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Abstract. We describe our experience implementing a broad category-
theory library in Coq. Category theory and computational performance
are not usually mentioned in the same breath, but we have needed sub-
stantial engineering effort to teach Coq to cope with large categorical
constructions without slowing proof script processing unacceptably. In
this paper, we share the lessons we have learned about how to repre-
sent very abstract mathematical objects and arguments in Coq and how
future proof assistants might be designed to better support such rea-
soning. One particular encoding trick to which we draw attention al-
lows category-theoretic arguments involving duality to be internalized
in Coq’s logic with definitional equality. Ours may be the largest Coq
development to date that uses the relatively new Coq version developed
by homotopy type theorists, and we reflect on which new features were
especially helpful.
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1 Introduction

Category theory [14] is a popular all-encompassing mathematical formalism that
casts familiar mathematical ideas from many domains in terms of a few unifying
concepts. A category can be described as a directed graph plus algebraic laws
stating equivalences between paths through the graph. Because of this spar-
tan philosophical grounding, category theory is sometimes referred to in good
humor as “formal abstract nonsense.” Certainly the popular perception of cat-
egory theory is quite far from pragmatic issues of implementation. This paper
is an experience report on an implementation of category theory that has run
squarely into issues of design and efficient implementation of type theories, proof
assistants, and developments within them.

It would be reasonable to ask, what would it even mean to implement “formal
abstract nonsense,” and what could the answer have to do with optimized execu-
tion engines for functional programming languages? We mean to cover the whole
scope of category theory, which includes many concepts that are not manifestly
computational, so it does not suffice merely to employ the well-known folklore
semantic connection between categories and typed functional programming [19].
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Instead, a more appropriate setting is a computer proof assistant. We chose to
build a library for Coq [24], a popular system based on constructive type theory.

One might presume that it is a routine exercise to transliterate categorical
concepts from the whiteboard to Coq. Most category theorists would probably
be surprised to learn that standard constructions “run too slowly,” but in our
experience that is exactly the result of experimenting with näıve first Coq imple-
mentations of categorical constructs. It is important to tune the library design
to minimize the cost of manipulating terms and proving interesting theorems.

This design experience is also useful for what it reveals about the conse-
quences of design decisions for type theories themselves. Though type theories
are generally simpler than widely used general-purpose programming languages,
there is still surprising subtlety behind the few choices that must be made. Homo-
topy type theory [25] is a popular subject of study today, where there is intense
interest in designing a type theory that makes proofs about topology particu-
larly natural, via altered treatment of equality. In this setting and others, there
remain many open questions about the consequences of type theoretical features
for different sorts of formalization. Category theory, said to be “notoriously hard
to formalize” [9], provides a good stress test of any proof assistant, highlighting
problems in usability and efficiency.

Formalizing the connection between universal morphisms and adjunctions
provides a typical example of our experience with performance. A universal
morphism is a construct in category theory generalizing extrema from calculus.
An adjunction is a weakened notion of equivalence. In the process of rewriting
our library to be compatible with homotopy type theory, we discovered that
cleaning up this construction conceptually resulted in a significant slow-down,
because our first attempted rewrite resulted in a leaky abstraction barrier and,
most importantly, large goals (Section 4.2). Plugging the holes there reduced
goal sizes by two orders of magnitude1, which led to a factor of ten speedup in
that file (from 39s to 3s), but incurred a factor of three slow-down in the file
where we defined the abstraction barriers (from 7s to 21s). Working around slow
projections of Σ types (Section 2.5) and being more careful about code reuse
each gave us back half of that lost time.

For reasons that we present in the course of the paper, we were unsatisfied
with the feature set of released Coq version 8.4. We wound up adopting the Coq
version under development by homotopy type theorists [22], making critical use
of its stronger universe polymorphism (Section 2.2) and higher inductive types
(Section 2.4). We hope that our account here provides useful data points for proof
assistant designers about which features can have serious impact on proving
convenience or performance in very abstract developments. The two features
we mentioned earlier in the paragraph can simplify the Coq user experience
dramatically, while a number of other features, at various stages of conception
or implementation by Coq team members, can make proving much easier or
improve proof script performance by orders of magnitude, generally by reducing
term size (Section 4.2): primitive record projections (Section 2.5), internalized

1 The word count of the larger of the two relevant goals went from 163,811 to 1,390.
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proof irrelevance for equalities (Section 4.2), and η rules for records (Section 3.1)
and equality proofs (Section 3.2).

Although pre-existing formalizations of category theory in proof assistants
abound [1, 6, 15, 17, 18, 20, 23], we chose to implement our library [10] from
scratch. Beginning from scratch allowed the first author to familiarize himself
with both category theory and Coq, without simultaneously having to familiarize
himself with a large pre-existing code base. Additionally, starting from scratch
forced us to confront all of the decisions involved in designing such a library, and
gave us the confidence to change the definitions of basic concepts multiple times
to try out various designs, including fully rewriting the library at least three
times. Although this paper is much more about the design of category theory
libraries in general than our library in particular, we include a comparison of
our library [10] with selected extant category theory libraries in Section 5. At
present, our library subsumes many of the constructions in most other such
Coq libraries, and is not lacking any constructions in other libraries that are
of a complexity requiring significant type checking time, other than monoidal
categories.

We begin our discussion in Section 2 considering a mundane aspect of type
definitions that has large consequences for usability and performance. With the
expressive power of Coq’s logic Gallina, we often face a choice of making pa-
rameters of a type family explicit arguments to it, which looks like universal
quantification; or of including them within values of the type, which looks like
existential quantification. As a general principle, we found that the universal or
outside style improves the user experience modulo performance, while the exis-
tential or inside style speeds up type checking. The rule that we settled on was:
inside definitions for pieces that are usually treated as black boxes by further
constructions, and outside definitions for pieces whose internal structure is more
important later on.

Section 3 presents one of our favorite design patterns for categorical con-
structions: a way of coaxing Coq’s definitional equality into implementing proof
by duality, one of the most widely known ideas in category theory. In Section 4,
we describe a few other design choices that had large impacts on usability and
performance, often of a few orders of magnitude. Section 5 wraps up with a grid
comparison of our library with others.

2 Issues in Defining the Type of Categories

We have chosen to use the outside style when we care more about the definition
of a construct than about carrying it around as an opaque blob to fit into other
concepts. The first example of this choice comes up in deciding how to define
categories.

2.1 Dependently Typed Morphisms

In standard mathematical practice, a category C can be defined [2] to consist of:
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– a class ObC of objects
– for all objects a, b ∈ ObC , a class HomC(a, b) of morphisms from a to b
– for each object x ∈ ObC , an identity morphism 1x ∈ HomC(x, x)
– for each triple of objects a, b, c ∈ ObC , a composition function ◦ : HomC(b, c)×

HomC(a, b) → HomC(a, c)

satisfying the following axioms:

– associativity: for composable morphisms f , g, h, we have f◦(g◦h) = (f◦g)◦h.
– identity: for any morphism f ∈ HomC(a, b), we have 1b ◦ f = f = f ◦ 1a

Following [25], we additionally require our morphisms to be 0-truncated (to
have unique identity proofs). Without this requirement, we have a standard pre–
homotopy type theory definition of a category.

We might2 formalize the definition in Coq (if Coq had mixfix notation) as:

Record Category :=

{ Ob : Type;

Hom : Ob → Ob → Type;

_◦_ : ∀ {a b c}, Hom b c → Hom a b → Hom a c;

1 : ∀ {x}, Hom x x;

Assoc : ∀ a b c d (f : Hom c d) (g : Hom b c) (h : Hom a b),

f ◦ (g ◦ h) = (f ◦ g) ◦ h;

LeftId : ∀ a b (f : Hom a b), 1 ◦ f = f;

RightId : ∀ a b (f : Hom a b), f ◦ 1 = f;

Truncated : ∀ a b (f g : Hom a b) (p q : f = g), p = q }.

We could just as well have replaced the classes HomC(a, b) with a single class
of morphisms HomC , together with functions defining the source and target of
each morphism. Then it would be natural to define morphism composition to
take a further argument, a proof of equal domain and codomain between the mor-
phisms. Users of dependent types are aware that explicit manipulation of equality
proofs can complicate code substantially, often to the point of obscuring what
would be the heart of an argument on paper. For instance, the algebraic laws
associated with categories must be stated with explicit computation of equality
proofs, and further constructions only become more involved. Additionally, such
proofs will quickly bloat the types of goals, resulting in slower type checking.
For these reasons, we decided to stick with the definition of Category above,
getting more lightweight help from the type checker in place of explicit proofs.

2.2 Complications from Categories of Categories

Some complications arise in applying the last subsection’s definition of categories
to the full range of common constructs in category theory. One particularly
prominent example formalizes the structure of a collection of categories, showing
that this collection itself may be considered as a category.

2 The definition we actually use has some additional fields; see, e.g., Section 3.1.



Experience Implementing a Performant Category-Theory Library in Coq 5

The morphisms in such a category are functors, maps between categories
consisting of a function on objects, a function on hom-types, and proofs that
these functions respect composition and identity [2, 14, 25].

The näıve concept of a “category of all categories,” which includes even itself,
leads into mathematical inconsistencies, which manifest as universe inconsistency
errors in Coq. The standard resolution is to introduce a hierarchy of categories,
where, for instance, most intuitive constructions are considered small categories,
and then we also have large categories, one of which is the category of small
categories. Both definitions wind up with literally the same text in Coq, giving:

Definition SmallCat : LargeCategory :=

{| Ob := SmallCategory;

Hom C D := SmallFunctor C D; ... |}.

It seems a shame to copy-and-paste this definition (and those of Category,
Functor, etc.) n times to define an n-level hierarchy. Coq 8.4 and some earlier
versions support a flavor of universe polymorphism that allows the universe of a
definition to vary as a function of the universes of its arguments. Unfortunately,
it is not natural to parametrize Cat by anything but a universe level, which does
not have first-class status in Coq anyway. We found the connection between
universe polymorphism and arguments to definitions to be rather inconvenient,
and it forced us to modify the definition of Category so that the record field
Ob changes into a parameter of the type family. Then we were able to use the
following slightly awkward construction:

Definition Cat_helper I ObOf (CatOf : ∀ i : I, Category (ObOf i))

: Category I

:= {| Hom C D := Functor (CatOf C) (CatOf D); ... |}.

Notation Cat := (Cat_helper {T : Type & Category T} projT1 projT2).

Now the definition is genuinely reusable for an infinite hierarchy of sorts of
category, because the Notation gives us a fresh universe each time we invoke it,
but we have paid the price of adding extra parameters to both Category and
Cat helper, and this seemingly innocent change produces substantial blow-up in
the sizes of proof goals arising during interesting constructions. So, in summary,
we decided that the basic type theoretical design of Coq 8.4 did not provide very
good support for pleasing definitions that can be reasoned about efficiently.

This realization (and a few more that will come up shortly) pushed us to
become early adopters of the modified version of Coq developed by homotopy
type theorists [22]. Here, an established kind of more general universe poly-
morphism [8], previously implemented only in NuPRL, is available, and the
definitions we wanted from the start work as desired.

2.3 Arguments vs. Fields

Unlike most of our other choices, there is a range of possibilities in defining
categories, with regards to arguments (on the outside) and fields (on the inside).
At one extreme, everything can be made a field, with a type Category whose
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inhabitants are categories. At the other extreme, everything can be made an
argument to a dummy function. Some authors [23] have chosen the intermediate
option of making all of the computationally relevant parts (objects, morphisms,
composition, and the identity morphism) arguments and the irrelevant proofs
(associativity and left and right identity) fields. We discussed in Section 2.2 the
option of parametrizing on just the type of objects. We now consider pros and
cons of other common options; we found no benefits to the “outside” extreme.

Everything on the Inside Once we moved to using the homotopy type theo-
rists’ Coq with its broader universe polymorphism, we decided to use fields for
all of the components of a category. Switching from the version where the types
of objects and morphisms were parameters brought a factor of three speed-up
in compilation time over our whole development. The reason is that, at least
in Coq, the performance of proof tree manipulations depends critically on their
size (Section 4.2). By contrast, the size of the normal form of the term does not
seem to matter much in most constructions; see Section 3 for an explanation
and the one exception that we might have found. By using fields rather than
parameters for the types of objects and morphisms, the type of functors goes
from

Functor : ∀ (obC : Type) (obD : Type)

(homC : obC → obC → Type) (homD : obD → obD → Type),

Category obC homC → Category obD homD → Type

to

Functor : Category → Category → Type

The corresponding reduction for the type of natural transformations is even more
remarkable, and with a construction that uses natural transformations multiple
times, the term size blows up very quickly, even with only two parameters. If we
had more parameters (for composition and identity), the term size would blow
up even more quickly.

Usually, we do not care what objects and morphisms a particular category
has; most of our constructions take as input arbitrary categories. Thus, there is
a significant performance benefit to having all of the fields on the inside and so
hidden from most theorem statements.

Relevant Things on the Outside One of the main benefits to making all of
the relevant components arguments, and requiring all of the fields to satisfy proof
irrelevance, is that it allows the use of type-class resolution without having to
worry about overlapping instances. Practically, this choice means that it is easier
to get Coq to infer automatically the proofs that given types and operations as-
semble into a category, at least in simple cases. Although others [23] have found
this approach useful, we have not found ourselves wishing we had type-class



Experience Implementing a Performant Category-Theory Library in Coq 7

resolution when formalizing constructions, and there is a significant computa-
tional cost of exposing so many parameters in types. The “packed classes” of
Ssreflect [7] alleviate this problem by combining this approach with the previous
one, at the slight cost of more verbosity in initial definitions.

2.4 Equality

Equality, which has recently become a very hot topic in type theory [25] and
higher category theory [13], provides another example of a design decision where
most usage is independent of the exact implementation details. Although the
question of what it means for objects or morphisms to be equal does not come
up much in classical 1-category theory, it is more important when formalizing
category theory in a proof assistant, for reasons seemingly unrelated to its impor-
tance in higher category theory. We consider some possible notions of equality.

Setoids A setoid [5] is a carrier type equipped with an equivalence relation;
a map of setoids is a function between the carrier types and a proof that the
function respects the equivalence relations of its domain and codomain. Many
authors [11, 12, 15, 18] choose to use a setoid of morphisms, which allows for
the definition of the category of set(oid)s, as well as the category of (small) cate-
gories, without assuming functional extensionality, and allows for the definition
of categories where the objects are quotient types. However, there is significant
overhead associated with using setoids everywhere, which can lead to slower
compile times. Every type that we talk about needs to come with a relation and
a proof that this relation is an equivalence relation. Every function that we use
needs to come with a proof that it sends equivalent elements to equivalent ele-
ments. Even worse, if we need an equivalence relation on the universe of “types
with equivalence relations,” we need to provide a transport function between
equivalent types that respects the equivalence relations of those types.

Propositional Equality An alternative to setoids is propositional equality,
which carries none of the overhead of setoids, but does not allow an easy for-
mulation of quotient types, and requires assuming functional extensionality to
construct the category of sets.

Intensional type theories like Coq’s have a built-in notion of equality, often
called definitional equality or judgmental equality, and denoted as x ≡ y. This
notion of equality, which is generally internal to an intensional type theory and
therefore cannot be explicitly reasoned about inside of that type theory, is the
equality that holds between βδιζη-convertible terms.

Coq’s standard library defines what is called propositional equality on top of
judgmental equality, denoted x = y. One is allowed to conclude that proposi-
tional equality holds between any judgmentally equal terms.

Using propositional equality rather than setoids is convenient because there is
already significant machinery made for reasoning about propositional equalities,
and there is much less overhead. However, we ran into significant trouble when
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attempting to prove that the category of sets has all colimits, which amounts to
proving that it is closed under disjoint unions and quotienting; quotient types
cannot be encoded without assuming a number of other axioms.

Higher Inductive Types The recent emergence of higher inductive types al-
lows the best of both worlds. The idea of higher inductive types [25] is to allow
inductive types to be equipped with extra proofs of equality between construc-
tors. They originated as a way to allow homotopy type theorists to construct
types with non-trivial higher paths. A very simple example is the interval type,
from which functional extensionality can be proven [21].3 The interval type con-
sists of two inhabitants zero : Interval and one : Interval, and a proof
seg : zero = one. In a hypothetical type theory with higher inductive types,
the type checker does the work of carrying around an equivalence relation on each
type for us, and forbids users from constructing functions that do not respect
the equivalence relation of any input type. For example, we can, hypothetically,
prove functional extensionality as follows:

Definition f_equal {A B x y} (f : A → B) : x = y → f x = f y.

Definition functional_extensionality {A B} (f g : A → B)

: (∀ x, f x = g x) → f = g

:= λ (H : ∀ x, f x = g x)

⇒ f_equal (λ (i : Interval) (x : A)

⇒ match i with

| zero ⇒ f x

| one ⇒ g x

| seg ⇒ H x

end)

seg.

Had we neglected to include the branch for seg, the type checker should com-
plain about an incomplete match; the function λ i : Interval ⇒ match i with

zero ⇒ true | one ⇒ false end of type Interval → bool should not type-
check for this reason.

The key insight is that most types do not need any special equivalence rela-
tion, and, moreover, if we are not explicitly dealing with a type with a special
equivalence relation, then it is impossible (by parametricity) to fail to respect
the equivalence relation. Said another way, the only way to construct a function
that might fail to respect the equivalence relation would be by some eliminator
like pattern matching, so all we have to do is guarantee that direct invocations
of the eliminator result in functions that respect the equivalence relation.

As with the choice involved in defining categories, using propositional equal-
ity with higher inductive types rather than setoids derives many of its benefits
from not having to deal with all of the overhead of custom equivalence relations
in constructions that do not need them. In this case, we avoid the overhead by
making the type checker or the metatheory deal with the parts we usually do not

3 This assumes a computational interpretation of higher inductives, an open problem.
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care about. Most of our definitions do not need custom equivalence relations, so
the overhead of using setoids would be very large for very little gain. We plan
to use higher inductive types4 to define quotients, which are necessary to show
the existence of certain functors involving the category of sets. We also currently
use higher inductive types to define propositional truncation [25], which we use
to define what it means for a function to be surjective, and prove that in the
category of sets, being an isomorphism (an invertible morphism) is equivalent
to being injective and surjective.

2.5 Records vs. Nested Σ Types

In Coq, there are two ways to represent a data structure with one constructor
and many fields: as a single inductive type with one constructor (records), or
as a nested Σ type. For instance, consider a record type with two type fields A
and B and a function f from A to B. A logically equivalent encoding would be
ΣA. ΣB. A → B. There are two important differences between these encodings
in Coq.

The first is that while a theorem statement may abstract over all possible
Σ types, it may not abstract over all record types, which somehow have a less
first-class status. Such a limitation is inconvenient and leads to code duplication.

The far more pressing problem, overriding the previous point, is that nested
Σ types have horrendous performance, and are sometimes a few orders of mag-
nitude slower. The culprit is projections from nested Σ types, which, when un-
folded (as they must be, to do computation), each take almost the entirety of
the nested Σ type as an argument, and so grow in size very quickly. Matthieu
Sozeau is currently working on primitive projections for records for Coq, which
would eliminate this problem by eliminating the arguments to the projection
functions.5

3 Internalizing Duality Arguments in Type Theory

In general, we have tried to design our library so that trivial proofs on paper
remain trivial when formalized. One of Coq’s main tools to make proofs trivial
is the definitional equality, where some facts follow by computational reduction
of terms. We came up with some small tweaks to core definitions that allow a
common family of proofs by duality to follow by computation.

Proof by duality is a common idea in higher mathematics: sometimes, it is
productive to flip the directions of all the arrows. For example, if some fact
about least upper bounds is provable, chances are that the same kind of fact
about greatest lower bounds will also be provable in roughly the same way, by
replacing “greater than”s with “less than”s and vice versa.

Concretely, there is a dualizing operation on categories that inverts the di-
rections of the morphisms:

4 We fake these in Coq using Yves Bertot’s Private Inductive Types extension [4].
5 We eagerly await the day when we can take advantage of this feature in our library.
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Notation "C op" := ({| Ob := Ob C; Hom x y := Hom C y x; ... |}).

Dualization can be used, roughly, for example, to turn a proof that Carte-
sian product is an associative operation into a proof that disjoint union is an
associative operation; products are dual to disjoint unions.

One of the simplest examples of duality in category theory is initial and
terminal objects. In a category C, an initial object 0 is one that has a unique
morphism 0 → x to every object x in C; a terminal object 1 is one that has a
unique morphism x → 1 from every object x in C. Initial objects in C are terminal
objects in Cop. The initial object of any category is unique up to isomorphism;
for any two initial objects 0 and 0′, there is an isomorphism 0 ∼= 0′. By flipping
all of the arrows around, we can prove, by duality, that the terminal object is
unique up to isomorphism. More precisely, from a proof that an initial object of
Cop is unique up to isomorphism, we get that any two terminal objects 1′ and 1
in C, which are initial in Cop, are isomorphic in Cop. Since an isomorphism x ∼= y
in Cop is an isomorphism y ∼= x in C, we get that 1 and 1′ are isomorphic in C.

It is generally straightforward to see that there is an isomorphism between a
theorem and its dual, and the technique of dualization is well-known to category
theorists, among others. We discovered that, by being careful about how we
defined things, we could make theorems be judgmentally equal to their duals!
That is, when we prove a theorem

initial ob unique : ∀ C (x y : Ob C),

is initial ob x → is initial ob y → x ∼= y,

we can define another theorem

terminal ob unique : ∀ C (x y : Ob C),

is terminal ob x → is terminal ob y → x ∼= y

as

terminal ob unique C x y H H’ := initial ob unique Cop y x H’ H.

Interestingly, we found that in proofs with sufficiently complicated types, it can
take a few seconds or more for Coq to accept such a definition; we are not sure
whether this is due to peculiarities of the reduction strategy of our version of
Coq, or speed dependency on the size of the normal form of the type (rather
than on the size of the unnormalized type), or something else entirely.

In contrast to the simplicity of witnessing the isomorphism, it takes a signifi-
cant amount of care in defining concepts, often to get around deficiencies of Coq,
to achieve judgmental duality. Even now, we were unable to achieve this ideal for
some theorems. For example, category theorists typically identify the functor cat-
egory Cop → Dop (whose objects are functors Cop → Dop and whose morphisms
are natural transformations) with (C → D)op (whose objects are functors C → D
and whose morphisms are flipped natural transformations). These categories are
canonically isomorphic (by the dualizing natural transformations), and, with the
univalence axiom [25], they are equal as categories! But we have not found a way
to make them definitionally equal, much to our disappointment.
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3.1 Duality Design Patterns

One of the simplest theorems about duality is that it is involutive; we have that
(Cop)op = C. In order to internalize proof by duality via judgmental equality,
we sometimes need this equality to be judgmental. Although it is impossible in
general in Coq 8.4 (see dodging judgmental η on records below), we want at least
to have it be true for any explicit category (that is, any category specified by
giving its objects, morphisms, etc., rather than referred to via a local variable).

Removing Symmetry Taking the dual of a category, one constructs a proof
that f ◦ (g ◦ h) = (f ◦ g) ◦ h from a proof that (f ◦ g) ◦ h = f ◦ (g ◦ h). The
standard approach is to apply symmetry. However, because applying symmetry
twice results in a judgmentally different proof, we decided instead to extend the
definition of Category to require both a proof of f ◦ (g ◦ h) = (f ◦ g) ◦ h and
a proof of (f ◦ g) ◦ h = f ◦ (g ◦ h). Then our dualizing operation simply swaps
the proofs. We added a convenience constructor for categories that asks only
for one of the proofs, and applies symmetry to get the other one. Because we
formalized 0-truncated category theory, where the type of morphisms is required
to have unique identity proofs, asking for this other proof does not result in any
coherence issues.

Dualizing the Terminal Category To make everything work out nicely, we
needed the terminal category, which is the category with one object and only
the identity morphism, to be the dual of itself. We originally had the terminal
category as a special case of the discrete category on n objects. Given a type
T with uniqueness of identity proofs, the discrete category on T has as objects
inhabitants of T , and has as morphisms from x to y proofs that x = y. These
categories are not judgmentally equal to their duals, because the type x = y is
not judgmentally the same as the type y = x. As a result, we instead used the
indiscrete category, which has unit as its type of morphisms.

Which Side Does the Identity Go On? The last tricky obstacle we en-
countered was that when defining a functor out of the terminal category, it is
necessary to pick whether to use the right identity law or the left identity law to
prove that the functor preserves composition; both will prove that the identity
composed with itself is the identity. The problem is that dualizing the func-
tor leads to a road block where either concrete choice turns out to be “wrong,”
because the dual of the functor out of the terminal category will not be judgmen-
tally equal to another instance of itself. To fix this problem, we further extended
the definition of category to require a proof that the identity composed with
itself is the identity.

Dodging Judgmental η on Records The last problem we ran into was the
fact that sometimes, we really, really wanted judgmental η on records. The η rule
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for records says any application of the record constructor to all the projections
of an object yields exactly that object; e.g. for pairs, x ≡ (x1, x2) (where x1

and x2 are the first and second projections, respectively). For categories, the η
rule says that given a category C, for a “new” category defined by saying that
its objects are the objects of C, its morphisms are the morphisms of C, . . . , the
“new” category is judgmentally equal to C.

In particular, we wanted to show that any functor out of the terminal category
is the opposite of some other functor; namely, any F : 1 → C should be equal
to (F op)op : 1 → (Cop)op. However, without the judgmental η rule for records,
a local variable C cannot be judgmentally equal to (Cop)op, which reduces to
an application of the constructor for a category. To get around the problem, we
made two variants of dual functors: given F : C → D, we have F op : Cop → Dop,
and given F : Cop → Dop, we have F op′

: C → D. There are two other flavors
of dual functors, corresponding to the other two pairings of op with domain and
codomain, but we have been glad to avoid defining them so far. As it was, we
ended up having four variants of dual natural transformation, and are very glad
that we did not need sixteen. We look forward to Coq 8.5, when we will hopefully
only need one.

3.2 Moving Forward: Computation Rules for Pattern Matching

While we were able to work around most of the issues that we had in internalizing
proof by duality, things would have been far nicer if we had more η rules. The η
rule for records is explained above. The η rule for equality says that the identity
function is judgmentally equal to the function f : ∀x y, x = y → x = y defined by
pattern matching on the first proof of equality; this rule is necessary to have any
hope that applying symmetry twice is judgmentally the identity transformation.
Matthieu Sozeau is currently working on giving Coq judgmental η for records
with one or more fields, though not for equality.

Section 4.1 will give more examples of the pain of manipulating pattern
matching on equality. Homotopy type theory provides a framework that system-
atizes reasoning about proofs of equality, turning a seemingly impossible task
into a manageable one. However, there is still a significant burden associated
with reasoning about equalities, because so few of the rules are judgmental.

We are currently attempting to divine the appropriate computation rules for
pattern matching constructs, in the hopes of making reasoning with proofs of
equality more pleasant.6

4 Other Design Choices

A few other pervasive strategies made non-trivial differences for proof perfor-
mance or simplicity.

6 See https://coq.inria.fr/bugs/show_bug.cgi?id=3179 and https://coq.inria.

fr/bugs/show_bug.cgi?id=3119.

https://coq.inria.fr/bugs/show_bug.cgi?id=3179
https://coq.inria.fr/bugs/show_bug.cgi?id=3119
https://coq.inria.fr/bugs/show_bug.cgi?id=3119
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4.1 Identities vs. Equalities; Associators

There are a number of constructions that are provably equal, but which we found
more convenient to construct transformations between instead, despite the in-
creased verbosity of such definitions. This is especially true of constructions
that strayed towards higher category theory. For example, when constructing
the Grothendieck construction of a functor to the category of categories, we
found it easier to first generalize the construction from functors to pseudofunc-
tors. The definition of a pseudofunctor results from replacing various equalities
in the definition of a functor with isomorphisms (analogous to bijections between
sets or types), together with proofs that the isomorphisms obey various coher-
ence properties. This replacement helped because there are fewer operations on
isomorphisms (namely, just composition and inverting), and more operations on
proofs of equality (pattern matching, or anything definable via induction); when
we were forced to perform all of the operations in the same way, syntactically,
it was easier to pick out the operations and reason about them.

Another example was defining the (co)unit of adjunction composition, where
instead of a proof that F ◦ (G ◦H) = (F ◦G) ◦H, we used a natural transforma-
tion, a coherent mapping between the actions of functors. Where equality-based
constructions led to computational reduction getting stuck at casts, the con-
structions with natural transformations reduce in all of the expected contexts.

4.2 Opacity; Linear Dependence of Speed on Term Size

Coq is slow at dealing with large terms. For goals around 175,000 words long7,
we have found that simple tactics like apply f equal take around 1 second
to execute, which makes interactive theorem proving very frustrating.8 Even
more frustrating is the fact that the largest contribution to this size is often
arguments to irrelevant functions, i.e., functions that are provably equal to all
other functions of the same type. (These are proofs related to algebraic laws like
associativity, carried inside many constructions.)

Opacification helps by preventing the type checker from unfolding some def-
initions, but it is not enough: the type checker still has to deal with all of the
large arguments to the opaque function. Hash-consing might fix the problem
completely.

Alternatively, it would be nice if, given a proof that all of the inhabitants of
a type were equal, we could forget about terms of that type, so that their sizes
would not impose any penalties on term manipulation. One solution might be
irrelevant fields, like those of Agda, or implemented via the Implicit CiC [3, 16].

4.3 Abstraction Barriers

In many projects, choosing the right abstraction barriers is essential to reducing
mistakes, improving maintainability and readability of code, and cutting down

7 When we had objects as arguments rather than fields (see Section 2.3), we encoun-
tered goals of about 219,633 words when constructing pointwise Kan extensions.

8 See also https://coq.inria.fr/bugs/show_bug.cgi?id=3280.

https://coq.inria.fr/bugs/show_bug.cgi?id=3280
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on time wasted by programmers trying to hold too many things in their heads
at once. This project was no exception; we developed an allergic reaction to
constructions with more than four or so arguments, after making one too many
mistakes in defining limits and colimits. Limits are a generalization, to arbitrary
categories, of subsets of Cartesian products. Colimits are a generalization, to
arbitrary categories, of disjoint unions modulo equivalence relations.

Our original flattened definition of limits involved a single definition with 14
nested binders for types and algebraic properties. After a particularly frustrating
experience hunting down a mistake in one of these components, we decided
to factor the definition into a larger number of simpler definitions, including
familiar categorical constructs like terminal objects and comma categories. This
refactoring paid off even further when some months later we discovered the
universal morphism definition of adjoint functors. With a little more abstraction,
we were able to reuse the same decomposition to prove the equivalence between
universal morphisms and adjoint functors, with minimal effort.

Perhaps less typical of programming experience, we found that picking the
right abstraction barriers could drastically reduce compile time by keeping details
out of sight in large goal formulas. In the instance discussed in the introduction,
we got a factor of ten speed-up by plugging holes in a leaky abstraction barrier!9

5 Comparison of Category-Theory Libraries

We present here a table comparing the features of various category-theory li-
braries. Our library is the first column. Gray dashed check-marks ( ) indicate
features in progress. Library [18] is in Agda; the rest are in Coq. A check-mark
with n stars (*) indicates a construction taking 20n seconds to compile on a
64-bit server with a 2.40 GHz CPU and 16 GB of RAM.

Construction [10] [15] [20] [18] [1]

Mostly automated (with custom Ltac) X
Uses HoTT X X
Uses type classes X
Setoid of morphisms X X X
Uses higher inductive types X
Assumes UIP or equivalent X
Category of sets X X X X
Initial/Terminal objects X X X X X
(co)limits X X X X
(co)limit functor X
(co)limit adjoint to ∆ X
Fully faithful functors X X X
Essentially surjective functors X X X X

9 See https://github.com/HoTT/HoTT/commit/eb0099005171 for the exact change.

https://github.com/HoTT/HoTT/commit/eb0099005171
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Construction [10] [15] [20] [18] [1]

Unit-Counit Adjunctions X X X X X
Hom Adjunctions X X
Universal morphism adjunctions X X
Adjoint composition laws X********** X**********10

Monoidal categories X********** X**********

Enriched categories X**********

2-categories X**********

Category of (strict) categories X X X
Hom functor X X X X X
Profunctors X X
Pseudofunctors X**********

Kan extensions X X X
Pointwise Kan extensions

CDE ∼= CD×E ; (C × D)E ∼= CE ×DE X**********

Adjoint Functor Theorem X**********

Yoneda X X X**********X
dep. product (oplax lim F : C → Cat) X
dep. sum (oplax colim F : C → Cat) X********** X**********

( / ) functor (CA)op × CB → Cat/A×B X**********

Rezk completion X
Mean lines per file 78 126 133 98 407

Total compilation time 490s 517s 21s 717s 62s11

Total time w/o monoidal 490s 43s 21s 579s 62s

Median file compilation time 0.3s 0.4s 0.1s 1.5s 0.9s

Total number of files 147 36 105 143 13

Total number of definitions 578 214 995 396 367

In summary, our library includes many constructions from past formaliza-
tions, plus a few rather complex new ones. We test the limits of Coq by applying
mostly automated Ltac proofs for these constructions, taking advantage of ideas
from homotopy type theory and extensions built to support such constructions.
In most cases, we found that term size had the biggest impact on speed. We have
summarized our observations on using new features from that extension and on
other hypothetical features that could make an especially big difference in our
development, and we hope these observations can help guide the conversation
on the design of future versions of Coq and other proof assistants.
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10 The use of proof-irrelevant fields speeds up this construction significantly in Agda.
11 Nearly 75% of the time in this library is spent on properties of functor composition.

Nearly 50% of this time is spent closing sections, for an as-yet unknown reason.
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