
1

From Network Interface to Multithreaded 
Web Applications:
A Case Study in Modular Program 
Verification 

Adam Chlipala – MIT CSAIL
POPL 2015
January 17, 2015



2

Whole Program

Systems Infrastructure
(OS kernel, database engine, compiler, ...)

Proof

Application
Proof

Application
Proof

…..........................................

Proof



3

Whole Program

Systems Infrastructure
(OS kernel, database engine, compiler, ...)

Systems Infrastructure

Memory Management Thread Management

Proof

Proof

Blocking IO
Thread Queues

Queues Proof

Proof

Proof

Application
Proof

Application
Proof

…..........................................

Proof



4

Surprisingly few systems-verification projects have used their 
results to connect to proofs of applications that someone is 
actually running.

The modular style also doesn't seem to have been used 
previously to verify infrastructure serious enough to connect to 
real applications.

This talk: a case study doing all of the above
inside Coq,
using the Bedrock framework



5

Deployed on Autonomous Vehicles

Thread Library

Server Thread #1 Server Thread #N…...............

Nonblocking 
Network Syscalls

Malloc Library

Relational Database

Implemented in a C-like 
language & verified semi-
manually

Implemented in a Web-
services DSL with a 
verified compiler



6

Example Module Decomposition:
Nested Threading Abstractions

ready free wait waitLen

...

File record free list
fd inq outq

File records

...

IO polling 
queues

Scheduler

ThreadQueues

queue stack front back

...pc sp pc sp

Queue

ThreadQueue

Backup stack

ThreadQueue

ThreadQueue

...

Malloc
...

Free list
head

Global Invariant
(app-specific)

Local State
(of current 

thread)



7

Plan for Rest of Talk

● Basic stage-setting about this style of verification
● Fundamentals of the Bedrock framework
● Adapting to interface with unverified code in a principled way
● Three “design patterns” of general interest

– Recursive definitions of higher-order, stateful predicates

– Good formal interfaces for threading components

– Modular verification of DSL compilers

● Code & performance



8

Foundational:
Verification leads to a proof checked by a general-
purpose proof assistant (Coq, in this case).
Trusted code base includes just the proof assistant, 
operational semantics of assembly language, and a 
specification for the whole program.

Highly Automated:
Tools should fill in 
most of the boring 
details of proofs.

Higher-Order:
Can use higher-order 
logic to state elegant 
& general specs.

! !
The approach in this case study starts from separation-
logic tools of past work (PLDI 2011, ITP 2014) and adds 
a few new tricks, while also applying them on a much 

larger scale than before.



9

Inventory of Corners Cut

● Proving functional correctness for systems code, but only data-
structure shape invariants for application.

● Performance of verified server is OK, but it's not hard to do 
better.  (Some parts simplified to make proofs easier.)

● Level of proof automation varies across components.  Some 
proofs are fairly manual.  (Overall proof-to-program ratio [~5:1] 
remains well below those reported in related projects
[>= 20:1].)



10

What Should We Trust?

Trusted

Untrusted

Module

code proofspec

Module

code proofspec

+ … +

Module System 
Soundness Proof

Closed Assembly 
Program + proof

Assembly Language 
Operational Semantics

Safety 
Property

Compilation 
Toolchain,

starting from 
assembly



11

Bedrock version of linked list length

Definition lengthS : spec := SPEC("x") reserving 1
  Al ls,
  PRE[V] sll ls (V "x")
  POST[R] [| R = length ls |] * sll ls (V "x").

bfunction "length"("x", "n") [lengthS]
  "n" < 0;;
  [Al ls,
    PRE[V] sll ls (V "x")
    POST[R] [| R = V "n" ^+ length ls |] * sll ls (V "x")]
  While ("x" <> 0) {
    "n" < "n" + 1;;
    "x" <* "x" + 4
  };;
  Return "n"
end.

Theorem sllMOk : moduleOk sllM.
Proof.
  vcgen; abstract (sep hints; finish).
Qed.

This is all Coq code, taking advantage of 
Coq's extensible parser!

Specification

Loop invariant

Proof

Implementation



12

Notations are hiding underlying DSL features for 
XML pattern-matching and generation.
(Network communication is all via XML over HTTP.)

Automatic well-formedness 
proof establishes assumption 
of verified compiler.

Callbacks trigger calls 
to similar functions on 
other nodes.

Manipulates 
relational database 
(simple updates and 
queries).

Program defines 
remote procedure 
call entry points.

RosCommand "setParam"(!string $"caller_id",
                      !string $"key", !any $$"value")
Do
 Delete "params" Where ("key" = $"key");;
 Insert "params" ($"key", $"value");;

 From "paramSubscribers" Where ("key" = $"key") Do
  Callback "paramSubscribers"#"subscriber_api"
  Command "paramUpdate"(!string "/master", !string $"key", $"value");;

 Response Success
  Message "Parameter set."
  Body ignore
 end
end

Theorem Wf : wf ts pr buf_size outbuf_size.
Proof.
  wf.
Qed.

Now Application Code Looks Like:



13

Connecting with Untrusted Support Code
We assume that the following nonblocking system calls exist, 
abstracting a TCP/IP network interface:

// Standard TCP socket operations
fd_t listen(int port);
fd_t accept(fd_t sock);
int read(fd_t sock, void *buf, int n_bytes);
int write(fd_t sock, void *buf, int n_bytes);
void close(fd_t sock);

// epoll-style IO event notification
res_t declare(fd_t sock, bool isWrite);
res_t wait(bool isBlocking);



14

Add System Calls to Operational Semantics

(m, read, r)  (m', r.Rp, r')→

[r.Sp, r.Sp + 16)  ValidMem∈
m[r.Sp + 8] = buf
m[r.Sp + 12] = len

[buf, buf + len)  ValidMem∈
 r'.Sp = r.Sp

∀a. a  [buf, buf + len)  m'[a] = m[a]∈ →

State: (memory, program counter, registers)

{buf  len}→
read(sock, buf, len)

{buf  len}→

?

?

Each op. sem. rule has a 
corresponding separation logic 
rule, proved sound w.r.t. the 
original.  E.g.:



15

ThreadQueue

Stack

Precondition of code:

front back ...pc sp pc sp

ThreadQueue
Stack

Global Invariant:
Application-specific 

and seen by all 
threads

Other thread-local 
state

GI

state

Recursive, Higher-Order, Stateful Predicates



16

A Simpler Case

P(p) ≝ ∃q. p → 42, q ∧ {P(p)} q {P(p)}

“p points to 42 and a function 
pointer whose precondition 

and postcondition are the 
exact same predicate.”

Watch out for recursive 
predicate definitions that 
are inconsistent when 
interpreted naively!  E.g.:

P ≝ ¬P

P(p) ≝ μρ. ∃q. p → 42, q ∧ {ρ} q {ρ}

Allow code modules to come packaged 
with named predicate definitions, 
which can be looked up within specs.
Now the funky reasoning only applies 

when we reason about  the higher-
order parts of a definition.

P(p) ≝ ∃q. p → 42, q ∧ {specOf(“P”)(p)} q {specOf(“P”)(p)}

Bravely going ahead with 
general-recursive predicates!

Requires restrictive side 
conditions throughout 

proofs, to avoid inconsistency.

See paper for: a cute trick to encode named predicates as 
named functions in the code to verify.



17

Specifying a Thread Stack
ThreadQueue module
Parameters: a set of worlds, a global invariant ginv in terms of it, and an evolution relation ≼

∀w. {tq(w, q)  ginv(w, q)}
yield(q)

{ w'. w ∃ ≼ w'  tq(w', q) ∧  ginv(w', q)}

ThreadQueues module
Parameters: like above, except argument to ginv is set of queues, not just one queue

∀w, Q. {tqs(w, Q)  ginv(w, Q)  inq  Q  outq  Q}∧ ∈ ∧ ∈
yield(inq, outq)

{ w', Q'. w ∃ ≼ w'  Q ∧ ⊆ Q'  tqs(w', Q') ∧  ginv(w', Q')}
Use ThreadQueue as a submodule by deriving its parameters from these!

Scheduler module
Parameters: like above, except argument to ginv is hardcoded as set of open files

∀F. {sched(F)  ginv(F)} yield() { F'. F ∃ ⊆ F'  sched(F') ∧  ginv(F')}



18

bfunctionNoRet "handler"("buf", "listener", "accepted", "n", "Sn")
  [handlerS]
  "listener" <-- Call "scheduler"!"listen"(port)
  [Al fs, PREmain[_, R] [| R %in fs |] * sched fs * mallocHeap 0];;
  "buf" <-- Call "buffers"!"bmalloc"(inbuf_size)
  [Al fs, PREmain[V, R] R =?>8 bsize * [| R <> 0 |] * [| freeable R inbuf_size |] * [| V "listener" %in fs|] * sched fs * 
mallocHeap 0];;
  "accepted" <-- Call "scheduler"!"accept"("listener")
  [Al fs, PREmain[V, R] [| R %in fs |] * V "buf" =?>8 bsize * [| V "buf" <> 0 |] * [| freeable (V "buf") inbuf_size |] * [| V 
"listener" %in fs|] * sched fs * mallocHeap 0];;
  "n" <-- Call "scheduler"!"read"("accepted", "buf", bsize)
  [Al fs, PREmain[V] [| V "accepted" %in fs |] * V "buf" =?>8 bsize * [| V "buf" <> 0 |] * [| freeable (V "buf") inbuf_size |] * 
[| V "listener" %in fs|] * sched fs * mallocHeap 0];;
  "Sn" <- "n" + 1;;
  Call "scheduler"!"close"("accepted")
  [Al fs, PREmain[V] V "buf" =?>8 bsize * [| V "buf" <> 0 |] * [| freeable (V "buf") inbuf_size |] * [| V "listener" %in fs|] * 
sched fs * mallocHeap 0 * [| V "Sn" = V "n" ^+ $1 |] ];;
  Call "scheduler"!"close"("listener")
  [Al fs, PREmain[V] V "buf" =?>8 bsize * [| V "buf" <> 0 |] * [| freeable (V "buf") inbuf_size |] * sched fs * mallocHeap 0 * [| 
V "Sn" = V "n" ^+ $1 |] ];;
  Call "buffers"!"bfree"("buf", inbuf_size)
  [Al fs, PREmain[V] sched fs * mallocHeap 0 * [| V "Sn" = V "n" ^+ $1 |] ];;
  Call "sys"!"printInt"("Sn")
  [Al fs, PREmain[V] sched fs * mallocHeap 0 * [| V "Sn" = V "n" ^+ $1 |] ];;
  Exit 100
end

Ltac t := try solve [ sep unf hints; auto ];
  unf; unfold localsInvariantMain; post; evaluate hints; descend;
    try match_locals; sep unf hints; auto.

Theorem ok : moduleOk m.
Proof.
  vcgen; abstract t.
Qed.

Example verification of a client application (echo server)



19

Modular Verification of a DSL Compiler

Idea: Give a feature-modular proof of the DSL compiler.
Define different language features as standalone macros that 

should be usable independently or within other DSLs.



20

StringOps

XmlSearch

XmlOutput

XmlLex

conventional library

code generator

Legend:
NumOps ArrayOps

DbCondition

DbSelect

DbDelete

... ...

XmlLang

DbInsert

Http

HttpQ

XmlProg Base Notations

ROS XML-RPC Notations

notations

[Structure of DSL 
implementation]



21

Performance Test #1: Static Web Server

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

Apache
Bedrock (10 threads)
Bedrock (1 thread)

Number of concurrent requests

T
ra

n
sa

ct
io

n
s/

se
c.



22

Performance Test #2: Robot Directory Server

10 20 30 40 50
0

2

4

6

8

10

12

14

Python
BWS

Number of concurrent nodes

S
e

co
n

d
s 

to
 c

o
m

p
le

te
 t

e
st



23

Thanks for listening!

Summary: It is feasible today to verify a usable system
including both infrastructure and application code,
with a modular reasoning style,
mostly automated proofs,
and a final theorem checked in Coq with minimal trust dependencies.

Bedrock is on the Web at:
http://plv.csail.mit.edu/bedrock/



24

Backup Slides



25

The Bedrock Intermediate Language
W ::= (* width-32 bitvectors *)
L ::= (* program code block labels *)

Reg ::= Sp | Rp | Rv
Loc ::= Reg | W | Reg + W
Lvalue ::= Reg | [Loc]

32
 | [Loc]

8

Rvalue ::= Lvalue | W | L
Binop ::= + | - | *
Test ::= = | != | < | <=

Instr ::= Lvalue := Rvalue | Lvalue := Rvalue Binop Rvalue

Jump ::= goto Rvalue | if Rvalue Test Rvalue then goto L else goto L

Block ::= Instr*; Jump
Module ::= (L: Block)*



26

Verification Foundation: XCAP [Ni & Shao, POPL 2006]

1. Whole programs

_____________________
______________________
______________________
jmp ________________

Precondition

Basic block

…..

…
..

Correct program:
Each precondition is true
each time we reach it.

2. Modules

…..Code:

Assumptions: {spec1}label1, {spec2}label2, …
Proof: Assumptions imply no precondition 

violations within these blocks.

3. Linking

+ =


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

