in this presentation, referring the
reader to the first XCAP paper [24] for further details. It is a rea-
sonable approximation to say that the assertion language is mostly
a standard second-order logic, in the sense that quantification is
allowed over both normal mathematical objects and over specifi-
cations themselves, but not over some more exotic domains like
functions over specifications. So far, this summary describes a sub-
language of the logic built into Coq. All of the differences stem
from an unusual connective of the form i@@p, which says that
there is a basic block at program counter i whose precondition is
implied by specification p. This connective is the source of support
for reasoning about sophisticated uses of code pointers, based on
the possibility for quantified variables to appear inside p. We may
even use second-order variables that stand for other specifications.

Prior work with XCAP has involved coding assembly programs
directly. Bedrock makes the programmer’s job easier by supporting
a structured programming notation, such that programs look much
like C code where atomic statements are literal assembly instruc-
tions. The details of Bedrock’s low-level deductive system do not
appear in verifications based on structured programming. Rather,
we apply the standard technique of verification condition genera-
tion, so that the conditions to be proved do not refer to program
syntax. As is usual, verification condition generation depends on
invariant annotations in the program code. Structured syntax and
its associated proofs are automatically “compiled” to proofs about
normal machine code programs.

The rest of the details of Bedrock verification are best intro-
duced through examples that demonstrate the core of our proof
methodology, a procedure for simplifying verification conditions
that are based on separation logic [28]. Figure 1 provides a quick
informal reference for the programming and specification features
that we will use.



Program syntax
Ri Register
$[E] Memory dereference
L <- E Assignment command
C;; C Command sequencing
Goto E Computed jump
[p] While (E) { C } Loop (with invariant)
Use [lemmaName] Proof hint

Program states st
st#Ri Project value of register
st.[E] Project value stored at memory address
st[L <- E] Update based on assignment command

Assertions p
st ~> p State predicate (st bound in p)
p /\ p Conjunction
Ex x. p Existential quantification
Ex x : T. p Existential with type annotation
i @@ A Assertion about precondition of a code pointer
![ P ] st Separation logic assertion

Separation logic assertions P
[< p >] Lift normal assertion
u ==> v “Pointer u points to value v”
P * P Separating conjunction
Ex x. P Existential quantification
Ex x : T. P Existential with type annotation
![ x ] Second-order specification variable
!{ f v1 . . . vn } Abstract predicate

Figure 1. Bedrock syntax reference

Definition swap := bmodule {{
bfunction "swap" [st ~> Ex fr : hprop,
Ex a : nat, Ex b : nat,
![ st#R0 ==> a * st#R1 ==> b * ![fr] ] st
/\ st#Rret @@ (st’ ~>

![ st#R1 ==> a * st#R0 ==> b
* ![fr] ] st’) ] {

R2 <- $[R0];;
$[R0] <- $[R1];;
$[R1] <- R2;;
Goto Rret

}
}}.

Theorem swapOk : moduleOk swap.
structured; sep.

Qed.

Figure 2. A Bedrock function implementing pointer swapping

2.1 Swapping the Values at Two Memory Locations
Figure 2 gives the complete code to implement and verify a
Bedrock function for swapping the values at two memory ad-
dresses. This code is processed by the normal, unmodified Coq
interpreter, thanks to the use of Coq’s syntax extension mechanism
(or “macro system”). We start by defining a code module with the
bmodule keyword. Inside the module is a single function "swap",
introduced with the bfunction keyword. After the function name
appears the function precondition, which we will turn to shortly.
First, we note that the function body here is a list of assembly in-
structions. The function inputs are in registers R0 and R1, and the
first three instructions use register R2 as a temporary in swapping
the contents of the memory cells pointed to by the inputs. The no-

tation <- is for assignment, while $[E] stands for the memory cell
pointed to by expression E. The last instruction returns from the
function by jumping to the return pointer stored in register Rret.

The function precondition may appear daunting at first. It uses
a few standard concepts with perhaps unusual ASCII syntax, along
with a few less usual concepts. First, the notation st ~> p is a
special “lambda” form that triggers the use of a special parsing non-
terminal for p, so that p is parsed as an XCAP-style assertion. The
variable st is bound in p; it is the function argument, standing for
a machine state.

The body of swap’s precondition begins with three existential
quantifiers, written Ex. The simplest two of the three bound vari-
ables are a and b, which stand for the initial contents of the mem-
ory cells pointed to by R0 and R1, respectively. In this idealized
machine language, memory cells contain natural numbers, so we
annotate a and b with the Coq type nat. We will return shortly to
the remaining variable fr.

After the quantifiers, we have an assertion of the form ![ P ]
st, where P is an assertion of separation logic that we are requiring
must hold in machine state st. Within these brackets, we may write
u ==> v to assert that the memory cell at address u holds word
v. The separating conjunction P * Q, which has lower parsing
precedence than ==>, asserts that the machine memory may be
broken into two disjoint pieces, such that P satisfies one and Q the
other. In our example, we calculate two memory cell addresses for
“points-to” facts using the # operator, which projects a particular
register value out of a machine state.

A third assertion is added to this memory precondition with
the separating conjunction: we see the variable fr used with the
syntax ![fr]. Inside a separation logic assertion, the ![ ] notation
indicates a specification variable. That is, in this example, we are
quantifying over a memory specification fr and then using it to
describe one part of the initial memory. Concretely, fr has type
hprop, the type of predicates over partial heaps. The name fr
is meant to be suggestive of frame condition, a condition that
describes all parts of memory that are irrelevant to the present
function. Standard separation logic contains the frame rule for the
statement partial correctness judgment {P}s{Q}:

{P}s{Q}
{P ∗R}s{Q ∗R}

That is, when a statement satisfies a particular precondition and
postcondition pair, the statement is also correct with respect to the
conjunction of an arbitrary specification R to both precondition and
postcondition. R stands for some additional part of the memory
that s will not be allowed to touch. It is more natural to describe
assembly programs with preconditions alone, especially to facili-
tate unusual control patterns that do not fit the stack-based function
convention that normal separation logic assumes. One consequence
is that the usual frame rule is inapplicable. Instead, we may repre-
sent frame conditions explicitly with second-order quantification,
as we do in this example.

To give us the usual flexibility of the frame rule for function
calls, we must refer to the frame condition in one more place. This
is part of a use of the i@@p connective that we introduced earlier.
We state that register Rret points to a code block that is safe to
jump to if a particular condition holds. We have a nested use of
the ~> notation, this time defining a specification over a new state
st’, which effectively stands for the state upon returning from the
function, while st stands for the state upon calling the function.

The return-time invariant is identical to the initial separation
logic assertion, except that we have swapped the values found at
the two distinguished memory locations, as one would expect from
this function’s informal specification. Crucially, the same frame
variable appears in the two snapshots of memory. Since we impose



no further conditions on fr, it will be impossible to prove that any
memory slice satisfies fr, with the sole exception of the memory on
entry to the function. Therefore, if the function manages to satisfy
the condition attached to the return pointer, all memory but the two
distinguished cells will have been preserved.

One further subtle point in this specification style deserves
some explanation. Most classical verification tools support ghost
variables, which are additional program variables used solely for
specification and verification. In more standard specifications for
our swap example, we would probably see ghost variables used in
place of existential quantification for the initial values a and b of
the two distinguished memory cells. In classical first-order tools,
ghost variables increase expressiveness beyond simple existential
quantification, but only because function return pointers are not
made explicit. Ghost variables provide the ability to share variables
between function preconditions and postconditions. When we are
able to talk about return pointers in a first-class way, as we have in
this example, we need only preconditions, and so there is no further
need for sharing of variables between specs.

Once the function has a specification, we can prove that the
specification is met. A Coq Theorem command begins our proof
of that fact. The proof is given with a Coq proof script, a program
in a domain-specific language for proof search. In this case, our
script says that the proof proceeds in two steps. First, we call the
Bedrock tactic structured to reduce the theorem to the truth of a
set of automatically-generated verification conditions. We use the
semicolon operator to chain on a second tactic, which should be run
on every verification condition. This second tactic is the Bedrock
tactic sep, a generic simplifier for conditions involving separation
logic.

In our particular example, there is one condition to prove, which
amounts to showing the following implication, where we use the
notation st[i] to denote the effect of executing instruction i in
state st:

State 1: st
Pred. 1: R0 ==> a * R1 ==> b * ![fr]
State 2: st[R2 <- R0][$[R0] <- $[R1]][$[R1] <- R2]
Pred. 2: R1 ==> a * R0 ==> b * ![fr]

We want to show that the truth of Predicate 1 in State 1 implies
the truth of Predicate 2 in State 2. A good first step is to inline the
state information into the two predicates, so that both are expressed
in terms of the same variable st. We write st.[E] for the value
found at memory cell E in state st.

Pred. 1: st#R0 ==> a * st#R1 ==> b * ![fr]
Changes: R0 <- st.[st#R1]; R1 <- st.[st#R0]
Pred. 2: st#R1 ==> a * st#R0 ==> b * ![fr]

Next, we can use Predicate 1 to simplify the list of changes. Any
read st.[u] may be replaced by v, whenever Predicate 1 contains
a conjunct u ==> v. Our new implication is:

Pred. 1: st#R0 ==> a * st#R1 ==> b * ![fr]
Changes: R0 <- b; R1 <- a
Pred. 2: st#R1 ==> a * st#R0 ==> b * ![fr]

To finish the proof, we want to eliminate the need to take into
account the set of memory changes. Our strategy to do so is to
execute the changes symbolically in Predicate 1. That is, for each
write of value v to memory at address u, we find a fact u ==> v’
in Predicate 1 and replace v’ with v. That algorithm reduces the
implication to:

Pred. 1: st#R0 ==> b * st#R1 ==> a * ![fr]
Pred. 2: st#R1 ==> a * st#R0 ==> b * ![fr]

This implication is almost trivially true, modulo the fact of *’s
commutativity. Applying such facts manually can be quite a hassle.

Our separation logic tactic takes commutativity and associativity
into account and automatically finishes proofs like this by cancel-
lation. That is, we iterate through finding a conjunct that appears
on both sides of the implication and “crossing it out.” If the veri-
fication has been set up properly, cancellation eventually gives us
an implication between identical formulas, which we can dispatch
trivially.

We have completed our first Bedrock verification, and we would
like now to stress one key property of our approach that distin-
guishes it from the mostly-automated verification methods embod-
ied in tools like ESC [14], Boogie [1], and Jahob [32]. Solvers
for boolean satisfiability (SAT) and satisfiability modulo theories
(SMT) have become increasingly practical in program verification,
and more and more projects work by reducing verification condi-
tions to domains that such solvers understand. The solver works by
a mechanical process with too many steps for humans to follow
closely. Completeness guarantees for decision procedures some-
times make this loss of simplicity acceptable. Unfortunately, the
constraint-solver approach to verification tends to lead to relatively
inexpressive specification languages, as these solvers do not sup-
port techniques like local universal quantification over specification
variables.

Bedrock relies on a very different approach. Users of SMT-
based verification tools often describe separation logic as too hard
to automate, but we think of that statement as only true in the
context of normal SMT solvers. A simple syntactic algorithm can
be very effective at discharging separation logic implications. The
informal procedure we just demonstrated for swap scales up to
much more interesting verifications, as we will demonstrate with
our next example and in our further case studies.

When the proof state is set up properly beforehand, our sep
tactic reduces separation implications to facts about normal math-
ematical objects like numbers, sets, maps, and lists. These sim-
pler facts are usually straightforward to discharge with traditional
solvers, ideally those giving completeness guarantees. The key win
is that the reduction removes all need to reason about machine
states or memories. We manage to handle that part of the reason-
ing in a quantifier-free way, avoiding one of the biggest headaches
for SMT solvers. The syntactic simplification procedure is much
simpler for a programmer to keep track of than the usual SMT-
based alternatives, which have to do with predicting the action of
quantifier-instantiation triggers or adding manual instantiation an-
notations.

At this point, the reader may be willing to believe that such
a syntactic approach works for trivial examples like swap, while
maintaining skepticism that we can scale to more complex ex-
amples like typical imperative data structures. Our next example
shows how to accomplish that scaling, based on computational ab-
stract predicates and modest use of unfolding hints that simplify
uses of those predicates.

2.2 Incrementing All of a Linked List
Figure 3 shows our next example, which walks a singly-linked list
of words, incrementing the value of every word. A list node is
a pair of adjacent bytes, the first storing the data value and the
second storing the next pointer, which is 0 in the final node of a
list. The definition of the function linc introduces some structured
programming constructs. We have a standard “while” loop, which,
as usual, must be prefaced by a loop invariant (here placed inside
square brackets). For this example, the loop invariant is the same
as the function precondition, so we assigned that shared condition
the name lincS. There are also a few Use statements here; we will
explain shortly how they are used to guide automated proving.

The specification lincS follows the basic form of our previous
example’s precondition. The variables a and b have been replaced



Definition lincS : state -> PropX pc state := st ~>
Ex fr, Ex ls, ![ !{llist ls st#R0} * ![fr] ] st
/\ st#Rret @@ (st’ ~>
![ !{llist (map S ls) st#R0} * ![fr] ] st’).

Definition linkedList := bmodule {{
bfunction "linc" [lincS] {
[lincS]
While (R0 != 0) {

Use [llist_nonempty_fwd];;
Use [llist_nonempty_bwd];;
$[R0] <- $[R0] + 1;;
R0 <- $[R0+1]

};;
Use [llist_empty_fwd];;
Use [llist_empty_bwd];;
Goto Rret

}
}}.

Theorem linkedListOk : moduleOk linkedList.
structured; sep.

Qed.

Figure 3. A Bedrock function to increment all of a linked list

by ls, which is a normal, purely-functional Coq list. This list
serves as a functional model of the imperative list that is to be
manipulated, and the action of the linc function can be modeled
with a purely functional reference implementation. In particular,
the pre-state contains the assertion !{llist ls st#R0}, where
the notation !{ } denotes the use of an abstract predicate. In this
case, we are requiring that a linked list is present in memory,
rooted at st#R0 and containing data elements matching those in
ls. We model the action of the function in our choice of alternate
arguments to llist in the post state. We write !{llist (map
S ls) st#R0}, applying the usual higher-order function map to
replace every element of ls with the result of applying S (the
increment-by-one function) to it.

We should emphasize that, while we try to aid intuition about
the computational specification approach by writing that it relies
on “purely functional reference implementations,” we are not lit-
erally writing a library in both functional and imperative versions
and proving equivalence between them. Non-trivial functional pro-
grams may still deserve quite non-trivial verifications of their own,
as ample research on the subject can attest to. Instead, we rely
only locally on functional programs as alternatives to traditional
mathematical notation. For example, the specification discussed in
the previous paragraph is structured mostly as normal second-order
logic, with one localized use of a functional program that applies
map to express how the function should mutate a list.

Contrast this with an approach that might be used with SMT
solvers, where a list is modeled as an array, and we might charac-
terize linc’s behavior like this in terms of pre- and post- versions
a and a′ of an array:

∀i. a′[i] = a[i] + 1

By using a quantifier, we forfeit completeness guarantees, as most
first-order theories with quantifiers are undecidable. With the com-
putational approach in Coq, we usually avoid the need to consider
decidability questions. We know that any Coq term has a single
well-defined answer which may be determined by normalization
under appropriate conditions. As Coq executes terms automatically

throughout its proof infrastructure, a well-chosen computational
abstraction can give us many proof steps for free.

Some verification tools such as Jahob [32] allow the use of
sets and set theory in specifications, which removes some need for
quantifiers. However, universally-quantified invariants still appear
in most data structure implementations. In all of our case studies
so far, there have been only four functions that we verified with
invariants that use quantifiers in any way besides strings of exis-
tential quantifiers at the beginnings of preconditions, as seen in
our examples so far. All of our data structure invariants stick to
this restricted use of quantifiers, too. This pattern is much closer to
the well-understood ghost variables of classical verification than to
the more involved use of quantifiers that causes trouble for SMT
solvers. Quantifiers are hard to reason about, and our encoding ap-
proach allows us to delegate almost all reasoning work to the simple
syntactic procedure that we began describing with the last example.

In our proof of correctness for the linkedList module, the
structured tactic will hand us three verification conditions: we
must show that the function precondition implies the loop invariant
(which is trivial for this example), that the loop body preserves the
loop invariant when we assume that the loop test succeeded, and
that the loop invariant implies the postcondition when we assume
that the loop test failed.

We focus on the first of the non-trivial implications, dealing
with the effect of going once through the loop. Skipping to the
second stage of the procedure we used for the last example, we
have the following implication goal, which includes a pure fact
implied by the success of the loop test. Since we are not returning
from the function immediately, the existential variables of the post-
state are up to us to instantiate. In effect, the loop body contains
an “assignment” for each of these “ghost variables,” and we will
choose the righthand side of each such assignment as we complete
the proof. We will write the new variable values as ls’ and fr’
until we determine what we want them to be; these are unification
variables, part of Coq’s standard proof search support.

Pure: st#R0 <> 0
Pred. 1: !{llist st#R0 ls} * ![fr]
Changes: R0 <- st.[st#R0]+1
Pred. 2: !{llist (st.[st#R0+1]) ls’} * ![fr’]

We would like to simplify the memory projection from the
changes list, but clearly our previous simple procedure is inade-
quate. That procedure involves consulting the set of points-to facts
in Predicate 1, and we have no such facts here. However, given our
knowledge of how linked lists are represented, we know that the list
must not be empty because R0 is nonzero, so Predicate 1 is equiv-
alent to some predicate with a points-to fact for R0. To make this
more formal, we should start with the formal definition of the ab-
stract predicate llist. We use Coq’s standard facilities for recur-
sive definitions and pattern-matching, along with a new separation
assertion notation [< p >], which lifts the pure predicate p into
an impure predicate that asserts the truth of p and applies only to
empty heaps.

Fixpoint llist (ls : list nat) (hd : nat) : sprop :=
match ls with

| nil => [< hd = 0 >]
| x :: ls’ => Ex u, [< hd <> 0 >]

* hd ==> x * (hd+1) ==> u * !{llist ls’ u}
end.

This definition says: An empty list is represented by an empty
memory and a head pointer with value 0. A nonempty list is rep-
resented based on a local existentially-quantified “ghost variable”
u, standing for the next pointer. We assert that the head pointer is
nonzero, that it points to the head x of ls, that the next memory



cell contains u, and that u is the root of a linked list representing
the tail ls’ of ls.

From this definition, it is clear intuitively that we can “materi-
alize” a points-to fact for the beginning of a nonempty list. The
following unfolding lemma makes that fact explicit, in terms of
a separation logic implication operator ===>, which uses three =
characters, in contrast to the points-to operator which uses two.

Theorem llist_nonempty_fwd : forall ls hd, hd <> 0
-> llist ls hd ===> Ex x, Ex ls’, Ex u,
[< ls = x :: ls’ >] * hd ==> x * (hd+1) ==> u
* !{llist ls’ u}.

destruct ls; sepLemma.
Qed.

The theorem is proved trivially, using destruct to ask for a
case analysis on the list ls, and then calling a variant of our sepa-
ration logic simplifier to do the rest of the work. We are now ready
to learn the purpose of the Use statements in the program code.
The first such statement references our new unfolding lemma. By
including this annotation statement, we are asking the separation
simplifier to use our new lemma to replace an instance of the ===>
lefthand side with the corresponding righthand side. Coq uses unifi-
cation to discover the values of the lemma variables ls and hd, and
Coq uses its extensible proof hint mechanism to discharge any extra
hypotheses. In this example, that hypothesis is hd <> 0, which is
discharged using the pure fact from the proof state. Coq introduces
new variables to stand for the values x, ls’, and u that we assert to
exist. This brings our state to:

Pure: st#R0 <> 0 /\ ls = x :: ls’’
Pred. 1: st#R0 ==> x * (st#R0+1) ==> u

* !{llist ls’’ u} * ![fr]
Changes: R0 <- st.[st#R0]+1
Pred. 2: !{llist ls’ (st.[st#R0+1])} * ![fr’]

Now that a points-to fact for R0 is exposed, we can simplify our
explicit memory accesses.

Pure: st#R0 <> 0 /\ ls = x :: ls’’
Pred. 1: st#R0 ==> x * (st#R0+1) ==> u

* !{llist ls’’ u} * ![fr]
Changes: R0 <- x+1
Pred. 2: !{llist ls’ u} * ![fr’]

It is now easy to run symbolic evaluation of the memory
changes in Predicate 1.

Pure: st#R0 <> 0 /\ ls = x :: ls’’
Pred. 1: st#R0 ==> x+1 * (st#R0+1) ==> u

* !{llist ls’’ u} * ![fr]
Pred. 2: !{llist ls’ u} * ![fr’]

At this point, cancellation will allow us to finish this case of the
proof, in a subtle method of automatic application of a frame rule.
The two abstract predicates may be canceled if we set unification
variable ls’ to ls’’. That leaves the frame condition unification
variable fr’ for us to determine. By setting it equal to all of
Predicate 1 that remains, we can finish the case by reflexivity. The
part of Predicate 1 that has been absorbed into fr’ constitutes the
parameter R to the standard frame rule, and it has been determined
using a very generic unification technique that applies just as well
to non-standard control structures that need not follow a usual
function call convention.

The loop invariant is a conjunction, and we have finished with
the first conjunct. The second conjunct is an assertion about the
conditions under which it is safe to jump to the function return
pointer. In particular, we need to show:

Pred. 1: st#Rret @@ (st’ ~>

![ !{llist (map S ls) st#R0} * ![fr] ] st’)
Pred. 2: st#Rret @@ (st’ ~>
![ !{llist (map S ls’) st#R0} * ![fr’] ] st’)

It turns out that one @@ assertion about a code pointer implies
another about the same pointer if their predicate operands imply
each other in the reverse order. We apply that rule and also substi-
tute the values of ls’ and fr’ that we learned in proving the last
conjunct.

Pred. 1: !{llist (map S ls’’) u}
* st#R0 ==> x+1 * (st#R0+1) ==> u * ![fr]

Pred. 2: !{llist (map S (x :: ls’’)) st#R0} * ![fr]

Coq automatically uses computation to replace map S (x ::
ls’’) by S x :: map S ls’’. To make further progress, we
would like to unfold the abstract predicate in Predicate 2, similarly
to the way we did for Predicate 1 in an earlier step. It is easy to
prove another lemma that is like llist nonempty fwd but runs
the implication in the other direction. This is exactly the lemma
that we suggest with the second Use statement within the loop
body. Based on that hint, our sep tactic will first introduce new
unification variables x’, ls’’’, and u’, standing for the existential
quantifiers in the theorem statement. Then, the pure goals st#R0
<> 0 and map S (x :: ls’’) = x’ :: ls’’’ are queued for
solving by normal mathematical means. By stating the first of these
facts outside of the separation implication in the theorem statement,
we ask that it be proved before proceeding, and this is easily done,
based on the first pure hypothesis in the proof state. The second
pure fact is queued to be reconsidered after we finish the impure
part of the proof. Hopefully the unification variables will have been
determined by then, simplifying the job of our pure solvers, many
of which are unable to handle unification variables.

Before we can get there, we must finish with this new modified
proof state based on the lemma statement:

Pred. 1: !{llist (map S ls’’) u}
* st#R0 ==> x+1 * (st#R0+1) ==> u * ![fr]

Pred. 2: st#R0 ==> x’ * (st#R0+1) ==> u’
* !{llist ls’’’ u’} * ![fr]

The canceler finishes this proof by unifying x’ with x+1, u’
with u, and ls’’’ with map S ls’’. Notice that this is very sim-
ple, eager syntactic unification that occurs as we try to cross pred-
icates off from both sides of the implication. We need none of the
complexity of “E-graph matching” as pioneered in solvers like Sim-
plify [10]. The particular unification that we discover leaves the
earlier queued fact map S (x :: ls’’) = x’ :: ls’’’ solv-
able trivially by computational normalization, and we have finished
proving the correctness of this verification condition.

The final verification condition has a similar but simpler proof,
based on analogous unfolding lemmas for empty lists that are in-
voked in the last two Use statements of the program. Each of our
unfolding lemmas has a trivial one-line proof. The Use statement
also supports partial instantiation of a lemma’s quantifiers, when
unification is not sufficient to discover instantiations correctly; and
there is a further form to allow references to the current machine
state in computing the instantiations. We find this kind of quanti-
fier instantiation to be easier to keep track of than in the case of
universally-quantified program invariants, as the quantifier reason-
ing may be kept local and is also completed solely by unification in
a majority of cases.

3. A Simplification Procedure for Separation
Assertions

Our walk-throughs of examples have demonstrated the basic five-
step procedure that we use in discharging all Bedrock verification



conditions. The procedure is easily formalized as an algorithm,
broken into discrete steps that are reasonably easy for humans to
keep track of. Here is the procedure, including three “extra” steps
that are not specific to separation logic.

1. Standard first-order logic simplification: Before beginning,
it is useful to put standard Coq simplification to work. For in-
stance, our last example involved proving an implication be-
tween two conjunctions. This can be reduced to separate proofs
of the two conclusion conjuncts, in each case assuming the truth
of both hypothesis conjuncts. This stage also involves using
each hypothesis disjunction to split the proof into two cases, re-
placing each existentially-quantified hypothesis with a version
of its body that refers to a freshly-introduced variable, and so
on.

2. Forward unfolding of abstract predicates: We apply the hints
suggested with Use statements, along with some hints that have
been registered globally, so that they should be used wherever
they apply. The separation logic hypothesis (“Predicate 1” in
our examples) is easily normalized to an iterated separating
conjunction of impure facts. We walk through the conjuncts,
looking for a hint proving an implication whose lefthand side
unifies with the current conjunct. When we find a match, we
first check that the premises of the lemma can be proved im-
mediately, by calling all solvers that have been registered as
hints. If this process succeeds, we introduce new variables for
any existential quantifiers in the implication conclusion, new
pure hypotheses for any pure conclusions, and replace the orig-
inal conjunct with the new impure conclusions from the lemma.
This process is iterated until no more hints match.

3. Simplification of memory accesses: For every points-to fact u
==> v in the separation hypothesis (referring to state st), we
replace every occurrence of the memory access st.[u] with v,
anywhere the former appears in the proof state.

4. Symbolic execution of memory writes: For every write of
value v to address u implied by the current basic block’s
straightline instructions, find a fact u ==> v’ in the separa-
tion hypothesis and replace v’ with v.

5. Backward unfolding of abstract predicates: This phase is
very similar to the forward unfolding phase, but with consid-
eration of hints that apply to the separation conclusion (“Predi-
cate 2” in our examples). We replace the conclusion of a lemma
with its premises. New existential variables are instantiated as
unification variables, whose values should be determined later
through syntactic unification. Rather than adding pure premises
to our proof state, we queue them as proof obligations to return
to later. These obligations often contain some of our new unifi-
cation variables. With proper foresight in Use annotations, the
cancellation step will determine the values of almost all of these
unification variables, so that, when we return to the obligations,
they are in forms not so different from what SMT solvers are
designed to handle.

6. More aggressive first-order logic simplification: Here we re-
peat all the simplifications of the first step, with one addition:
When the goal begins with an existential quantifier, we gener-
ate a fresh unification variable, substitute it for the quantifier’s
variable, and make this substitution result the new goal. This
quickly reduces our goal to a set of goals, some using separa-
tion logic and some using more standard mathematical theories.
We will try to finish with the separation goals before proceed-
ing, in hopes of determining most unification variable values.

7. Cancellation: We iterate through all conjuncts in the separation
hypothesis, trying to find a unifiable conjunct in the conclusion.

Every matching pair is eliminated. By reflexivity of implication,
we are finished when the full hypothesis and conclusion may be
unified.

8. Proof of remaining pure facts: If cancellation worked prop-
erly, we should now be faced only with a collection of pure
goals that deal only with standard mathematical theories. These
can be discharged by various solvers that are registered as hints.
For instance, we have used congruence closure, a solver for
linear arithmetic, brute force search via Prolog-style logic pro-
gramming, and other techniques.

We also allow the programmer to register rewrite rules, de-
signed to simplify proof states by simple syntactic replacement of
one pattern by another. We apply these rules wherever possible, be-
tween every pair of steps above.

The whole process is implemented in Coq’s Ltac language [9],
which is a Turing-complete domain-specific language for proof
search. By construction, every Ltac program generates a proof term
to explain why it concluded that a fact is true. These proof terms use
a relatively simple, generic logical language that relies on a small
number of axioms. Thus, it is possible to implement a small, trust-
worthy standalone checker for these proof terms. To trust a proof,
one need only trust the checker, not the more heuristic process by
which proof terms are found. Therefore, since we implement our
procedure as the Ltac program sep, we arrive at correctness by
construction: whenever the procedure succeeds, it has made only
valid deductions.

The sep procedure is the workhorse for Bedrock verification,
but it is important that programmers can build on it with further
problem-specific Ltac code. For instance, most reasoning about
code pointers must be done through Ltac, rather than through tra-
ditional solvers, which are unable to cope with the second-order
quantification that is usually involved. Each variety of control trans-
fer generally demands its own modest piece of Ltac code. For in-
stance, our last example program involved reasoning about the way
the @@ operator is used to model return pointers. Our case studies
use about 10 lines of Ltac code to guide the automatic application of
the appropriate reasoning principle. Other constructs like computed
function calls, exception handling, and so on will generally require
similar up-front investments. Once this support code is written, no
extra work is required in the verification of individual programs.

Though sep is designed to automate most of the proof process,
we often break it into its individual steps while verifying a program,
so that we can watch to make sure that each step goes the way we
expect. Compared to SMT solvers and related techniques, we think
it is an advantage of our high-level approach that humans can keep
track of the steps of the algorithm and glean useful information
from watching its progress. That is, at each stage of the proof, the
human user is shown intermediate states that look much like those
given for the examples in Section 2. Even the full sep tactic is not
an all-or-nothing solver; when it fails to prove a goal, it returns the
unproved obligations in the same human-understandable format,
with the possibility for exploratory proving to determine what went
wrong.

For each domain of uses of code pointers, we usually write
a single automation tactic, but we also break the proof process
into a series of calls to simpler named tactics. On approaching
a new verification condition, we step through these sub-stages to
get a sense for which Use annotations and hints will be needed.
Any step may be traced in more detail, using Coq’s usual proof
debugging commands. When the user figures out that a particular
Use annotation is useful, a tactic may be called to add it from within
the exploratory proving process; these hints can later be migrated
into the program source, once all of the cases work. At that point,
we switch to the mostly-automated approach. We want to stress



that these lower-level tactics are still more like states in a small,
fixed finite state machine than like the more common, very manual
Coq proof scripts. Also, in switching to mostly-automated proofs,
we often find that our proofs continue working even after making
modest changes to a program’s specification. The human prover
need only find the key reasons why a program is correct, and then
the automation can take care of the details.

4. Evaluation
The Bedrock framework implementation consists of about 5000
lines of Coq code. We have also implemented a suite of case study
programs, chosen to exercise both traditional first-order reasoning
and the more unusual higher-order reasoning about code pointers.
None of the case studies require manual proof about specific pro-
gram states, despite the fact that we are always proving full func-
tional correctness of our libraries, not just more shallow properties
like memory safety. Figure 4 gives some statistics about the case
study programs.

We explain the column meanings in left-to-right order: First,
we give each module’s total lines-of-code count (including both
implementation and proof), followed by its number of structured
assembly functions and the number of lines of code devoted to these
functions, minus proof-related annotations. After that, we have,
respectively, lines-of-code counts for data structure representation
invariants, pure lemmas (which do not deal with memories or
machine states), impure lemmas (which are phrased as implications
in separation logic), invariants included in programs (e.g., loop
invariants), Use annotations, proof hints (which guide automatic
solving of pure goals), and the main correctness proof scripts for
modules. In the cases of impure and pure lemmas, we differentiate
between the lines devoted to theorem statements and the lines
devoted to their proofs (with the latter inside parentheses).

The last column of the table shows the time needed to compile
each module, proofs included, on a 3.16 GHz Intel Core 2 Duo
processor running Linux. Among the examples with the most code,
two take about a half and a quarter hour, with the rest finishing
in 6 minutes or less. To suggest a fair comparison with other ver-
ification tools, we note that our case studies spend over half their
time in generation and checking of proof terms, which is a kind of
“bonus” on which most other tools spend no time. Bedrock is also
implemented on top of the normal Coq engine, which uses naive
interpretation to execute proof search programs; we would expect
to see a constant-factor speedup of at least several times with a cus-
tom implementation in a general-purpose language. Ideally, a fu-
ture Coq version will include an improved optimizing engine that
brings these benefits to our existing code. Even as the framework
stands today, we find that the programmer experience is quite rea-
sonable, with just a few seconds wait time required when focusing
on and stepping through the proof of a single verification condi-
tion. As is usual, the different conditions may be tackled in paral-
lel; though Coq does not support this kind of parallelism yet, we
expect that simple optimizations in Coq to enable multi-core exe-
cution would also bring large speed-ups.

To give a more qualitative account of the verification experi-
ence, we turn to descriptions of the case studies.

First, we have the Malloc module, a heap memory manage-
ment library that all of the other modules rely on. Its interface is
independent of the implementation strategy; for now, we are using
a simple unsorted free list with no coalescing. This data structure
is an interesting take on the familiar linked list: we have variable-
sized free list nodes that must store both their own sizes and their
“next” pointers, rather than uniformly-sized list nodes that point to
data allocated elsewhere. Verifying Malloc requires proving im-
pure lemmas covering maneuvers like splitting a free list block into

one piece to return to client code and another to keep in the list,
based on the size of the memory chunk requested by the client.

The remaining case studies fall into two categories. First, we
compare against recent developments in data structure verification
by implementing our own versions of five case studies used with
the Jahob tool [32]. Second, we demonstrate Bedrock’s support
for reasoning about code pointers, via examples mostly inspired
by past work with the XCAP logic [24].

4.1 Data Structures
Our data structure examples can be split into three groups, based on
the mathematical domain used to model the data structures. Each of
our implementations provides the same functionality as the “public
methods” in a particular example from a recent paper on Jahob [32].
We prove full functional correctness of each method, showing
that the imperative code realizes the same behavior as with the
“obvious” implementation of each operation via a small functional
program. Our job is inherently harder than in Java-specific Jahob,
since every module is at the assembly level of abstraction and must
do explicit management of heap and stack memory, but our results
show that the effective burden is not so great.

First, we have arrays, modeled using functional lists. One mod-
ule develops the program-independent aspects of this theory, in-
cluding impure lemmas covering different ways of isolating cells
within arrays. For instance, here is a theorem for unfolding an ar-
ray in a way that exposes a points-to fact for the cell at index n.

Theorem array_mid_fwd : forall n a ls,
n < length ls
-> array ls a ===> !{array (firstn n ls) a}

* (a+n) ==> nth n ls 0
* !{array (skipn (n+1) ls) (a+n+1)}.

Notice the key use of the computational approach we have men-
tioned a few times already. Usual mostly-automated program veri-
fication deals with array cell isolation mostly through universally-
quantified invariants. Instead, we take advantage of the rich possi-
bilities for computation with lists in Coq, describing a three-way
split of an array in terms of recursive functions for keeping only
the first n elements of a list, extracting the nth element, or drop-
ping the first n elements, respectively. A few rewriting hints about
the interactions of these recursive functions enable very effective
proof automation about array operations, after we add a few Use
statements that suggest lemmas like array mid fwd. We, in ef-
fect, reduce quantifier-heavy reasoning about arrays to quantifier-
free reasoning about functional lists. The ArrayList module ap-
plies this approach in the implementation of 19 common operations
on an abstract datatype of growable arrays. As, compared to linked
data structures, arrays offer relatively little opportunity for simple
computational abstraction, our Bedrock ArrayList involves about
40% more annotation than the Jahob version.

Next, we have a theory of sets, modeled as Coq values of type
nat -> bool. That is, a set is a mathematical function from ma-
chine words (natural numbers) to booleans, telling us whether each
word belongs to the set. We also define a common interface for
assembly implementations of imperative finite sets, providing op-
erations for membership checking and addition and removal from
a set. We give two implementations of this interface, with unsorted
singly-linked lists and with binary search trees. The latter module
additionally provides functions for extracting the minimum or max-
imum element from a nonempty set. The computational approach
helps us give dramatically simpler binary search tree invariants than
in the Jahob code, where even the basic data structure invariants
include 10 universal quantifiers. We rely instead on the ability to
filter sets by computable predicates; for instance, in considering an
internal node of the tree, to come up with the set that its left child



Module Total #Funcs. Impl. Data Pure (pfs) Imp. (pfs) Inv. Use Hints Main Build (min)
Malloc 267 3 71 8 3(1) 50(14) 16 24 2 1 5
Theory of arrays/lists 111 - - 5 2(2) 35(32) - - 7 - <1
ArrayList 771 19 272 3 79(37) 29(15) 168 83 20 1 35
Theory of sets 159 - - - 61(43) - 15 - 7 - <1
SinglyLinkedList 157 4 54 6 - 14(6) 20 14 2 6 2
BinarySearchTree 355 6 127 10 - 32(7) 43 40 2 28 13
Theory of maps 69 - - - 7(23) - 20 - 1 - <1
AssociationList 200 6 85 6 - 12(6) 28 27 2 1 3
Hashtable 374 6 90 6 36(13) 38(13) 56 39 18 1 4
Memoize 191 2 45 7 21(6) 6(3) 36 5 5 18 2
AppendCPS 155 2 56 5 - 9(3) 44 12 - 1 4
ThreadLib 225 4 67 9 6(2) 22(7) 34 20 1 7 6

Figure 4. Statistics on case studies, mostly in terms of number of lines of code of each kind

represents, we filter the original set by a function that keeps only
those elements less than the current data value.

Finally, we define a similar theory of maps, modeled with the
Coq type nat -> option nat, where an “option nat” is either
None or Some n, for number n. Our two finite map implementa-
tions use unsorted singly-linked lists and hash tables. Unlike its Ja-
hob counterpart, our hash table implementation uses the linked list
implementation, treated abstractly through its interface, within hash
buckets. The computational approach again brings some significant
simplifications for hash tables. A crucial function is “only”, which
restricts a map to just those keys that hash to a particular value,
implemented using the natural number equality test eq nat dec.

Definition only (m : map) (hmax n : nat) : map :=
fun k => if eq_nat_dec (hash hmax k) n

then m k else None.

We use only to state impure lemmas like the following, which
isolates a particular bucket within a hash table.

Theorem htableOk_mid_fwd : forall n m hmax
curHash len a,
n < len -> htableOk m hmax curHash len a
===> Ex a’, !{htableOk m hmax curHash n a}
* (a+n) ==> a’
* !{alist (only m hmax (curHash+n)) a’}
* !{htableOk m hmax (curHash+n+1)

(len-n-1) (a+n+1)}.

Without focusing on the details, we point out that a single case
of the hash table representation predicate htableOk is expanded
to two other uses that together skip one bucket, where the missing
bucket is described in terms of a points-to fact to a pointer a’. This
pointer itself represents an association list, which we express using
the abstract predicate alist exported by the AssociationList
module. We say that the association list represents the restriction of
the overall map to just those keys that belong in the bucket we have
isolated.

Summing up all of the different kinds of proof and annotation
from Figure 4, we arrive at a total of about 200 for Hashtable.
The Jahob version uses over 250 lines of annotation just within
the methods used to implement the remove-from-map operation.
The bulk of these annotations are qualitatively different from those
required in Bedrock, as they involve explicitly nested proofs based
on the quantifier structure of invariants. Our removal function is
self-contained, including one 5-line invariant and 5 Use statements.
The remaining lines are normal executable code.

Our data structure case studies deal only with keys and values
that are uninterpreted machine words. However, since we are work-

ing with low-level programs, machine words are sufficient as a rep-
resentation of arbitrary data structures. These words may be treated
as pointers by client code, and we may write invariants about the
layout of such nested data structures solely in terms of the func-
tional model of a set or map, avoiding any coupling to the details of
the data structure implementation. It is still true that our implemen-
tations of sets and maps may not have the intended semantics when
used to store nested data structures via pointers, since our fixed
comparison and hashing operations compare pointers and ignore
further structure. Variations on the case studies from this section
should support the use of user-provided comparison and hashing
functions, when accompanied by proofs of key facts about them
(e.g., a comparator implements a total order in terms of some func-
tional model of the nested data structure).

4.2 Code Pointers as Data
Our remaining case studies go beyond the domain of most previous
mostly-automated verification tools, where most assertions about
callable code pointers may not even be expressed, let alone verified.
Here we are still proving full functional correctness, though it
is often less obvious what precisely that means for libraries that
work with code pointers. We choose our specifications to formalize
the intuitive notion of the abstraction that the library is meant
to provide. For instance, our threads library will include a yield
function whose specification guarantees that, when the yielding
thread is rescheduled, its private memory has not been changed.

Our first example is a generic function memoizer, backed by
hash tables, which are themselves backed by association lists, cre-
ating a non-trivial tower of uses of abstract datatypes. Any function
may be memoized into values of a particular abstract datatype of
memo tables. Each function is associated with a pure specification,
a mathematical relation between input and output words. Addition-
ally, a memoized function may use local state, represented by a
completely unconstrained separation logic predicate, which might
stand for, e.g., a local cache data structure. Memo tables use hash
tables internally, along with an extra invariant that refers only to
the functional map that models the hash table contents. We require
that every mapping is consistent with the pure specification. This
allows us to expose the memo table as a function with almost the
same specification as the original. (We must expand the specifica-
tion to require that the memo table is loaded in memory before the
call and guarantee it is loaded afterward.)

Our final two case studies are based on examples from papers
about the XCAP program logic. First, we reimplemented and rever-
ified the main example from the original XCAP paper [24]. This is
an implementation of in-place concatenation of two linked lists,
written in a form that might be output by an ML compiler. Rather



than following a C-style calling convention, the “append” func-
tion’s return pointer is represented as an explicit closure, which
pairs a function pointer with an “environment” argument that the
function expects to be passed when called. The old version of this
example was coded in an assembly language even more idealized
than the one we use in this paper, where malloc and free are in-
structions, rather than library functions that must be implemented.
Nonetheless, despite this disadvantage, our Bedrock version is sub-
stantially simpler. The XCAP version involves about 1500 lines
of very manual proof. Our new version relies on just three of the
four unfolding lemmas used for lists in Section 2.2, 12 Use state-
ments, and a one-line main proof. Our invariants correspond to code
that already appeared explicitly as basic block preconditions in the
XCAP version, so it seems fair to say that we have reduced the
proof burden by two orders of magnitude.

We also verified a cooperative threads library, similar to one im-
plemented in XCAP [25, 26]. That is, the library relies on threads
to yield to other threads, in place of the more common interrupt-
based approach of preemptive threading. Here, the setting of past
work is more challenging, as they verified real x86 code, but the
basic approach is similar. We implement a fair round-robin thread
scheduler, supporting dynamic thread creation, yielding, and exit-
ing. There is a shared global invariant, characterizing the part of
memory that threads may use to communicate with each other.
Each blocked thread also has its own local invariant, which is in-
dexed by the thread’s saved stack pointer. Here is an example spec-
ification that uses the abstract data type of thread schedulers; in
particular, this is the precondition for the yield function.

Definition yieldS := st ~> Ex fr, Ex ginv,
Ex invs, Ex root,
susp ginv (fun sp => sep ([< sp = st#Rsp >]

* ![fr])%Sep) st#Rret
/\ codesOk ginv invs
/\ ![ !{mallocHeap 0} * st#Rsp ==> root

* !{threads invs root} * ![ginv] * ![fr] ] st.

We see explicit quantification over a global invariant ginv.
The susp predicate characterizes when a code pointer (the return
pointer, in this invariant) is safe to suspend, in terms of the global
and local invariants. The local invariant we choose here combines
the frame condition with the requirement that the stack pointer
upon resumption equals the original. The codesOk invariant as-
serts similar properties for all of the suspended threads, as repre-
sented by the functional model invs. Both susp and codesOk are
implemented using second-order quantification. The precondition
ends with a more normal separation logic formula, requiring a valid
malloc heap, a pointer to the scheduler data structure in the first lo-
cal stack slot (found at an address based on stack pointer Rsp), the
scheduler data structure itself, the global invariant, and the frame
condition.

The old XCAP implementation used about 8000 lines of code
just for the proofs of correctness for three basic blocks that imple-
ment key operations on saved thread contexts [26]. A comparable
amount of additional complexity was associated with the thread
scheduler and its data structure. The complete Bedrock implemen-
tation, including assembly code and verification, totals just 250
lines. We again see a reduction of about two orders of magnitude in
the amount of program-state-specific proof.

Of course, counting lines of annotation and proof gives only
an approximation of the human cost of verifying a program. We
would rather know the time spent by a programmer in coming up
with these lines, since some shorter proofs may be harder to find in
practice. Unfortunately, we have not found much data of this kind in
the literature. We can give one piece of anecdotal evidence for the
effectiveness of the Bedrock approach: The authors of the XCAP

cooperative thread scheduling library mention that they spent six
person-months completing it [25]. This figure includes time spent
building and tweaking the verification framework, but we hope it
still gives a good sense of the scale of this sort of effort. In contrast,
starting from no prior code dealing with threads, we coded and
verified our threads library in the course of two days of work.

5. Related Work
We have already discussed the CAP project [15] extensively. That
line of work has been very successful at designing program log-
ics suitable for foundational verification of low-level code, lead-
ing to successful case studies in dynamic thread creation [11], em-
bedded code pointers [24], garbage collection [21], self-modifying
code [3], and hardware interrupts [12]. The Bedrock project takes
these results as its base and adds infrastructure for higher-level
coding and automated verification, demonstrating that foundational
guarantees can be had, for code that manipulates code pointers as
data, without giving up the signature benefits of classical verifica-
tion tools.

Classical verification tools like ESC [14], Boogie [1], and Ja-
hob [31, 32] have been shown to be effective in a variety of verifi-
cation tasks that can be completed using first-order solvers (or addi-
tionally, in the case of Jahob, using an integrated proof language for
a higher-order logic). Hawblitzel and collaborators have done auto-
mated classical verification of garbage collectors [16] and the core
of an operating system kernel [30] with Boogie. Bedrock aims to
take this style of highly productive verification and add three main
benefits. First, we apply the computational approach to specifica-
tion to reduce the need for logical quantifiers and simplify proofs.
Second, we support callable code pointers with polymorphic spec-
ifications. Third, we reduce the trusted code base to a foundational
level, where only the standard Coq proof checker must be trusted to
believe a verification. Foundational verification also opens the door
for integration with proofs that would be hard to write in a classical
verifier but are tractable in general-purpose proof assistants. For ex-
ample, the Verve project [30] aims to integrate a soundness proof
for a typed assembly language; with such a proof and a Bedrock
verification both carried out in Coq, the combined system can have
a simple foundational correctness theorem.

Separation logic has been applied successfully in program anal-
ysis tools, including Smallfoot [2]. Follow-on work on abductive
inference [4] infers procedure specifications that can be used to
prove memory safety, without requiring whole-program analysis.
Alternative shape analysis techniques have been applied automati-
cally in tools like TVLA [29] and XISA [5]. Compared to Bedrock,
these tools have applied to languages at higher levels of abstraction
than assembly, they have not been verified formally, and they do not
support reasoning about code pointers. All of these features con-
tribute to some desirable properties of these other tools: superior
performance and greater applicability to mainstream programming
languages.

McCreight’s Coq tactics for separation logic [20] address simi-
lar concerns to the tactic support presented in this paper, raising the
level of abstraction in proof about imperative low-level programs.
This alternate verification framework satisfies all of our desiderata
from the introduction, with the exception that it is not “mostly-
automated.” Proofs using McCreight’s tactics still involve a signifi-
cant number of manual proof steps, applying such operations as ex-
plicit rearrangement of separating conjunctions using associativity
and commutativity. For example, a useful comparison comes from a
simple in-place linked list reversal function implemented with both
systems. McCreight’s proof includes about 80 atomic tactic calls,
while the Bedrock proof includes about 10 atomic tactic calls and 4
Use statements. About half of McCreight’s atomic tactic calls men-



tion variable or hypothesis names that are bound within the proof;
none of the tactics in the Bedrock proof do.

The computational approach to data structure specification has
been adopted by many projects working within higher-order logics.
Mehta and Nipkow [22] used computational specification without
separation logic, and the combination with separation logic has ap-
peared in work on XCAP [24], Ynot [23], CFML [6], and Veri-
Fast [17].

The Ynot library [7] for Coq supports automated verification of
monadically impure Haskell-like programs annotated with specifi-
cations, using separation logic. Every Coq program is also a valid
Ynot program, so implicit memory management is baked into the
system. Bedrock is designed to apply to languages that are more
realistic for low-level infrastructure. While the Ynot language and
its verification rules are specified with Coq axioms, Bedrock sup-
ports languages defined foundationally with operational semantics.
Bedrock has a few more high-level advantages over Ynot: it ap-
plies frame rules automatically, supports the inlining of quantifier
instantiation hints (Use statements) in programs, and deals with the
compilation of more convenient, higher-level code into lower-level
formats.

The VeriFast [17] verifier has been under development in paral-
lel with Ynot and Bedrock and involves many similar design deci-
sions. Program verification is mostly-automatic, based on computa-
tional separation logic specifications with support for higher-order
reasoning. VeriFast is a standalone tool, with no formal proof of
correctness, which enables better performance and easier integra-
tion of convenience features for programmers. VeriFast also targets
C and Java rather than assembly-level programs. Lack of integra-
tion with a traditional proof assistant may make it harder to carry
out some verifications that rely on reasoning outside the domain of
the standard automation.

The Bedrock approach usually reduces goal facts about program
behavior into sets of quantifier-free facts about normal mathemati-
cal objects like numbers, sets, maps, lists, and trees. So far, we have
proved many of these facts with some amount of manual proof,
since this total burden is not significant compared to the costs of
reasoning concretely about data structures and pointer aliasing. We
might also try taking advantage of recent progress on complete de-
cision procedures [19] for very rich theories that encompass much
of our pure proof obligations. Any such decision procedure should
be relatively straightforward to integrate with Coq, if it can be made
to generate proof witnesses.

6. Conclusion
We have introduced Bedrock, a framework for implementation and
verification of low-level programs in Coq. Bedrock’s key produc-
tivity features center on automatic proof of invariants expressed
with the concepts of separation logic. Unlike other systems pro-
viding similar levels of automation, Bedrock supports reasoning
about first-class code pointers in terms of second-order variables
that stand for unknown invariants. This facility is critical for han-
dling of runtime and operating systems. To the best of our knowl-
edge, ours is the first verified thread library with less than a few
thousand lines of proof. Our implementation fits well within that
mark, with a total of 250 lines, including program code and proofs.

The framework is parametrized over machine languages and
their operational semantics. To date, we have only experimented
with Bedrock instantiated to an idealized language with infinite-
width words. We expect that the approach will continue to work
well for the machine languages of today’s common microarchitec-
tures, though future work is needed to be sure. Effective decision
procedures for bitvector arithmetic are likely to be the main new
requirement.

Bedrock follows a very computational approach to separation
logic, where most imperative functions are specified in terms of
purely-functional “reference implementations.” This allows us to
replace much formal reasoning with execution of programs in the
specification language. Quantified invariants are one of the greatest
challenges for automated verification, and the computational ap-
proach allows us to replace almost all uses of quantifiers with calls
to recursive functions in a functional language.

Most program verification today is done by direct reduction to
domains with effective decision procedures. Even complete pro-
cedures for complex theories like (restricted forms of) transitive
closure can have poor enough performance that the human verifier
must do extra work to guide the procedures. With Bedrock, we fol-
low an alternate approach, where the heart of verification condition
proving is a symbolic procedure for separation logic simplification.
This procedure has a few simple steps that humans can follow with-
out much trouble, and our Coq library provides good support for
stepping through the procedure and animating the moves it makes.
Understanding this process requires no reasoning about “semantic”
theories, just about the syntactic form of separation assertions.

When a program is annotated with some relatively simple in-
variants and invocations of simplification lemmas for abstract pred-
icates, the simplification procedure reduces program correctness to
the truth of quantifier-free facts that refer only to very basic math-
ematical theories. These facts are much easier to reason about than
the original program, and we can hope that most will eventually be
automatable with a few decision procedures. Thus, Bedrock helps
programmers do the “hard parts” of verification with the familiar
activity of programming and solve the remaining problems with
traditional mathematical methods.
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