
Generating Tests from Counterexamples
�

Dirk Beyer Adam J. Chlipala
Thomas A. Henzinger Ranjit Jhala

Electrical Engineering and Computer Sciences
University of California, Berkeley, USA

Rupak Majumdar

Computer Science Department
University of California, Los Angeles, USA

Abstract

We have extended the software model checker BLAST to
automatically generate test suites that guarantee full cover-
age with respect to a given predicate. More precisely, given
a C program and a target predicate � , BLAST determines
the set � of program locations which program execution can
reach with � true, and automatically generates a set of test
vectors that exhibit the truth of � at all locations in � . We
have used BLAST to generate test suites and to detect dead
code in C programs with up to 30 K lines of code. The anal-
ysis and test-vector generation is fully automatic (no user
intervention) and exact (no false positives).

1. Introduction

In recent years software model checking has made much
progress towards the automatic verification of programs. A
key paradigm behind some of the new tools is the principle
of counterexample-guided abstraction refinement [2, 18, 5].
The input to the model checker is both the program source
and a monitor automaton [31, 15], which observes if a pro-
gram trace violates a temporal safety specification, such as
adherence to a locking or security discipline. The checker
attempts to verify a program abstraction, and if the verifica-
tion fails, it produces a path that violates the specification.
If this abstract path does not correspond to a concrete trace
of the program —i.e., the path is infeasible— then the ab-
straction is automatically refined in a way that removes the
infeasible path. The entire process is repeated until either
an error trace of the program (a so-called “counterexam-
ple”) is found, or the absence of such traces is guaranteed.
In this way, large Windows and Linux device drivers have
been checked without user intervention, and without gener-
ating false positives [2, 18].

� This research was supported in part by the NSF grants CCR-0085949,
CCR-0234690, and ITR-0326577.

The information provided by traditional model check-
ers, however, is limited. In particular, the software engi-
neer is often interested not in obtaining a particular pro-
gram trace that violates a given temporal property, but in
the set of all program locations where the property may be
violated: given a predicate � , the programmer may wish to
know the set of all program locations � that can be reached
such that � is true at � . For example, when checking the se-
curity properties of a program it is useful to find the loca-
tions where the program has root privileges. We have ex-
tended the model checker BLAST1 [18] to provide this kind
of information. As a special case (take � to be the predicate
that is always true), BLAST can be used to find the reach-
able program locations, and by complementation, it can de-
tect dead code.

Moreover, if BLAST claims that a certain program loca-
tion � is reachable such that the target predicate � is true
at � , then from the program trace that exhibits � at � , the
tool automatically produces a test vector that witnesses the
truth of � at � . This feature enables the software engineer
to pose reachability queries about the behavior of a pro-
gram, and to automatically generate test vectors that sat-
isfy the queries [27]. Technically, we symbolically execute
the counterexample trace produced by the model checker,
and extract a satisfying assignment of the symbolic con-
straints as a test vector. In particular, for a predicate � and
its negation, the tool automatically generates for each pro-
gram location � , if � is always true at � , a test vector that
exhibits � at � ; if � is always false at � , a test vector that ex-
hibits ��� at � ; and if � may be true or false at � , then two
test vectors, one that exhibits the truth of � at � , and an-
other one that exhibits the falsehood of � at � . In this way,
BLAST generates more informative test suites than any tool
that is purely based on coverage, because the program loca-
tions of the third kind are each covered by two test vectors
with different outcomes.

Often a single test vector covers the truth of � at many
locations, and the falsehood of � at others, and BLAST

1 Available at http://www.eecs.berkeley.edu/ � blast.

produces a small set of test vectors that provides the de-
sired information. It is essential that BLAST uses incremen-
tal model checking technology [17], which reuses partial
proofs and counterexamples as much as possible. We have
used our extension of BLAST to query C programs with
30 K lines of code about locking disciplines, security dis-
ciplines, and dead code, and to automatically generate cor-
responding test suites.

There is a rich literature on test-vector generation us-
ing symbolic execution [8, 23, 30, 21, 14, 12, 22]. Our
main insight is that given a particular target, one can guide
the search to the target efficiently by searching only an
abstract state space, and refining the abstraction to prune
away infeasible paths to the target found by the abstract
search. This is exactly what the model checker does for
us. In contrast, unguided symbolic-execution based meth-
ods would have to precisely execute many more paths, re-
sulting in scalability problems. Therefore, most research on
symbolic-execution based test generation curtails the search
by bounding, e.g., the number of iterations of loops, or the
size of the input domain [20, 4, 22]. Unfortunately, this
makes the results incomplete: if no trace to the target is
found, one cannot conclude that no execution of the pro-
gram reaches the target. Of course, once a suitable trace to
the target is found, all previous methods to generate test vec-
tors still apply.

This is not the first attempt to use model checking tech-
nology for automatic test-vector generation. However, the
previous work in this area has followed very different di-
rections. For example, the approach of [19] considers fixed
boolean abstractions of the input program, and does not au-
tomatically refine the abstraction to the degree necessary
to generate test vectors that cover all program locations for
a given set of observable predicates. Peled [28] proposes
three further ways of combining model checking and test-
ing. Black-box checking and adaptive model checking as-
sume that the actual program is not given at all or not given
fully. Unit checking [13] is the closest to our approach in
that it generates test vectors from traces, however, these
traces are not found by automatic abstraction refinement.

2. Overview

We first give an overview of the method using a few
small examples. Consider the program of Figure 1(a), which
computes the middle value of three integers. The program
takes three inputs and invokes the function middle on
them. A test vector for this program is a triple of input val-
ues, one for each of the variables x,y,z. The right column
of Figure 1(b) shows the control-flow automaton (CFA) for
middle. The CFA is essentially the control-flow graph of
middle with the control locations as nodes, and edges la-
beled by the operations that take the program from one node

to the next —either basic blocks of assignments, or predi-
cates that correspond to branch conditions which must be
true for control to flow across an edge. For brevity, we omit
the CFA for the main function. We first consider the prob-
lem of location coverage, i.e., we wish to find a set of test
vectors such that for each location of the CFA, there is some
test vector in the set that drives the program to that location.

Phase 1. Model checking. To find a test vector that takes
the program to location L5, we first invoke BLAST to check
the property that L5 is reachable. BLAST proceeds by iter-
ative abstraction refinement to check that L5 is reachable
and, if this is the case, it finds a counterexample, i.e., a trace
to L5 in the CFA. This trace is given by the following se-
quence of operations:m=z; assume (y<z); assume
(x<y); where the first operation corresponds to the as-
signment upon entry, and the second and third (assume)
operations correspond to the first two branch conditions be-
ing taken.

Phase 2. Tests from counterexamples. In the second step,
we use the counterexample trace from the model-checking
phase to find a test vector, i.e., an initial assignment for
x,y,z that takes the program to location L5. This is done
as follows. First, we build a trace formula (TF), which is
a conjunction of constraints, one constraint per operation
in the trace. In this case the formula is ���������
	�����
����	��������� . Second, the feasibility of the trace implies
that the TF is be satisfiable, and we find a satisfying assign-
ment to the formula, e.g., “x=0,y=1,z=2,m=2”, which
after ignoring the value for m, gives a test vector that takes
the program to L5.

We repeat these two phases for each location, noting that
one input takes us to several locations —those along the
trace— until we have a set of test vectors that covers all lo-
cations of the CFA. Along with each test vector, BLAST also
produces a trace in the CFA that is exercised by the test. A
set of test vectors for node coverage of middle is shown
in Figure 2. Each row in the table gives an input vector —
initial values for x,y,z— and the corresponding trace as
a sequence of locations. For example, the vector of test val-
ues for the target location L12 is (1,0,1), and BLAST re-
ports the trace � L1,L2,L3,L6,L10,L12 � , which is easy
to understand with the help of the CFA in Figure 1(b). The
trace is a prefix of the complete program execution for the
corresponding test vector.

The alert reader will have noticed that the tests do not
cover all locations; L13 and L15 remain uncovered, as de-
noted by the absence of shading in Figure 1(b). It turns out
that BLAST proves that these locations are not reachable —
i.e., they are not visited for any initial values of x,y,z—
and hence there exists dead code in middle. A close anal-
ysis of the source code reveals that a pair of braces is miss-
ing, and that the indentation is misleading for the code with-

#include <stdlib.h>
#include <stdio.h>

int readInt(void);

int middle(int x, int y, int z) {
L1: int m = z;
L2: if(y < z)
L3: if(x < y)
L5: m = y;
L6: else if(x < z)
L9: m = x;

else
L10: if(x > y)
L12: m = y;
L13: else if(x > z)
L15: m = x;
L7: return m;
}
int main() {
int x, y, z;
printf("Enter the 3 numbers: ");
x = readInt();
y = readInt();
z = readInt();
printf("Middle number: %d", middle(x,y,z));

}

L1

L2

Block(m = z;)

L7

Pred(Not (y<z))

L3

Pred(y<z)

L8

Block(return m;)

L6

Pred(Not (x<y))

L5

Pred(x<y)

L10

Pred(Not (x<z))

L9

Pred(x<z)

L13

Pred(Not (x>y))

L12

Pred(x>y)

Pred(Not (x>z)) L15

Pred(x>z)

Block(m = x;)

Block(m = y;)

Block(m = x;)

Block(m = y;)

Figure 1. middle (a) Program (b) CFA

out braces: the if on L6matches the else after L9, which
is meant for the if on L2.

Executing tests. To execute the generated tests, we auto-
matically build a test driver from the given program. We
feed the program and the name of the initial function from
which the program’s execution begins, into BLAST’s test-
driver generator, which results in a C program that is com-
piled into a test driver. The test driver reads a file containing
a set of test vectors we wish to run, and executes the pro-
gram being tested using the vectors as input values. The user
may run the driver in a debugger to study the dynamic be-
havior of the program under the various test inputs.

A security example. We now show how BLAST can offer
help to the programmer to check for security vulnerabilities
in programs. Figure 3 shows a simple program that manipu-
lates Unix privileges using setuid system calls. Unix pro-
cesses can execute in several privilege levels; higher privi-
lege levels may be required to access restricted system re-
sources. Privilege levels are based on process user id’s. Each
process has a real user id, and an effective user id. The se-
teuid system call is used to set the effective id, and hence
the privilege level of a process. The user id 0 (or root) al-

x y z Counterexample Trace
0 0 0 � L1,L2,L7,L8 �
0 1 2 � L1,L2,L3,L5 �
0 0 1 � L1,L2,L3,L6,L9 �
1 0 1 � L1,L2,L3,L6,L10,L12 �

Figure 2. Generated test vectors for middle

lows a process full privileges to access all system resources.
We assume for our program that the real user id of the pro-
cess is not zero, i.e., the real user does not have root privi-
leges. This specification is a simplification of the actual be-
havior of setuid system calls in Unix [7], but is sufficient
for exposition.

The main routine first saves the real user id and
the effective user id in the variables saved uid and
saved euid, respectively, and then sets the effec-
tive user id of the program to the real user id. This last op-
eration is performed by the function call seteuid. The
function get root privileges changes the effec-
tive user id to the id of the root process (id 0), and re-
turns 0 on success. If the effective user id has been set
to root, then the program does some work (in the func-
tion work and drop privileges) and sets the effec-
tive user id back to saved uid (the real user id of the
process) at the end (L9). To track the state changes in-
duced by the setuid system calls, we instrument the code
for the relevant system calls as follows. The user id is ex-
plicitly kept in a new integer variable uid; the getuid
function is instrumented to return a nonzero value (model-
ing the fact that the real user id of the process is not zero);
and the geteuid function is instrumented to nondeter-
ministically return either a zero or a nonzero value. Finally,
we change the seteuid(x) system call so that the vari-
able uid is updated with the argument x passed to se-
teuid as a parameter. The instrumented versions are
omitted for brevity.

int saved uid, saved euid;

int get root privileges () �
L1: if (saved euid!=0) �
L2: return -1;�
L3: seteuid(saved euid);
L4: return 0;�

work and drop priv() �
L5: FILE *fp = fopen(FILENAME,"w");
L6: if (!fp) �
L7: return;�
L8: // work
L9: seteuid(saved uid);�

int main(int argc, char *argv[]) �
L10:saved uid = getuid();
L11:saved euid = geteuid();
L12:seteuid(saved uid);
L13: // work under normal mode
L14:if (get root privileges ()==0) �
L15: work and drop priv();�
L16:execv(argv[1], argv + 1);�

Figure 3. The setuid example program

L10: saved_uid = getuid();
/* body of getuid omitted */

L11: saved_euid = geteuid();
/* body of geteuid omitted */
/* geteuid returns 0 */

L12: seteuid(saved_uid);
/* uid = saved_uid */

L14: tmp = get_root_privieleges();
L1: if (saved_euid!=0) /* fails */
L3: seteuid(saved_euid);
/* uid = saved_euid */
L4: return 0;

L14: if (tmp==0) /* succeeds */
L15: work_and_drop_priv();
L5: fp = fopen(FILENAME, ‘‘w’’);
L6: if (!fp) /* succeeds */
L7: return;

L16: /* uid = 0 */

Figure 4. A trace generated by BLAST

Secure programming practice requires that certain sys-
tem calls that run untrusted programs should not be made
with root privileges [6], because the privileged process has
full permission to the system. For example, calls to exec
and system must never be made with root privileges.
Therefore it is useful to check which parts of the code may
run with root privileges.

We use the model checker BLAST in test mode to check
which code lines can be executed with root privileges. More
specifically, we ask the model checker to output all loca-
tions that are reachable in the program, with uid=0 as
target predicate (which indicates root privileges). For each

such location, BLAST generates a test vector that causes the
program to reach that location with the system being in a
state where uid=0.

The BLAST output shows, surprisingly, that the execv
system call can be executed with root privileges. An in-
spection of the symbolic program trace generated by the
model checker (Figure 4) shows that there is a bug in the
work and drop privileges function: if the call to
fopen fails, the function returns without dropping root
privileges.

Organization. Section 3 gives an overview of the model-
checking algorithm, which finds program traces (“coun-
terexamples”) to specified locations. Section 4 shows how
test vectors are generated from counterexamples, how suf-
ficiently many counterexamples are obtained to guarantee
coverage for the resulting test suite, and how the corre-
sponding test driver is constructed from the program. In
Section 5 we conclude by presenting some applications and
experimental results.

3. Verification with BLAST

3.1. Programs

Syntax. Our representation for a C program is a control-
flow automaton (CFA), which is a tuple ����� �����
	������������� ,
where � is a finite set of control locations, ��� is the ini-
tial control location, 	 is a set of typed variables, ����� is
a set of operations on 	 , and ��� ��������������� � is a fi-
nite set of edges labeled with operations. An edge � ����� ��� �"! �
is also denoted �$#&%' � �(! . The set ����� of operations contains
(1) basic blocks of instructions, i.e., finite sequences of as-
signments lval = exp, where lval is an lvalue from 	
(a variable, structure field, or pointer dereference), and exp
is an arithmetic expression over 	 ; and (2) assume predi-
cates)*�+�-,".�/ �0� � , where � is a boolean expression over 	
(arithmetic comparison or pointer equality), representing a
condition that must be true for the labeled edge to be taken.
Any C program can be converted to this representation [26].

Currently, the test extension of BLAST has been imple-
mented only for integer variables, i.e., all variables in 	
have the type integer. Moreover, for ease of exposition, we
describe our method only for programs (and CFAs) without
function calls; it can be extended to handle function calls
in a standard way (and function calls are handled by the
BLAST implementation).

Semantics. A data valuation is a type-preserving function
from 	 to values. A region is a quantifier-free first-order
formula over some fixed set of relation and function sym-
bols. We use regions to represent sets of data valuations,
i.e., a region 1 represents all data valuations that satisfy 1 .
Let 2 be the set of regions. The semantics of operations is

given in terms of the strongest-postcondition operator [10]:� � � 1(��� � � of a region 1 with respect to an operation � � is the
strongest formula (in the implication ordering) whose truth
holds after �*� terminates when executed in a valuation that
satisfies 1 . For a formula 1�� 2 and operation �*�����(��� , the
formula � � � 1(�
�*� ����2 is syntactically computable; in par-
ticular, after Skolemization, the strongest postcondition is
again a quantifier-free formula.

For a predicate � over program variables, a � -trace is a
path � � #&% �'�' �����	� #&%�
' ' � ��� through the CFA such that the for-
mula � � ��	� � � � � � � ������������� ��� � �
� ��� ��	� ���� � � � 	 � is satis-
fiable. A location ��� � is � -reachable in � if there is a
� -trace ending at � .

3.2. Reachability Trees

Let � � � � �"! ��# � � be a (finite) rooted tree, where each
node #$�%� is labeled by a pair � ���
1 �&��� � 2 , each edge' �(! is labeled by an operation � �)� �(��� , and # �*�(� is
the root node. We write #,+ � ���
1 � if node # is labeled by lo-
cation � and region 1 ; we say that 1 is the reachable region
of # . If there is an edge from #&+ � ���
1 � to #*!�+ � �(! ��1(! � labeled
by �*� , then node # ! is an � � ��� �(! � -child of node # . The la-
beled tree � is a complete reachability tree for the CFA �
if (1) the root is # � + � � � ��� ����� � , where � � is the initial lo-
cation of the CFA; (2) each internal node #-+�� ���
1 � has an
� � �+� � ! � -child # ! + � � ! �
1 ! � iff there is an edge � #&%' � � ! of �
and � � � 1(��� � �/. 1(! ; and (3) for each leaf node #0+ � ���
1 � , ei-
ther � has no successors in � , or there are internal nodes
� + � ���
1 � ��	�	 ��#�1&+ � ���
1�1 � such that 12. � 1 �43 �	 3 151 � .
Intuitively, a complete reachability tree is a finite unfold-
ing of the CFA whose nodes are annotated with regions,
and whose edges are annotated with corresponding opera-
tions from the CFA.

For a set 6 �7� of leaf nodes of � , the pair �8� �"6 � is
a partial reachability tree for � if conditions (1) and (2)
hold, and (3 !) for each leaf node #2+ � ���
1 � , either #9�:6 ,
or � has no successors in � , or there are internal nodes
# � + � ����1 � ��	�����#�1;+ � ���
151 � such that 1<. � 1 �=3 �	 3 151 � . A
partial reachability tree is a prefix of a complete reachabil-
ity tree, where the nodes in 6 have not yet been unfolded.

Let � be a CFA location and � be a predicate over pro-
gram variables. A complete reachability tree � for � is
safe w.r.t. � ��� � � if every tree node #>+
� ���
1 � is such that
� 	 1?.A@CBEDGF�� . A complete reachability tree that is safe
w.r.t. � ��� � � demonstrates that � is not � -reachable.

Theorem 1 [18] Let � be a CFA, � a predicate, and � a
complete reachability tree for � . For every location � of � ,
if � is safe w.r.t. � ��� � � , then � is not � -reachable in � .

3.3. The Verification Algorithm

The model-checking algorithm of BLAST takes as in-
put a CFA � , a partial reachability tree �8� �H6 � , and a
pair of � ��� � � , where � is a target location and � a tar-
get predicate. Provided it terminates, the algorithm re-
turns with one of two outcomes: either I � , a complete
reachability tree � ! that is safe w.r.t. � ��� � � , or I � , a par-
tial reachability tree �8� ! �"6 ! � that has a path from the
root node J � + � � � �	������� � #&% �'�' �K�	��� #&%
' ' �LJ(+ � ���	� � such
that � � #&% �'&' �K����� #&%M
' ' � � is a � -trace. In the former case,
from Theorem 1 we conclude that � is not � -reachable
in � ; in the latter case, we shall extract from the pro-
gram trace a test vector that drives the program to the lo-
cation � such that at � , the program variables satisfy the
predicate � .

The BLAST algorithm implements an abstract–check–
refine loop, where abstraction is done lazily [18]. We give
only a brief outline of this algorithm. The abstract reachabil-
ity tree is built in two phases: forward reachability and back-
ward counterexample-driven refinement. At each point, the
algorithm maintains a finite set of abstraction predicates.
In the forward reachability phase, the algorithm searches
the program state space to construct a complete reachabil-
ity tree. Each path in the tree corresponds to a path in the
CFA. Each node of the tree is labeled by a reachable re-
gion, which is an overapproximation of the actual reach-
able states of the program along the path from the root in
terms of the abstraction predicates. If a complete reacha-
bility tree is constructed and no path to � is found in the
tree, then the algorithm stops and returns the complete tree
(I �). This phase is guaranteed to either terminate or find
a path to � relative to the current set of abstraction predi-
cates [18]. If we find a path to � in the tree, then we pro-
ceed to the second phase, which checks if the path to � cor-
responds to a program trace, or results from the abstrac-
tion being too coarse (i.e., we lost too much information by
restricting ourselves to a particular set of abstraction predi-
cates). In the former case, we have found a � -trace to � in the
tree and we return the current partial tree ��I � � . In the lat-
ter case, BLAST asks a theorem prover to suggest additional
abstraction predicates, which rule out that particular infea-
sible path, and repeats the first phase with the extra predi-
cates.

4. Testing with BLAST

4.1. The Testing Framework

Testing is usually carried out within a framework com-
prising (1) a suitable representation of the program, (2) a
representation for test vectors, and a set of test vectors
called a test suite, (3) an adequacy criterion that determines

whether a test suite adequately tests the program, (4) a test
generation procedure that generates an adequate test suite,
and (5) a test driver that executes the program with a given
test vector by automatically feeding input values from the
vector.

Programs and tests. We use CFAs as our representation of
programs. This representation is very similar to the control-
flow graphs [1] used in many testing frameworks. A test
vector is a sequence of input data required for a single run
of the program. This sequence contains the initial values for
the formal parameters of the program, and the sequence of
values supplied by the environment whenever the program
asks for input. In other words, in addition to input values,
the test vector also contains a sequence of return values for
external function calls. For example, when testing device
drivers, the test vector would contain a sequence of suit-
able return values for all calls to kernel functions made by
the driver, and a sequence of values for data read off the de-
vice.

Target predicate coverage. Ideally, one would like the test
suite to exercise all execution paths of the program (“path
coverage”), and thus expose any errors that the program
may have. As such test suites will be infinitely large for
most programs, the notions of location and edge coverage
are used to approximate when a program has been tested
sufficiently[25, 29].

We use the following notion of target predicate cover-
age: given a C program in the form of a CFA, and a target
predicate � , we say a test vector covers a location � of the
CFA w.r.t. � if the execution resulting from the vector takes
the program into a state where it is in location � and the
variables satisfy the predicate � . We deem a test suite ade-
quate w.r.t. � if all � -reachable CFA locations are covered
w.r.t. � by some vector in the suite.

For example, consider the program in Figure 3 and the
target predicate uid=0. The algorithm outputs tests vec-
tors for all locations that the program can reach with the
value of uid being 0. As another case, suppose that the tar-
get predicate � is � ����� . Then the test-generation algorithm
outputs test vectors for all reachable CFA locations. Fur-
thermore, BLAST reports all CFA locations that are (prov-
ably) unreachable by any execution, as dead locations (they
correspond to dead code). If we run BLAST on a program
with both predicates � and ��� , then for all CFA locations
� that can be reached with � either true or false, we ob-
tain two test vectors —one that causes the program to reach
� with � true, and another one that causes the program to
reach � with � false.

The notion of target predicate coverage corresponds to
location coverage (“node coverage”) if � � ������� . For edge
coverage, for an edge ' that represents a branch condi-
tion � � , we can find a test that takes the program to the
source location of ' with the state satisfying the predi-

Generator

Pred
Target Program

Test Test
DriverSuite

Testing

Generator
Test DriverTest Suite

Figure 5. Test flow

cate � � , thus causing the edge ' to be traversed in the sub-
seqent execution step. We can similarly adapt our technique
to generate tests for other testing criteria [19, 29]; we omit
the details.

Test flow. The overall testing framework as implemented
in BLAST is shown in Figure 5. A program and a target
predicate are fed as inputs. The test-suite generation pro-
cedure takes the program and the target predicate as input
and produces an adequate test suite, i.e., one such that ev-
ery � -reachable CFA location is covered w.r.t. � by some
test vector in the suite. The test-driver generation proce-
dure takes the program as input and produces another pro-
gram, the test driver, that runs the original program on the
test inputs. The test driver has a wrapper function for all ex-
ternal function calls, which returns values from the test vec-
tor to the program.

In the following subsections we describe how to gener-
ate an adequate test suite, and how to generate a test driver
that can execute the program on the test vectors in the suite
in order to allow developers to see how the program be-
haves on the generated tests.

4.2. Test Suite Generation

Recall that the model-checking algorithm described in
the previous section takes as input a partial reachability tree
and a pair � ��� � � of target location and target predicate, and
returns either with outcome I � , a complete reachability tree
� that is safe w.r.t. � ��� � � , or with outcome I � , a partial
reachability tree that contains a node #2+ � ����� � such that the
path from the root to # corresponds to a � -trace ending at � .
Given a program and a target predicate � , the test-suite gen-
eration now proceeds as follows.

Step 1. The locations of the CFA are numbered in depth-
first order, and put into a worklist in decreasing order of the
numbering (i.e., the location numbered last in DFS order is
first on the worklist). We create an initial partial reachabil-
ity tree � � �"6 � , where � is a tree with a single node, namely

the root # �-+ � � ����� ����� � , and 6 is the singleton set contain-
ing # � . The initial test suite is the empty set.

Step 2. If the worklist is empty, then we return the cur-
rent test suite; otherwise let � be the first CFA location in
the worklist. We invoke the model checker with the partial
reachability tree � � �"6 � and � ��� � � , and we update the cur-
rent reachability tree with the result of the model checking.

Step 3. If the model checker returns with outcome I � , then
we conclude that for all locations �"! such that the new reach-
ability tree � � ! �"6 ! � is safe w.r.t. � �(!�� � � , no test vector exists,
and so we delete all such locations from the worklist. Oth-
erwise, if the model checker returns with outcome I � , then
we have a � -trace to the location � . We use this trace to com-
pute a test vector that covers the location � w.r.t. � using a
procedure described below. We add this vector to the test
suite, and remove � from the worklist. In both cases, we go
back to step 2.

It can be shown that upon termination, the above proce-
dure returns a test suite that is adequate w.r.t. � according to
our criterion of target predicate coverage.

We incorporate several optimizations to the above loop.
First, when a test vector is found, we can additionaly find
(by symbolically executing the program on the vector)
which other locations it covers, and we remove those lo-
cations from the worklist. Second, the model-checking al-
gorithm uses heuristics to choose the next node to unfold in
the partial reachability tree. The nodes that need to be un-
folded are partitioned into those that have been covered by
a vector in the current test suite, and those that are still un-
covered. The model checker unfolds uncovered nodes first,
and it unfolds covered nodes only if there remain no uncov-
ered nodes. A node that has been covered by a previous test
may still need to be unfolded, because a path to an (as yet)
uncovered location may go through it. Third, the user has
the option to give a time-out for the model checking. Thus
in step 3, if instead of I � or I � , the model checker times
out, then we give up on the location � , by deleting it from
the worklist and going back to step 2.

We have found these optimizations to be essential for the
algorithm to work on large programs.

Generating tests from traces

When model checking in step 2 ends with outcome I � ,
the resulting tree contains a path to a node # +�� ���
1 � such
that the path corresponds to a � -trace ending at � . We now
describe how to extract from this trace a test vector that,
when fed to the program, takes it to location � satisfying the
target predicate � .

To decide whether a path in the tree represents a program
trace (i.e., the path is feasible), the model checker encodes
the path symbolically as a set of constraints on the program
variables such that the path corresponds to a trace iff the set

of constraints is satisfiable [23, 9, 16]. The symbolic evalu-
ator in BLAST handles arithmetic operators as well as alias-
ing relationships between program variables. Once path fea-
sibility has been established, we call the satisfiable conjunc-
tion of constraints that arise from the path, the trace formula
(TF). We use a decision procedure to produce a satisfying
assignment for the variables of the TF. From the satisfying
assignment we build a test vector that drives the program to
the target location and target predicate. Instead of describ-
ing how the procedure works for all C programs, we restrict
ourselves here to programs without function calls and with-
out pointers, and we assume that all variables are integers;
see [16] for the complete procedure.

Constraint generation. To denote the values of program
variables at various point in a trace, we introduce special
constants, each of which is a pair consisting of a variable
name and a natural number. For example, the pair � � � � � is
a constant denoting the value of the variable � at the begin-
ning of the trace. We use lvalue maps to generate these spe-
cial constants as needed. An lvalue map is a function � from
the set ���EBED F of lvalues to � . At every point in the trace, the
pair ���*�	� ��� � � is the special constant that denotes the value
of the lvalue � (variable, structure field, or pointer derefer-
ence) at that point of the trace. Whenever an lvalue � is up-
dated, we update the lvalue map so that subsequently a fresh
constant is used to denote the value of � . More precisely,
the operator
��� : ������B�DGF ��� � ���������	� � � ������B�DGF ��� �
takes an lvalue map � and a set � of lvalues, and returns a
new map �"! such that ��!��� ��� �� if ���� � , and otherwise
�"!� � �"!�# for a fresh number !�# . The function $ ��% takes an
lvalue map � and an lvalue � , and returns the pair ���*�&� ����� � .
The function $ ��%� � is extended to expressions and predi-
cates in the natural way. A new lvalue map is one whose
range is disjoint from all other lvalue maps.

Given a trace, the corresponding TF is generated induc-
tively by the function �('*) , as a conjunction of constraints.
An atomic operation is either an assignment to an lvalue, or
an assertion about lvalues in the form of an assume predi-
cate. The function �('*) takes a pair consisting of an lvalue
map � and a formula + (representing a partial TF), as well as
a finite sequence , of atomic operations (representing the re-
mainder of the trace), and returns a pair consisting of a new
lvalue map and a new formula. Let ��� be the lvalue map that
maps all variables to

�
. Given a sequence , of atomic oper-

ations, suppose that ��'-)= �.�-�+��� ����� �� , � �.� �&+ � . It can be
shown, by induction on the length of , , that the formula + is
satisfiable iff , can be executed, i.e., all assertions in , eval-
uate to true. In other words, if + is satisfiable, then , corre-
sponds to a trace of the program, and + is its TF.

The function �('*) is defined in the first three rows of Fig-
ure 7. For an assignment, we first update the lvalue map to
introduce a new constant denoting the new value of � , and
the constraint for the operation states that the new constant

Example() �
if (y == x) assume (y=x) ����� � � � ��� � � � ��� � � ���� � ���� �
y ++ ; y = y+1 ������� � � ����� � ����� ����� � ���� � �	�� �

if (z <= x) assume !(z<=x) � � �*� � ��
 ��� � � � ������� ������ �����
y ++ ; ��� � � ���� �

a = y - z; a = y-z ����� � � � ������� � ' ��� � � � ����� � ���� ' �
if (a < x) assume (a<x) ����� � �� ��� � � �
LOC:�

(a) Program (b) Trace (c) Trace formula (d) Assignment (e) Test vector

Figure 6. Generating a test vector
� �������������! #"$� �

%'&)(����*��+ -,.�0/21435� ��*�� %6& /21435� ��� ("7"
where

��* &984:�; � ��� < %>=
?>@A@CB�D (�FEG" ���G�! ,./2143A� ��� E�"

�IHKJ �+L ���������K�������������! #"$� �$H$"$� �7L

Figure 7. Building a trace formula

for � has the same value as the expression ' (with appro-
priate constants plugged in). For an assertion, the generated
constraint stipulates that the constants at that point satisfy
the assume predicate. The third row shows how the func-
tion �('-) works on a sequence of operations.

Figure 6(a) shows a program, and Figures 6(b) and 6(c)
show, respectively, a trace to the program location LOC, and
the TF for that trace. The constraint for each atomic opera-
tion of the trace is shown to the right of the operation; the
TF is the conjunction of all constraints.

Tests from constraints. The TF is a conjunction of con-
straints about special constants of the form �NM �&! � , each of
which is an arithmetic fact that relates the values of pro-
gram variables at various points in the trace. In our experi-
ence, many programs generate linear arithmetic constraints.
Thus, we can find a satisfying assignment for the TF using
an integer linear programming (ILP) solver. For a satisfiable
formula + , let O= + be a satisfying interpretation of all spe-
cial constants that occur in the formula. A test vector that
exercises the trace , is obtained by setting every input vari-
able � of the program to the initial value O= + ��� � � � .

Figure 6(d) shows a satisfying interpretation for the spe-
cial constants of the TF of Figure 6(c). It is easy to check
that if we set the inputs initially to “x=0, y=0, z=2,”
then the program follows the trace of Figure 6(b). The gen-
erated test vector is shown in Figure 6(e).

Pointers. The above method can be extended to programs
with pointers. We first generate the TF from whose satisfy-
ing assignment we obtain a test vector as described above;
the details of the TF generation are given in in [16]. The re-

sulting TF contains disjuncts due to possible aliasing. There
are two ways to deal with this. First, we can convert the for-
mula to DNF and check each disjunct separately, and on
finding a satisfiable disjunct, we can extract a test vector
from a satisfying assignment of the disjunct. Second, we can
use efficient decision procedures for propositional satisfia-
bility [24] to find a possibly satisfiable disjunct, and then use
the ILP solver to find a satisfying assignment for that dis-
junct, from which again the tests are computed as discussed
above. Many off-the-shelf decision procedures already in-
corporate this style of propositional reasoning [11, 32, 16].
Of course, there are programs for which our constraint-
based test-generation strategy fails because the given con-
straint language is not expressive enough.

Library calls. If a trace contains library calls whose source
code is not available for analysis, or asks for user input,
the constraint generation assumes that the library call or the
user can return any value. Thus, some of our tests may not
be executable if the library calls always return values from
some subset of possible values. In this case, the user can
model postconditions on library calls by writing stub func-
tions that restrict the possible return values.

4.3. Test Driver Generation

Recall that a test vector generated by BLAST is a se-
quence of integer values (our test-vector generation is cur-
rently restricted to integer inputs): these are the values that
are fed to the program by the test driver during the actual
test; they include the initial values for all formal parame-
ters and the return values for all external function calls.

The test-driver generator takes as input the original pro-
gram and instruments it at the source-code level to create a
test driver containing the following components: (1) a wrap-
ping function, (2) a test-feeding function, and (3) a modified
version of the original program. The test driver can then be
compiled and run to examine the behavior of the original
program on the test suite. It can be run on each individual
test vector and the user can study the resulting dynamic be-
havior as she pleases, by using a debugger for example.

The wrapper is the main procedure of the driver: it reads
a test vector and then calls the main function of the original
program, passing it initial values for the parameters from
the vector. The driver generator modifies the code of the
program being tested by replacing every call to an exter-
nal function with a call to the special test-feeding function.
The test-feeding function reads the next value from the test
vector and returns it. We are guaranteed that the vector will
have taken the program to the target when the test-feeding
function has consumed the entire vector. Hence, once the
test vector is consumed, the feeder returns arbitrary values.

5. Applications and Experiments

We ran BLAST to generate test suites for several pro-
grams. We used two sets of benchmark programs: a set
of Microsoft Windows device drivers, and two security-
critical programs. The results are summarized in Table 1.
The programs kbfiltr, floppy, cdaudio, parport,
and parclass are Microsoft Windows device drivers. The
program ping is an implementation of the ping utility, and
ftpd is a Linux port of the BSD implementation of the ftp
daemon. The experiments were run on a 3.06 GHz Dell Pre-
cision 650 with 4 GB of memory.

We present results for checking the reachability of code.
In these experiments, the specification was trivial (i.e., the
target predicate was � �����): we checked which program loca-
tions are live (reachable by some execution) and dead (not
reachable by any execution), and we generated test vectors
that cover all live locations. Syntactically plausible execu-
tions (for example, control-flow paths, or data flows) may
not be semantically possible, for example, due to corre-
lated branching [3]. This is called the infeasibility problem
in testing [29, 21]. The usual approach to deal with infea-
sible paths is to argue manually on a case-by-case basis,
or to resort to adequacy scores (the percentage of all static
paths covered by tests). By using BLAST we can automati-
cally detect dead code, and generate tests for live code.

In the table, LOC refers to lines of code. CFAs repre-
sent programs compactly; each basic block is a single edge.
In the table, the column CFA locations shows the number
of locations of the CFA which are syntactically reachable
by exploring the corresponding call graph of the program.
Live is the number of reachable locations, Dead is the num-
ber of unreachable locations, and Fail is the number of lo-
cations on which our tool failed. Ideally, the total number
of CFA locations is equal to the sum of the live and dead
locations. However, in our tool we set a time-out for each
location. So in practice, the tool fails on a small percent-
age of locations. The failure is due both to time-outs, and to
not finding suitable predicates for abstraction. In our exper-
iments, we set the time-out to 10 minutes per location.

The column Tests gives the number of tests generated.
The implementation does not run the model checker for a
location that is already covered by a previous test. Thus, the
number of tests is usually much smaller than the number
of reachable locations. This is especially apparent for the
larger programs. Total is the total number of predicates, over
all locations, generated by the model-checking process. Av-
erage is the average number of predicates active at any one
program point. The average number of predicates at any lo-
cation is much smaller than the total number of predicates,
thus confirming our belief that local and precise abstrac-
tions can scale to large programs [18, 16]. Time gives the
running time rounded to minutes (except for ftpd, where
the tool ran for two overnight runs).

We found many locations that were not reachable be-
cause of correlated branches. For example, in floppy, we
found the following code:

driveLetterName.Length = 0;
// cut 15 lines
...
if (driveLetterName.Length != 4 ||

driveLetterName.Buffer[0] < ’A’ ||
driveLetterName.Buffer[0] > ’Z’) {

...
}

Here, the predicate driveLetterName.Length !=
4 is true; so the other tests are never executed. Another rea-
son we get dead code is that certain library functions (like
memset) make many comparisons of the size of a struc-
ture with different built-in constants. At run time, most
of these comparisons fail, giving rise to many dead loca-
tions.

While the table reports only experiments that check for
unreachable code, we ran BLAST also on several small ex-
amples with security specifications in order to find which
parts of a program can be run with root privileges. Unfor-
tunately, most security programs make recursive calls, and
our previous implementation of BLAST did not support re-
cursive function calls. We are currently implementing a new
version that does handle recursive calls. We are also opti-
mizing our test-generation procedure to generate tests di-
rectly from the internal data structures of the model checker.

Table 1. Experimental results
Program LOC CFA locations Locations Tests Predicates Time

Live Dead Fail Total Average
kbfiltr 5933 381 298 83 0 39 112 10 5 min
floppy 8570 1039 780 259 0 111 239 10 25 min
cdaudio 8921 968 600 368 0 85 246 10 25 min
parport 12288 2518 1895 442 181 213 509 8 91 min
parclass 30380 1663 1326 337 0 219 343 8 42 min
ping 1487 814 754 60 0 134 41 3 7 min
ftpd 8506 6229 4998 566 665 231 380 5 1 d

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[2] T. Ball and S.K. Rajamani. The SLAM project: Debugging
system software via static analysis. In Proc. POPL, pages
1–3. ACM, 2002.

[3] R. Bodik, R. Gupta, and M.L. Soffa. Interprocedural con-
ditional branch elimination. In Proc. PLDI, pages 146–158.
ACM, 1997.

[4] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated
testing based on Java predicates. In Proc. ISSTA, pages 123–
133. ACM, 2002.

[5] S. Chaki, E.M. Clarke, A. Groce, S. Jha, and H. Veith. Mod-
ular verification of software components in C. In Proc. ICSE,
pages 385–395. IEEE, 2003.

[6] H. Chen and D. Wagner. MOPS: An infrastructure for exam-
ining security properties of software. In Proc. CCS, pages
235–244. ACM, 2002.

[7] H. Chen, D. Wagner, and D. Dean. Setuid demystified. In
Proc. Security Symp., pages 171–190. Usenix, 2002.

[8] L. Clarke. A system to generate test data and symbolically
execute programs. IEEE Trans. Software Eng., 2:215–222,
1976.

[9] L. Clarke and D. Richardson. Symbolic evaluation meth-
ods for program analysis. In Program Flow Analysis: The-
ory and Applications, pages 264–300. Prentice-Hall, 1981.

[10] E. Dijkstra. A Discipline of Programming. Prentice-Hall,
1976.

[11] J.-C. Filliâtre, S. Owre, H. Ruess, and N. Shankar. ICS: In-
tegrated canonizer and solver. In Proc. CAV, LNCS 2102,
pages 246–249. Springer, 2001.

[12] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data
generation using constraint solving techniques. In Proc. IS-
STA, pages 53–62. ACM, 1998.

[13] E. Gunter and D. Peled. Temporal debugging for concur-
rent systems. In Proc. TACAS, LNCS 2280, pages 431–444.
Springer, 2002.

[14] N. Gupta, A. Mathur, and M.L. Soffa. Generating test data
for branch coverage. In Proc. ASE, pages 219–228. IEEE,
2000.

[15] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and lan-
guage for building system-specific static analyses. In Proc.
PLDI, pages 69–82. ACM, 2002.

[16] T.A. Henzinger, R. Jhala, R. Majumdar, and K. McMillan.
Abstractions from proofs. In Proc. POPL, pages 232–244.
ACM, 2004.

[17] T.A. Henzinger, R. Jhala, R. Majumdar, and M. Sanvido. Ex-
treme model checking. In International Symposium on Veri-
fication: Theory and Practice, LNCS 2772. Springer, 2003.

[18] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In Proc. POPL, pages 58–70. ACM, 2002.

[19] H.S. Hong, S.D. Cha, I. Lee, O. Sokolsky, and H. Ural. Data
flow testing as model checking. In Proc. ICSE, pages 232–
243. IEEE, 2003.

[20] D. Jackson and M. Vaziri. Finding bugs with a constraint
solver. In Proc. ISSTA, pages 14–25. ACM, 2000.

[21] R. Jasper, M. Brennan, K. Williamson, B. Currier, and
D. Zimmerman. Test data generation and infeasible path
analysis. In Proc. ISSTA, pages 95–107. ACM, 1994.

[22] S. Khurshid, C. Pasareanu, and W. Visser. Generalized sym-
bolic execution for model checking and testing. In Proc.
TACAS, LNCS 2619, pages 553–568. Springer, 2003.

[23] J. King. Symbolic execution and program testing. Comm.
ACM, 19:385–394, 1976.

[24] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient SAT solver. In Proc.
DAC, pages 530–535. ACM, 2001.

[25] G.J. Myer. The Art of Software Testing. Wiley, 1979.
[26] G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer. CIL:

Intermediate language and tools for analysis and transforma-
tion of C programs. In Proc. CC, LNCS 2304, pages 213–
228. Springer, 2002.

[27] D. Peled. Software Reliability Methods. Springer, 2001.
[28] D. Peled. Model checking and testing combined. In Proc.

ICALP, LNCS 2719, pages 47–63. Springer, 2003.
[29] M. Pezze and M. Young. Software Test and Analysis: Pro-

cess, Principles, and Techniques. Manuscript, 2003.
[30] C. Ramamoorthy, S.B. Ho, and W. Chen. On the automated

generation of program test data. IEEE Trans. Software Eng.,
2:293–300, 1976.

[31] F.B. Schneider. Enforceable Security Policies. Tech. Rep.
TR98-1664, Cornell, 1999.

[32] A. Stump, C. Barrett, and D. Dill. CVC: A cooperating va-
lidity checker. In Proc. CAV, LNCS 2404, pages 500–504.
Springer, 2002.

