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Abstract
I report on an experience using the Coq proof assistant to develop a
program verification tool with a machine-checkable proof of full
correctness. The verifier is able to prove memory safety of x86
machine code programs compiled from code that uses algebraic
datatypes. The tool’s soundness theorem is expressed in terms of
the bit-level semantics of x86 programs, so its correctness depends
on very few assumptions. I take advantage of Coq’s support for
programming with dependent types and modules in the structure of
my development. The approach is based on developing a library
of reusable functors for transforming a verifier at one level of
abstraction into a verifier at a lower level. Using this library, it’s
possible to prototype a verifier based on a new type system with a
minimal amount of work, while obtaining a very strong soundness
theorem about the final product.

Categories and Subject Descriptors F.3.1 [Specifying and Ver-
ifying and Reasoning about Programs]: Mechanical verification;
F.3.3 [Studies of Program Constructs]: Type structure; D.2.13
[Reusable Software]: Domain engineering

General Terms Languages, Verification

Keywords interactive proof assistants, programming with depen-
dent types, proof-carrying code

1. Introduction
It is widely accepted that bugs in software are a very serious prob-
lem today, creating both high costs of software development and far
too many exploitable security holes. The research community has
developed a plethora of techniques for finding bugs in programs
or even proving programs to be free of certain classes of bugs. In
most cases, these bug-finders and verifiers are applied post-facto to
programs developed using standard, informal techniques. However,
there has long been support in the community for the idea of apply-
ing formal methods throughout the software lifecycle. In a sense,
increasingly rich static type systems are such a class of solutions.
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It seems fair to classify them as formal specification and proof sys-
tems, but the prevalence of tools that make type systems easy to use
prevents most programmers from thinking of them in such impos-
ing terms. A general and interesting question is, how much more
effective can we make the software development process by using
even more expressive formal systems from the time the first line of
code is written?

In this paper, I will present the results of a particular experiment
along these lines. The interesting twist to the specific problem I
tackle is that it adds an additional layer of reflection to the approach
I just described: I have been working on proving the correctness of
programs that prove the correctness of programs. A proof of this
kind provides correctness proofs “for free” for all the inputs the
verified verifier can handle.

In particular, I have developed a framework for coding certified
program verifiers for x86 machine code programs. The end results
are executable programs that take x86 binaries as input and return
either “Yes, this program satisfies its specification” or “I’m not
sure.” By virtue of the way that these verifiers are constructed using
the Coq proof assistant, it is guaranteed that they are sound with
respect to the unabstracted bit-level semantics of x86 programs. Yet
this guarantee does not make development impractical; by re-using
components outfitted with rich semantic interfaces, it’s possible to
whip together a certified verifier based on, for example, a new type
system in a few hundred lines of code and an afternoon’s time.

This work is related to two main broad research agendas, which
I will describe next: proof-carrying code and general software de-
velopment techniques based on dependent types and interactive
theorem proving.

1.1 Applications to Proof-Carrying Code
The idea of certified program verifiers has important practical ram-
ifications for foundational proof-carrying code (FPCC) [App01].
Like traditional proof-carrying code (PCC), FPCC is primarily a
technique for allowing software consumers to obtain strong for-
mal guarantees about programs before running them. The author
of a piece of software, who knows best why it satisfies some spec-
ification that users care about, is responsible for distributing with
the executable program a formal, machine-checkable proof of its
safety. He might construct this proof manually, but more likely he
codes in a high-level language that enforces the specification at the
source level through static checks, allowing a certifying compiler
for that language to translate the proofs (explicit or implicit) that
hold at the source level into proofs about the resulting binaries.

The original PCC systems were very specialized. A particular
system would, for instance, only accept proofs based on a fixed
type system. FPCC addresses the two main problems associated
with this design.

First, traditional PCC involves trusting a set of relatively high-
level axioms about the soundness of a type system. We would rather



not have to place our faith in the soundness of so large a formal
development, so FPCC reduces the set of axioms to deal only with
the concrete semantics of the underlying machine model. If the
soundness of a type system is critical to a proof, that soundness
lemma must be proved from first principles.

The other problem is that a specialized PCC system is not very
flexible. Typically, one of these systems can only check safety
proofs for the outputs of a particular compiler for a particular
source language. If you want to run programs produced with dif-
ferent compilers or that otherwise require fundamentally different
proof strategies, then you will need to install one trusted proof
checker or set of axioms for each source. This is far from desir-
able from a security standpoint, and FPCC fixes this problem by
requiring all proofs to be in the same language and to use the same
relatively small set of axioms. The axiomatization of machine se-
mantics is precise enough that the more specific sets of axioms used
in traditional PCC are usually derivable with enough work, if they
were sound in the first place.

The germ of the project I’ll describe comes from past work
on improving the runtime efficiency of FPCC program check-
ing [CCN06]. Perhaps the largest obstacle to practical use of FPCC
stems from the delicate trade-offs between generality on one hand
and space and time efficiency of proofs and proof checkers on the
other. Program verifiers like the Java bytecode verifier have man-
aged to creep into wide use almost unnoticed by laypeople, but
naive FPCC proofs are much larger than the metadata included
with Java class files and take much longer to check. It’s unlikely
that this increased burden would be acceptable to the average com-
puter user.

Fundamentally, custom program verifiers with specialized al-
gorithms and data structures have a leg up on very general proof-
based verifiers. In our initial work on certified program verifiers,
we proposed getting the best of both worlds by moving up a level
of abstraction: allow developers to ship their software with spe-
cialized proof-carrying verifiers. These verifiers have the semantic
functionality of traditional program verifiers and model-checkers,
but they also come with machine-checkable proofs of soundness.
Each such proof can be checked once when a certified verifier is in-
stalled. After the proof checks out, the verifier can be applied to any
number of similar programs. These later verifications require no
runtime generation or checking of uniform proof objects, which we
found to be the major bottleneck in previous experience with FPCC.
Our paper [CCN06] presents performance results showing an order
of magnitude improvement over all published verification time fig-
ures for FPCC systems for Typed Assembly Language [MWCG99]
programs, by using a certified verifier. The verifier had a complete
soundness proof, so no formal guarantees were sacrificed to win
this performance.

The main problem that we encountered was in the engineer-
ing issues of proof construction. We used a more or less traditional
approach to program verification in proving the soundness of our
verifiers, writing them in a standard programming language and ex-
tracting verification conditions that imply their soundness. Keeping
the proof developments in sync with changes to verifier source code
was quite a hassle. We also found that the structure of the verifier
program and its proof were often very closely related, leading to
what felt like duplicate work. I decided to try investigating what
could be gained by writing verifiers from the start in a language
expressive enough to encode verifier soundness in its type system.

1.2 Programming with Dependent Types and Proofs
Coq and related formal logic tools are based on Martin-Löf con-
structive type theory. They identify logical specifications with types
and proofs with values of those types. Coq allows values tradition-
ally thought of as “programs” and “proofs” to coexist in the same

calculus; the former simply have the kinds of types we’re used to
seeing, while the latter have logical propositions as types. If we
avoid dependent types, Coq essentially provides a pure and total
subset of ML. Through selective use of dependent types and “log-
ical” features, we can choose the precision of specifications that
the type checker should ensure, working towards a program type
that implies full correctness. Through its program extraction fea-
ture, Coq can build an ML version of a Coq term that has a type
associated with “programs,” which can then be compiled into an
efficient executable version. Thus, one reasonable view of Coq is
as a programming environment supporting very expressive depen-
dent types.

Recent programming languages like Epigram [MM04], ATS [CX05],
and RSP [WSW05] have drawn on the theory underlying more tra-
ditional approaches associated with theorem provers in providing
support for practical programming with dependent types. Why cre-
ate these new languages when tools like Coq already exist? The
answer is that Coq is primarily designed for doing math, not writ-
ing software. It is missing many convenient features we expect in
“real” programming languages, like non-terminating functions, im-
perative state, and exceptions. ATS and RSP allow the sound use of
features like these in the presence of explicit proofs. It’s also true
that dealing with type equalities in Coq can be quite aggravating.
Support for automatic and implicit proof and use of type equalities
and other “obvious” lemmas is an important time-saving feature.

The hot subject of generalized algebraic datatypes (GADTs) [She04]
is also closely related to these issues. GADTs are a particular re-
striction of the type systems supported by the tools I’ve mentioned
above. The restriction is designed to make type inference more fea-
sible than it has any hope of being in any of those tools, whose type
systems are strong enough to express most of mathematics.

Despite the potential objections to use of Coq that I’ve listed,
I hope to make a case here that it is a good choice for program-
ming with rich specifications. The foundations of both Coq’s im-
plementation and its formal metatheory are very simple and ele-
gant compared to approaches based on traditional programming. A
small dependently-typed lambda calculus suffices for the effective
encoding of most of math and, as I hope to justify, most of program-
ming. As a mature tool for formal math, Coq has many features for
organizing mathematical developments and automating proofs that
don’t have clear translations to environments with larger sets of or-
thogonal primitive features.

Program verifiers make a nice subject for a study of this kind.
As I summarized in the last section, certification of verifiers has sig-
nificant application to proof-carrying code and related areas. There
are also established, rigorous standards of what the correctness of
a verifier is. Finally, program analysis tools are frequently written
in a purely functional style with no non-terminating functions.

Leroy’s recent work on certifying a complete compiler written
in Coq [Ler06] provides some strong evidence that Coq can be, at
the least, an effective starting point in developing the ideal system
for programming with specifications. That work mostly takes the
traditional approach of implementing the compiler without depen-
dent types and then proving it correct. In the work I will present
here, I’ve tried to take as much advantage of dependent types as I
can to simplify development.

1.3 Contributions
In the remainder of the paper, I will describe my approach to
the modular development of certified program verifiers. The key
novelty is the use of dependent types in the “programming” part
of development and in conjunction with Coq’s ML-style module
system. The end result is a set of components with rich interfaces
that can be composed to produce a wide range of verifiers with low
cost relative to the strength of the formal guarantees that result.



I’ll begin by giving some preliminary background on the FPCC
problem setting and on dependent types, extraction, and modules
in Coq. With these tools available, I describe the design and im-
plementation of a library to ease the development of certified veri-
fiers via functors with rich interfaces. Next, I describe a particular
completed application of that library, a memory safety verifier for
machine code programs that use algebraic datatypes. I conclude
by comparing with related work and summarizing the take-away
lessons from the experience.

2. Preliminaries
2.1 Types and Extraction in Coq
To introduce the basics of dependent types in Coq, I’ll start with
a definition for the Coq version of the polymorphic option type
familiar to ML programmers (and Haskell programmers as Maybe):

Inductive option (T : Set) : Set :=
| Some : T -> option T
| None : option T.

This has more or less the same information content as the
ML definition. The Coq version is a little more verbose, because
here we use a general mechanism designed to handle much more
complicated types. Since Coq unifies values, types, proofs, and
propositions in a single syntactic class, option is expressed as
a function from sets to sets, with T bound as the name of the
function’s argument. Also, the full type of each constructor is
given explicitly, without the result type being implicit. This will be
familiar to readers who have seen GADTs, as the same explicitness
is necessary there. This is because the result type of a constructor
can depend on the types of the arguments, in the case of GADTs;
or even on the values of the arguments, in Coq.

Here we use an inductive definition of a family of Sets. The
high-level intuition is that runnable programs with computational
content belong to the sort Set, while mathematical proofs belong
to Prop. The types of programs are introduced with Inductive
definitions with Set specified immediately before the :=, while
propositions (i.e., the types of proofs) are introduced with Prop
in that position.

Now we can consider this slight modification of option’s defi-
nition:

Inductive poption (P : Prop) : Set :=
| PSome : P -> poption P
| PNone : poption P.

Here I’ve changed the argument type of the polymorphic
poption type to Prop, but left the result type the same at Set.
A poption is a package that might contain a proof of a particular
proposition or might contain nothing at all. The interesting thing
about it is that, while it may contain it proof, it itself exists as a
program. A helpful way to think about poption is as the rich re-
turn type of a potentially incomplete decision procedure that either
determines the truth of a proposition or gives up.

As a concrete example, consider this function that determines if
its argument is even:

Definition isEven : forall (n : nat),
poption (even n).

refine (fix isEven (n : nat)
: poption (even n) :=

match n return (poption (even n)) with
| O => PSome _ _
| S (S n) =>
match isEven n with
| PSome pf => PSome _ _

| PNone => PNone _
end

| _ => PNone _
end); auto.

Qed.

I’m using a lot of Coq notation here, but only a few details
are relevant. First, the type of isEven is given as a dependent
function type, where Coq uses forall in place of the more usual
Π. Second, we provide a partial implementation for the function.
We don’t want to fill in the proofs manually; as Coq is designed for
formalizing math, we rightfully expect that it can do this dirty work
for us.

By using a Definition command (terminated with a period)
without providing an expansion for our new definition, we declare
that we will construct this value with Coq’s interactive proof de-
velopment mode. In this mode, proof goals are iteratively refined
into subgoals known to imply the original, until all subgoals can
be eliminated in atomic proof steps. Individual refinements are ex-
pressed as tactics, small, untyped programs in the language that
Coq provides for scripting proof strategies. Theorem proving with
tactics isn’t my focus in this work, so I will just describe the two
simple tactics that I’ve used in the example.

At any stage in interactive proof development, the goal is ex-
pressed as a search for a term having a particular type. The refine
tactic specifies a partial term; it contains underscores indicating
holes to be filled in, and we believe that there is some substitution
for these holes that leads to a term of the proper type. Some holes
are filled in automatically using standard type inference techniques,
while the rest are added as new subgoals in the proof search.

In the use of refine in the example, I suggested a recursive
function definition, filling in all of the computational content of
the function and leaving out the details of constructing proofs. The
holes standing for proofs turn out to be the only ones that Coq
doesn’t fill in through unification, and I invoke the auto automation
tactic to solve these goals through Prolog-style logic programming.

We can make the code nicer-looking through some auxil-
iary definitions and by extending Coq’s parser, which is built on
“camlp4,” the Caml Pre-Processor and Pretty Printer:

Definition isEven : forall (n : nat), [[even n]].
refine (fix isEven (n : nat) : [[even n]] :=
match n return [[even n]] with
| O => Yes
| S (S n) =>
pf <- isEven n;
Yes

| _ => No
end); auto.

Qed.

I introduce the syntax [[P]] for poption P, along with Yes
and No for the PSome and PNone forms from the earlier exam-
ple version. There’s also the pf <- isEven n; Yes code snippet,
which treats poption as a failure monad in the style familiar from
Haskell programming. The meaning of that code is that isEven n
should be evaluated. If it returns PNone, then the overall expression
also evaluates to PNone. If it returns PSome, then bind the associ-
ated proof to the variable pf in the body Yes. Here, it looks like the
proof is not used in the body, but remember that Yes is syntactic
sugar for a PSome with a hole for a proof. refine will ask us to
construct this proof in an environment where pf is bound.

We construct terms like this to use in programs that we eventu-
ally hope to execute. With Coq, efficient compilation of programs is
achieved through extraction to computationally equivalent OCaml
code. With the right settings, our example extracts to:



let rec isEven (n : nat) : bool =
match n with
| O -> true
| S (S n) -> isEven n
| _ -> false

Notice that the proof components have disappeared. More gen-
erally, extraction erases all terms with sorts other than Set, only
leaving us with the OCaml equivalents of Coq terms that we des-
ignated as “programs.” Thanks to some subtle conditions on legal
Coq terms, Coq can guarantee that the extraction of any Coq term
in Set has the same computational semantics as the original.

Besides poption, there is another type of similar flavor that will
show up often in what follows. This is the soption type, which is
an optional package of a value and a proof about that value. It is
defined as

Inductive soption (T : Set) (P : T -> Prop) : Set :=
| SSome : forall (x : T), P x -> soption T P
| SNone : soption T P.

soption is the type of a potentially incomplete procedure that
searches for a value satisfying a particular predicate. For instance,
a type inference procedure infer for some object language en-
coded in Coq might have the type forall (e : exp), soption
type (fun t : type => hasType e t). We could then use
this function in failure monad style with expressions like t : pfT
<- infer e; ..., which attempts to find a type for e. If no type
is found, the expression evaluates to SNone; otherwise, in the body
t is bound to the value found, and pfT is bound to a proof that t
has the property we need. The importance difference of soption
with respect to poption is that the value found by a function like
infer is allowed to have computational content and is preserved
by extraction, while the only computational content of a poption
is a yes/no answer.

In the bulk of this paper, I’ll use a more eye-friendly, non-
ASCII notation for these types. I’ll denote poption P as [[P ]] and
soption (fun x : T => P) as {{x : T | P}}. I’ll also use the
usual Π instead of Coq’s forall to denote dependent function
types.

2.2 Coq’s Module System
Coq also features a natural extension of ML-style module systems
to Coq’s dependently-typed world, and I use the module system
extensively to structure re-usable verification components. Here’s a
simple example of a pattern of module usage that appears often:

Module Type PARAM.
Parameter abstractState : Set.
...
Axiom soundness :
(* Theorem statement in terms of abstractState *)

End PARAM.

Module Type VERIFIER.
Parameter verify :
forall (p : program), [[(* p satisfies spec *)]]

End VERIFIER.

Module Verifier (P : PARAM) : VERIFIER.
(* Code and proofs for a verifier that uses the
* abstraction from P *)

End Verifier.

Here Verifier is a functor for building a program verifier
based on a user-supplied abstraction. An abstraction includes,
among other things, a set for the domain of abstract states and a

proof of some soundness theorem that is key to the soundness of
the way that Verifier will use the abstraction.

2.3 Problem Formulation
The goal of this work is to support the verification of safety prop-
erties of executable x86 machine code programs. I’ve opted to sim-
plify the problem by focusing on a single safety policy, where the
safety policy simply forbids execution of a special “Error” instruc-
tion. As in model-checking, many interesting safety policies can
then be encoded with assertion checks that execute “Error” on fail-
ure.

The first task is to define formally the semantics of machine
code programs. The style is standard for FPCC [App01], but I
summarize the formalization here to make it clear exactly what a
successful verification guarantees.

Machine words word w ::= 0 | 1 | . . . | 232 − 1
Registers reg r ::= EAX | ESP | . . .

Flags flag f ::= Z | . . .

Register files regFile R = reg → word
Flag files flagFile F = flag → bool

Memories memory M = word → byte

Machine states state S = word× regFile
× flagFile×memory

Instructions instr I ::= ERROR | MOV r, [r]
| JCC f, w | . . .

Step relation 7→ : state ⇀ state

The main thing to notice is that the semantics follows precisely
a conservative subset of the programmer-level idea of the “real” se-
mantics of x86 machine code. I’ve chosen a subset of x86 instruc-
tions that is sufficient to allow many interesting programs and only
included in the semantics those aspects of processor state needed
to support those instructions.

The various elements of the formalization follow from the of-
ficial specification of the x86 processor family, with the exception
of the ERROR instruction added to model the safety policy. I’ll
briefly review the different syntactic classes and definitions before
continuing.

A machine state consists of a word for the program counter,
giving the address in memory of the next instruction to execute; a
register file, giving the current word value of every general purpose
register; a boolean valuation to each of the flags, which indicate
conditions like equality and overflow relevant to the last arithmetic
operation; and a memory, an array of exactly 232 bytes indexed by
words. The instructions are a subset of the real x86 instruction set,
with the addition of the ERROR instruction.

A small-step transition relation 7→ describes the semantics of
program execution. One transition involves reading the instruction
from memory at the address given by the program counter and then
executing it according to the x86 instruction set specification. Ac-
tually, 7→ is a partial function; it fails to make progress if the in-
struction loaded is ERROR. In this way, violations of the safety
policy are encoded with the usual idiom of the transition relation
“getting stuck.” A “production quality” implementation would no
doubt keep the real semantics separate from a library of safety poli-
cies, but the design decision I made simplifies my formalization,
and the main interesting issues therein are the same between the
two approaches.

We can define what it means for a machine state to be safe with
this co-inductive inference rule:



S 7→ S′ safe(S′)

safe(S)

This is defined using Coq’s facility for co-inductive judgments,
which may have infinite derivations that are well-formed in a
particular sense. Infinite derivations are important here for non-
terminating programs.

The last ingredient is a means to connect a program to the first
machine state encountered when it is run. Assume the existence of a
type program and a function load : program → state. Concretely,
program is a particular file format that GCC will output, and
load expresses the algorithm for extracting the initial contents of
memory from such a file, zeroing out registers and flags, and setting
the program counter to the fixed address of the program start. To
simplify reasoning while still remaining faithful to real semantics, I
deal with programs that run “on a bare machine” with no operating
system, virtual memory, etc.; and in fact the programs really do run
as such in an emulator.

We’ve now established enough machinery to define formally the
correctness condition of a certified verifier. A certified verifier is
any value of the type:

Π(p : program).[[safe(load(p))]]

The type of the extracted function is program → bool. By the
soundness of extraction, we know that the value of the function
on an input p is a boolean whose truth implies the safety of the
program. Thus, if p is unsafe, the function must return false, and
we can take a return of true as conclusive evidence that p is
safe. A trivial certified verifier implementation is one that always
returns false, but this is an issue of completeness, not soundness,
to be dealt with through testing. There are some possibilities for
proving completeness results in Coq, but they invariably have the
flavor of proving that a complicated implementation accepts every
input accepted by a simpler reference implementation, begging the
question of how we know that the reference implementation is
complete enough. Even the simplest reference implementation of a
non-trivial static analysis technique will be quite large, increasing
the trusted code base by orders of magnitude over what is required
for FPCC, so it hasn’t seemed worthwhile to attempt anything of
this sort.

3. Components for Writing Certified Verifiers
The final goal of the case study I’m presenting here was to produce
a certified x86 machine code memory safety verifier that supports
general product, sum, and recursive types, which I’ll call Memo-
ryTypes. It would have been possible to write this verifier mono-
lithically, but I thought it would be more interesting and useful to
do it in stages, writing re-usable components with rich interfaces to
handle different parts of verification and allow later components to
reason at increasingly high levels of abstraction.

The component structure that I present here is born of necessity;
a layered decomposition of verifier structure or something like it is
critical to making the overall task feasible. As traditional software
built from many simple pieces can become unmanageably complex,
the problem is only exacerbated when formal correctness proofs
are required, since now even the “simple” pieces can involve non-
trivial proofs. The component structure I’ve settled on has been de-
signed not just to support effective programming, but also effective
proof construction, by minimizing the need for repeated work. The
issues and complexities specific to my domain of machine code ver-
ifiers are probably not clear to readers who don’t have experience in
that field, but I hope that the following walk-through of the steps in
my solution can shed some light on them. The important question
at each stage of this abstraction hierarchy is “How hard would it

be to develop and maintain a new verifier (with a soundness proof)
handling all of the hidden lower-level details?”. It’s also true that
I’ll be drilling down to a significant level of detail in this section. I
invite the overwhelmed reader to look ahead to the light at the end
of the tunnel in Section 4, where I show how all of this machinery
pays off in making it very easy to build a new certified verifier.

Figure 1 presents the particular component structure that I set-
tled on. An arrow from one component to another indicates that
the target component of the arrow builds on the source compo-
nent. Ovals represent logical theories that are used in the correct-
ness conditions of other modules. Boxes stand for components that
contribute code to the extracted version of a verifier; i.e., they con-
tain implementations of verifiers at particular levels of abstraction,
along with the associated correctness proofs. Solid boxes are best
viewed as library components, while transparent boxes represent
certified verifiers, the final products. I include a number of verifier
boxes with dashed borders. These stand for hypothetical verifiers
that I haven’t implemented but that I believe would best be con-
structed starting from the components that connect to them in the
diagram.

I will describe each library module in detail in the following
subsections, but I’ll start by providing an overview of the big
picture.

• The only module that belongs to the trusted code base is the x86
Semantics, the basic idea of which I presented in Section 2.3.

• ModelCheck provides the fundamental method of proving the-
orems about infinite state systems through exhaustive explo-
ration of an appropriate abstract state space; or, since x86 states
are finite in reality and in my formalization, proving theorems
about intractably large state spaces through exhaustive explo-
ration of smaller abstract state spaces.

• The CISC x86 instruction set involves lots of complications
that one would rather avoid as much as possible, so I do most
verification on a tiny RISC instruction set to which I reduce
x86 programs. SAL semantics defines the behavior of this
Simplified Assembly Language.

• Reduction enables multiple steps of abstraction: model check-
ing an abstraction of an abstraction of a system suffices to verify
that system. In the chain of component uses for MemoryTypes,
Reduction is used to do model checking on the SAL version
of an x86 program. One way of viewing traditional PCC ap-
proaches is that they apply proof-checking on the result of a
reduction to whatever internal format they use to represent pro-
grams.

• FixedCode deals with a basic simplification used by most pro-
gram verifiers, which is that a fixed region of memory is des-
ignated as code memory, and that memory cannot be modified
in any run of the program. General FPCC frameworks in theory
support verification of self-modifying programs, but we usu-
ally want to work at a higher level of abstraction. FixedCode’s
level of abstraction would be appropriate for an adaptation to
machine code level of traditional verification in the style of Ex-
tended Static Checking [DLNS98].

• TypeSystem provides support for model checking where the
primary component of an abstract state is an assignment of
a type to every general purpose machine register. This would
be a good starting point for traditional Typed Assembly Lan-
guage [MWCG99, MCGW03], which handles stack and calling
conventions with its own kind of stack types...

• ...but for most verifiers, StackTypes would be the module to use
next. It takes as input a type system ignorant of stack and calling
conventions and produces a type system that understands them.



Figure 1. A component structure for certified verifiers

An application of StackTypes to a trivial type system gives
us a verifier capable of checking memory safety of simple C
programs that don’t use pointers.

• FlagTypes handles tracking of condition flag values relevant to
conditional jumps. This is critical for verifying programs that
use pointers that might be null, general sum types, or any of
a large variety of type system features. FlagTypes would be a
reasonable starting point for a verifier based on alias types or
some other way of supporting manual memory management...

• ...but with automatic memory management, WeakUpdate pro-
vides a much more convenient starting point. WeakUpdate is
used with type systems that have a notion of a partial map from
memory addresses to types, where this map can only be ex-
tended, never modified, during a program execution. Though
addresses can usually change types when storage is reclaimed,
this is handled by, e.g., a garbage collector that is verified
using different methods. WeakUpdate would also provide a
good foundation for machine code-level verification of pro-
grams compiled from Java source code.

In general, each of these arrows between rounded boxes in
Figure 1 indicates a functor translating a verifier at the target’s level
of abstraction to a verifier at the source’s level. These functors are
used as in the example in Section 2.2. For instance, for the arrow
between TypeSystem and StackTypes, we have the form of the
earlier example with PARAM changed to STACK TYPE SYSTEM, the
output signature of the functor changed to TYPE SYSTEM, and the
functor’s innards assembling a richer type system by extending that
presented by its input module.

I will now describe the most important aspects of the interfaces
and implementations of each of these reusable library components.
For reasons of space, I avoid describing how the actual proofs
are constructed, focusing instead on component interfaces and a
bird’s-eye view of an overall structure that I’ve found to work in
practice. Nonetheless, there are many important engineering issues
in proof construction. The main thing to keep in mind through the
following sections is that every piece is supported by Coq proofs of
the relevant properties, and that I was able to construct these proofs
using the techniques sketched in Section 1.2.

3.1 ModelCheck
An input to ModelCheck specifies a particular machine semantics
Mac, implemented as a module ascribing to a particular common
MACHINE signature. An abstraction for this machine is defined by
providing the elements in Figure 2.

Before describing their meanings, I note that this formalization
of model-checking is specific to “first-order” uses of code point-
ers. Each point in the abstract state space can have any number of
known code pointers that it is allowed to jump to, but the descrip-
tions of these code pointers can’t themselves refer to other code
pointers. The formulation I give is expressive enough to handle,
for instance, standard function call and exception handling conven-

absState : Set

context : Set

`S : context → Mac.state → absState → Prop

init : {states : list (absState × list absState)

| ∃Γ : context , ∃α : absState,

(α, nil) ∈ states ∧ Γ `S Mac.start : α}

step : Π(hyps : list absState)(α : absState).

{{succs : list absState

| ∀(s : Mac.state)(Γ : context),

Γ `S s : α ⇒ ∃s′ : Mac.state, s 7→Mac s′

∧ ∃α′ : absState, ((α′ ∈ (hyps ∪ succs)

∧ Γ `S s′ : α′)

∨ (∃hyps′ : list absState,

(α′, hyps′) ∈ π1(init)

∧ ∃Γ′ : context , Γ′ `S s′ : α′

∧ ∀h′ ∈ hyps′, ∃h ∈ (hyps ∪ succs),

∀s′′ : Mac.state,

Γ′ `S s′′ : h′ ⇒ Γ `S s′′ : h))}}

Figure 2. Elements of an abstraction for ModelCheck

tions. Naturally, this design decision precludes the easy handling
of functional languages, but one would simply write another com-
ponent to serve as a starting point there; and there are plenty of
interesting issues in this restricted setting, related to data structures
and other program features.

Now I will give the high level picture of what an abstraction is
and what properties it must satisfy. The fundamental piece of an
abstraction is its set absState of abstract states. These will be the
constituents of the state spaces explored at verification time.

As per usual in abstraction-based model checking, we need
to provide a relation characterizing compatibility of concrete and
abstract states. `S is a ternary relation filling this function. It relies
on an extra, perhaps unexpected, component, a set context . The
basic idea behind the separation of abstract states and contexts is
that abstract states will be manipulated in the extracted OCaml
version of a verifier, while contexts will be used only in the proof
of correctness and erased during extraction. A canonical example
of a context is a valuation to free type variables used in an abstract
state. Contexts provide a sort of polymorphism that lets us check



infinitely many different abstract states by checking a finite set of
representatives. For instance, we check a finite set of abstract states
containing type variables in place of checking the infinite set of all
of their substitution instances. I use the infix notation Γ `S s : α
to denote that, in context Γ, concrete state s and abstract state α are
compatible; i.e., s belongs to α’s concretization.

Now we need a way of computing an abstract state space that
conservatively approximates the concrete state space. The values
init and step are used to do this, with init providing the roots of
the state space and step describing how to expand it by following
the edges out of a single node.

Each element of the state space consists of one absState de-
scribing the current state and zero or more hypotheses (represented
with a list absState) describing other abstract states known to be
safe. The canonical example of a hypothesis is a function call’s re-
turn pointer. If verification inside a function ever reaches an abstract
state compatible with the return pointer’s hypothesis, then there is
no need to explore that branch of the state space further.

init provides a set (actually a list) of state descriptions of this
type, along with a guarantee that some abstract state compatible
with the concrete initial state is included. I overload ∈ and other
set notations to work for lists, where a list is interpreted as the set
of its elements. The condition for init requires that some abstract
state with no hypotheses (i.e., that makes no special assumptions)
is found among the initial states.

step is the complicated part of the abstraction. Computationally,
it’s simple: given a point in the abstract state space, return a list
of the states reachable from there in one step. The specification
packaged with this function is where things get interesting.

First, note that while init’s type is a standard set comprehen-
sion, step has an soption type that allows it the option of failing
for any input. Naturally, this is important, since otherwise the im-
plementation of ModelCheck would somehow need to produce a
model checker that is able to prove any program safe!

When step succeeds for hypotheses hyps and abstract state α, it
returns a set of successor states that satisfies a particular correctness
condition. First, it must be the case that any concrete state related
to α makes at least one step of safe progress. Next, there is a
preservation condition, broken into two cases.

The first kind of preservation is the simple one, corresponding to
most instructions in a program. We need to be sure that we expand
our state space to include a point for every concrete successor s′

of every concrete state s related to α. The first disjunct of the
preservation condition ensures this by requiring that s′ is related
(in the current context) to one of the abstract successor states that
we are queueing to visit, or to one of the hypotheses. The first
of these cases corresponds to a normal instruction in straight-line
code. The second case would be used, for example, at a function
return, where the abstract state has finally come to match the return
pointer hypothesis.

The second kind of preservation is associated with direct jumps
and function calls. It requires that we look into the roots of the state
space and find one (α′, hyps′) that is compatible with s′. While
the previous preservation case required that the compatibility hold
in the current context Γ, in this case we can choose an arbitrary new
context Γ′. Not only do we need to guarantee Γ′ `S s′ : α′, but
we also need to be sure that every hypothesis in hyps′ describes
a set of states that are all safe. That’s the purpose of the final
condition, which says that every hypothesis hyp′ in hyps′ has
a counterpart hyp among the current hypotheses and successor
states, such that any concrete state described by hyp′ in Γ′ is
also described by hyp in Γ. This implication at first seems to be
reversed from the natural order, but it makes sense in the light of

standard function subtyping rules when we think of hypotheses as
distinguished function arguments.

For a concrete example of this second preservation case, think
of a function call in a C program. step finds a state space root for
the function that we’re calling. The function has associated with it
a single hypothesis, for its return pointer. step handles this call by
returning in succs a single new state to be visited, corresponding
to the expected return state of the call. The proof for this case
uses the second kind of preservation, where it shows first, that
the immediate next state is compatible with the entry state for the
callee; and second, that any state described by the callee’s return
pointer hypothesis also describes the local return state that was just
queued. A different context is used in the callee than in the caller,
reflecting a view shift into a new stack frame.

This example shows that init can’t just be a complete descrip-
tion of the initial concrete state, but must rather contain enough
states that every point in the program’s execution reaches one in
finitely many steps. In this sense, init is like a pre-computed fixed
point of an abstract interpretation. I could have required that init
contain enough elements to describe every reachable concrete state,
but that would just contribute to verification-time inefficiency, and
we really only need to fix enough abstract states to cut every cy-
cle in the abstract state space. In the implementation, init will be
computed mostly by ML code. This code gets the information by
reading annotations out of the binary being analyzed. It could just
as easily use abstract interpretation to infer the information from a
less complete set of annotations. Notice that an “error” in construct-
ing the fixed point can only effect completeness, not soundness, so
it’s OK to implement this part outside of Coq.

With these components provided to it, ModelCheck produces
a standard model checker that uses the requested abstraction. This
model checker performs a depth-first search through the state space,
where the search terminates in every branch of the tree where
preservation is shown through the second case above, correspond-
ing to a jump or call to one of the root states. The computational
content of init and step determines the shape of the state space to
explore.

3.2 Reduction
The literal x86 machine language is not ideal for verification pur-
poses. Single instructions represent what are conceptually several
basic operations, and the same basic operations show up in the
workings of many instructions. As a result, a verifier that must han-
dle every instruction will find itself doing duplicate work. In my
implementation, I handle this problem once and for all by way of
a component to model check a program in one instruction set by
reducing it to a simpler instruction set.

The particular simplified language that I use is a RISC-style in-
struction set called SAL (Simplified Assembly Language), after a
family of such languages used in traditional proof-carrying code
work [Nec97]. The main simplifications are the use of arbitrary
arithmetic expressions, instead of separate instructions for loading
a constant into a register, performing an arithmetic operation, etc.;
and a new invariant that each instruction has a single effect on ma-
chine state. This latter property is accomplished by breaking in-
structions into multiple pieces responsible for the different effects.

Here’s a brief summary of the language grammar:

SAL registers rs ::= r | TMPi

Binary operators ◦
SAL expressions e ::= w | rs | e ◦ e
SAL instructions Is ::= ERROR | SET rs, e

| LOAD rs, [e] | STORE [e], e | . . .



prog : word → byte

code : memoryRegion

absPc : Π(α : absState).{{pc : word

| ∀Γ, s.Γ `S s : α ⇒ s.pc = pc}}

instrOk = λs.λins.
|dst|s 6∈ code, ins = STORE [dst], src

True, otherwise

step : Π(hyps : list absState)(α : absState).

{{succs : list absState

| ∀(s : Mac.state)(Γ : context),

Γ `S s : α ⇒ ∃s′ : Mac.state, s 7→Mac s′

∧ instrOk(st, ins) ∧ . . .}}

Figure 3. New elements of a FixedCode abstraction

I add a finite set of extra temporary registers, needed when
a single instruction is broken up into its constituents. For ex-
ample, the x86 instruction PUSH [EAX], which pushes onto
the stack the value pointed to by register EAX, is compiled into
LOAD TMP1, [EAX]; STORE [ESP−4], TMP1; SET ESP, ESP−
4.

The details of SAL and Reduction are not especially enlight-
ening, so I omit them here. The main technical component is the
expected compatibility relation between states of the two kinds of
programs, along with a compilation function and a proof that it re-
spects compatibility.

3.3 FixedCode
The most basic knowledge a model checker needs is how to de-
termine which instructions are executed when. The full semantics
of SAL programs allows writing to arbitrary parts of memory, in-
cluding those thought of as housing the program. We usually don’t
want to allow for this possibility and would rather simplify the ver-
ification framework. The FixedCode module is used to build ver-
ifiers based on this assumption. It is a functor that takes as input
an abstraction that assumes a fixed code segment and returns an
abstraction that is sound for the true semantics.

Figure 3 shows the additions and modifications to FixedCode’s
signature for an abstraction over what ModelCheck requires. The
first addition is a memory value prog that contains in some contigu-
ous region of its address space the encoding of the fixed program.
The memory region code tells us which address space range this is.

Next, we have a function absPc for determining the program
counter for some subset of the abstract states. The model checker
that FixedCode outputs will take responsibility for determining
which instruction is next to execute in any state for which absPc
returns SSome of a program counter. Other states may only be
used as hypotheses and never appear directly in the abstract state
space. For instance, we don’t know the precise program counter
of a hypothesis describing a return pointer, but this doesn’t matter,
since we are sure to visit all of the concrete program locations it
could stand for.

The final change to the signature of an abstraction is that, of
course, we must now require that the code is never overwritten.
If it were, then we would no longer know at verification time
which instruction was being executed when, since the verifier will
simply look instructions up in prog for this purpose. The progress
condition of step is augmented to require that the destination of any

ty : Set

`T : context → word → ty → Prop

≤T : Π(τ1 : ty)(τ2 : ty).[[∀Γ, w,

Γ `T w : τ1 ⇒ Γ `T w : τ2]]

typeof : Π(α : absState)(~r : reg → ty)(e : exp).

{{τ : ty | ∀Γ, s.Γ `S s : α

⇒ (∀r, Γ `T s.regs(r) : ~r(r))

⇒ Γ `T |e|s : τ}}

viewShift : Π(α : absState)(~r : reg → ty)(i : instr).

{{(α′, ~r′) : absState × (reg → ty)

| ∀Γ, s.Γ `S s : α

⇒ (∀r, Γ `T s.regs(r) : ~r(r))

⇒ ∃Γ′, Γ′ `S s : α′

∧ (∀r, Γ′ `T s.regs(r) : ~r′(r))}}

Figure 4. New elements of a TypeSystem abstraction

STORE instruction is outside of the code region, using an auxiliary
function instrOk . I use the notation |e|s to stand for the result of
evaluating expression e in machine state s.

3.4 TypeSystem
The next stage in the pipeline is the first where a significant decision
is made on structuring verifiers. The TypeSystem component pro-
vides support for a standard approach to structuring abstract state
descriptions: considering the value of each register separately by
describing it with a type. Figure 4 shows the key new components
of a type-based abstraction. I’m omitting many of the details, but
the pieces I chose to include illustrate the key points.

The basic idea is that we have an abstraction as before that can
assume that, in addition to the custom abstract state that it maintains
itself, a type assignment to each register is available at each step.
The abstraction provides the set ty of types, along with a typing
relation `T to define their meanings, plus a subtyping procedure
≤T . It’s worth noting that there is no need to go into further
detail on exactly how to allow typing relations to be defined. Coq’s
very expressive logic is designed for just such tasks, and natural-
deduction style definitions of type systems via inference rules are
accommodated naturally by the same mechanism for inductive type
definitions that I demonstrated in Section 1.2, where the defined
relation is placed in sort Prop.

Naturally TypeSystem will need a way to determine the types
of expressions if it is to track the register information that an
abstraction assumes is available. The provided typeof function
explains how to do this. Given an abstract state α, a register type
assignment ~r, and an expression e, typeof must return a type that
describes the value of the expression in any compatible context
Γ and concrete state s. It only needs to work correctly under the
assumption that, in Γ, α accurately describes s and ~r accurately
describes all of s’s register values.

viewShift provides an important piece of logic that might not be
obvious by analogy from type systems for higher-level languages.
At certain points in its execution (and so in model checking), a
program “crosses an abstraction boundary” which takes a different
view of the types of values. A canonical example is a function call.



stack : memoryRegion

stackCodeDisjoint : disjoint(stack , code)

checkStore : Π(α : absState)(~r : reg → ty)(e : exp)

[[∀Γ, s.Γ `S s : α

⇒ (∀r, Γ `T s.regs(r) : ~r(r))

⇒ |e|s 6∈ stack ]]

Figure 5. New elements of a StackTypes abstraction

The stack pointer register may switch from type “pointer to the
fifth stack slot in my frame” to “pointer to the first stack slot in my
frame.” In the presence of type polymorphism via type variables, a
register’s type may change from “pointer to integer” to “pointer to
β,” where β is a type variable instantiated to “integer” for the call.
There are many ways of structuring modularity in programs, so it’s
important that the requirements on viewShift be very flexible. Its
type in Figure 4 expresses that it may provide any new abstract
state α′ and register type assignment ~r′ for which there exists some
context Γ′ in which α′ and ~r′ are correct whenever α and ~r were
correct in the original Γ.

It’s worth recalling the context in which TypeSystem is being
used, which is to support construction of Coq terms to be extracted
to OCaml code. `T exists only in the Prop world, and so it will
not survive the extraction process; it is only important in the proof
of correctness of the resulting verifier. The types in ty are manip-
ulated explicitly at verification time, so those survive extraction
intact. ≤T , typeof , and viewShift have both computational and
logical content. For instance, the extracted version of ≤T is a po-
tentially incomplete decision procedure with boolean answers. The
extracted OCaml version of the verifier ends up looking like a stan-
dard type checker. You can think of the Coq implementation as
combining a type checker and a proof of soundness for the type
system it uses. There is considerable practical benefit from devel-
oping both pieces in parallel through the use of dependent types.

3.5 StackTypes
There are a wide variety of interesting type systems worth explor-
ing for verifying different kinds of programs. At least when us-
ing the standard x86 calling conventions, every one of these type
systems needs to worry about keeping track of the types of stack
slots, which registers point to which places in the stack, proper han-
dling of callee-save registers, and other such annoyances. Stack-
Types handles all of these details by providing a functor from a
stack-ignorant TypeSystem abstraction to a TypeSystem abstrac-
tion aware of stack and calling conventions. The input abstraction
can focus on the interesting aspects of the new types that it intro-
duces rather than getting bogged down in the details of stack and
calling conventions.

To make this feasible, the input abstraction only needs to pro-
vide a few new elements, as shown in Figure 5. First, a region of
memory is designated to contain the runtime stack. It is accompa-
nied with a proof that it has no overlap with the region where the
program is stored. The remaining ingredient is a way of making
sure that the custom verification code of the abstraction will never
allow the stack to be overwritten. The checkStore function is used
for this purpose, being called on an expression that is the target
of a STORE instruction to make sure that it won’t evaluate to an
address in the stack region. In my current implementation, this in-
volves “exposing” the underlying stack implementation, though the
client of StackTypes can avoid worrying too much about these de-
tails through the use of a library of helper functions.

considerTest : Π(α : absState)(~r : reg → ty)(co : cond)

(◦ : binop)(e1 e2 : exp)(b : bool).

{{(α′, ~r′) : absState × (reg → ty)

| ∀Γ, s.Γ `S s : α

⇒ (∀r, Γ `T s.regs(r) : ~r(r))

⇒ |e1 ◦ e2|co
s = b

⇒ ∃Γ′, Γ′ `S s : α′

∧ (∀r, Γ′ `T s.regs(r) : ~r′(r))}}

Figure 6. New elements of a SimpleFlags abstraction

With these ingredients, StackTypes builds a verifier that adds
a few new types to the input abstraction’s set ty . First, there are
types Stack i, indicating the ith stack slot from the beginning of
the stack frame. Types for the stack slots are tracked in another part
of abstract states. With this additional information, it’s possible to
determine the type of the value lying at a certain offset from the
address stored in a register of Stack i type. There is also a type
Savedr for each callee-save register r, denoting the initial value of
r on entry to the current function call. These values will probably
be saved in stack slots, and we will require that each callee-save
register again has its associated Saved type when we return from
the function. We know that we’ve reached this point when we do
an indirect jump to a value of type Retptr , where the saved return
pointer on the stack is given this type at the entry point to the
function.

3.6 SimpleFlags
In x86 machine language, there are no instructions that implement
conditional test and jump atomically. Instead, all arithmetic opera-
tions set a group of flag registers, such as Z, to indicate a result of
zero; or C, to indicate that a carry occurred. Each condition, formed
from a flag and a boolean value, has a corresponding conditional
jump instruction that jumps to a fixed code location iff that condi-
tion is true relative to the current flag settings. Thus, to properly de-
termine what consequences follow from the fact that a conditional
jump goes a certain way, it’s necessary to track the relationship of
the flags to the other aspects of machine states. Understanding these
jumps is critical for such purposes as tracking pointer nullness and
array bounds checks.

SimpleFlags is a functor that does the hard part of this tracking
for an arbitrary abstraction, feeding its results back to the abstrac-
tion through a function whose signature is given in Figure 6. The
type of considerTest looks similar to the type of viewShift from
TypeSystem. Its purpose is to update an abstract state to reflect the
information that a particular condition is true. The arguments α and
~r are as for viewShift . co names one of the finite set of conditions
that can be tested with conditional jumps. ◦, e1, and e2 describe the
arithmetic operation that was responsible for the current status of
co. Finally, b gives the boolean value of co for this operation, deter-
mined from the result of a conditional jump. The notation |e1◦e2|co

s

denotes the value of co resulting from evaluating the arithmetic op-
eration e1 ◦ e2 in state s.

Behind the scenes, SimpleFlags works by maintaining in each
abstract state a partial map from flags to arithmetic expressions.
The presence of a mapping from flag f to e1 ◦ e2 means that it is
known for sure that the value of f comes from e1 ◦ e2, as it would
be evaluated in the current state. SimpleFlags must be careful
to invalidate a mapping conservatively each time a register that
appears in it is modified. At each conditional jump, SimpleFlags



ty : Set

context = word → option ty

`T : context → word → ty → Prop

≤T : Π(τ1 : ty)(τ2 : ty).[[∀Γ, w,

Γ `T w : τ1 ⇒ Γ `T w : τ2]]

typeofConst : Π(w : word).{τ : ty | ∀Γ.Γ `T w : τ}

typeofArith : Π(◦ : binop)(τ1 τ2 : ty).{τ : ty

| ∀Γ, w1, w2.Γ `T w1 : τ1

⇒ Γ `T w2 : τ2

⇒ Γ `T w1 ◦ w2 : τ}

typeofCell : Π(τ : ty).{{τ ′ : ty | ∀Γ, w.

Γ `T w : τ

⇒ Γ(w) = Some τ ′}}

considerNeq : Π(τ : ty)(w : word).{τ ′ : ty | ∀Γ, w′.

Γ `T w′ : τ

⇒ w′ 6= w ⇒ Γ `T w′ : τ ′}

Figure 7. Elements of a WeakUpdate type system

checks to see if the relevant condition’s value is known based on
the flag map. If so, it calls considerTest to form each of the two
abstract successor states, corresponding to the truth and falsehood
of the condition.

3.7 WeakUpdate
We’ve now built up enough machinery to get down to the inter-
esting part of a type-based verifier, designing the type system.
WeakUpdate provides a functor for building verifiers from type sys-
tems of a particular common kind. These are type systems that are
based on weak update of memory locations, where each accessible
memory cell has an associated type that doesn’t change during the
course of a program run. A cell may only be overwritten with a
value of its assigned type. Of course, with realistic language imple-
mentations, storage will be reused, perhaps after being reclaimed
by a garbage collector. Though handling storage reclamation is be-
yond the scope of this work, I believe that the proper approach is
to verify each program with respect to an abstract semantics where
storage is never reclaimed, separately verify a garbage collector in
terms of the true semantics, and combine the results via a suitable
composition theorem.

Figure 7 shows the signature of a type system for WeakUpdate.
In contrast to the signatures given for the previous components,
this signature does not extend its predecessors. With one small
exception that I will describe below, the elements listed in Figure
7 are all that a type system designer needs to provide to produce
a working verifier with a proof of soundness. It’s also true that,
while I’ve simplified the presentation of the signatures in previous
subsections, this signature is a literal transcription of most of the
requirements imposed by the real implementation.

Like for the TypeSystem module, a WeakUpdate type system
is based around a set ty of types, with a typing relation `T and a
subtyping procedure ≤T . An important difference is that here we

hard-code contexts to be partial maps from memory addresses to
types.

A few simple procedures suffice to plug into a generic type-
checker for machine code. typeofConst gives a type for every
constant machine word value; typeofArith gives a formula for
calculating the type of an arithmetic operation in terms of the types
of its operands; and typeofCell provides a function from a pointer
type to the type of any values that it may point to, returning SNone
for non-pointer types.

The final element is a way of taking advantage of the knowl-
edge of conditional jump results, based behind the scenes on Sim-
pleFlags. When the result of a conditional jump implies that some
value of type τ is definitely not equal to a word w, considerNeq
is called with τ and w to update the type of that value to reflect
this. A canonical example of use of considerNeq is with a nullness
check on a pointer, to upgrade its type from “pointer” to “non-null
pointer.”

The two significant omissions from Figure 7 are functions very
similar to considerNeq . They consider the cases where not a value
itself but the value it points to in memory is determined to be equal
to or not equal to a constant. A canonical example of usage of
these functions is in compilation of case analysis over algebraic
datatypes.

The proper use by WeakUpdate of these three functions requires
some quite non-trivial bookkeeping. WeakUpdate performs a very
simple kind of online points-to analysis to keep up-to-date on
which values particular tests provide information on. The most
complicated relationship tracked by the current implementation is
one such as: TMP1 holds the result of dereferencing EAX, which
holds a value read from stack slot 6. If stack slot 6 is associated
with a local variable of a sum type, then a comparison of TMP1

with some potential sum tag should be used to update the types of
both EAX and stack slot 6 to rule out some branches of the sum.
As for SimpleFlags, WeakUpdate must be careful to erase a saved
relationship when it can’t be sure that a modification to a register
or to memory preserves it.

Happily, these complications need not concern a client of
WeakUpdate. In the next section, I illustrate this with a simple
use of it to construct a type system handling some standard types
for describing linked, heap-allocated structures.

4. Case Study: A Complete Verifier for Algebraic
Datatypes

Figure 8 shows excerpts from the Coq implementation of the Mem-
oryTypes verifier, based on the library components from the last
section. Due to space limitations, I only show a few interesting
snippets. I’ve also for clarity made some simplifications from the
real Coq code, especially regarding dependent pattern matching.

You can see that the set ty of types includes the elements you
would expect; namely, constructors for building product, sum, and
recursive types in the usual ways. There are also Constant types
for sum tags of known values and Var types to represent the bound
variables of recursive types.

The typing relation hasTy is defined in terms of its inference
rules in the standard way. You can see that the same inductive
definition mechanism that is used for standard algebraic datatypes
works just as naturally for defining judgments. We have that any
word has the corresponding constant type; any word has the empty
product type; a word has a non-empty product type if it points to
a value with the first type in the product and the following word
in memory agrees with the remainder of the product; a word has a
sum type if it has type Constant(i)× t where t corresponds to the
ith element of the sum; and a word has a recursive type if it has the
type obtained by unrolling the recursion one level.



Definition var := nat.

Inductive ty : Set :=
| Constant : int32 -> ty
| Product : product -> ty
| Sum : ty -> ty -> ty
| Var : var -> ty
| Recursive : var -> ty -> ty

with product : Set :=
| PNil : product
| PCons : ty -> product -> product.

Inductive hasTy : context -> int32 -> ty -> Prop :=
| HT_Constant : forall ctx v,
hasTy ctx v (Constant v)

| HT_Unit : forall ctx v,
hasTy ctx v (Product PNil)

| HT_Product : forall ctx v t ts,
ctx v = Some t
-> hasTy ctx (v + 4) (Product ts)
-> hasTy ctx v (Product (PCons t ts))

| HT_Suml : forall ctx v t1 t2,
hasTy ctx v
(Product (PCons (Constant 0)
(PCons t1 PNil)))

-> hasTy ctx v (Sum t1 t2)
| HT_Sumr : forall ctx v t1 t2,
hasTy ctx v
(Product (PCons (Constant 1)
(PCons t2 PNil)))

-> hasTy ctx v (Sum t1 t2)
| HT_Recursive : forall ctx x t v,
hasTy ctx v (subst x (Recursive x t) t)
-> hasTy ctx v (Recursive x t).

Definition subTy : forall (t1 t2 : ty),
poption (forall ctx v,
hasTy ctx v t1 -> hasTy ctx v t2).

refine (fix subTy (t1 t2 : ty) {struct t2}
: poption (forall ctx v,
hasTy ctx v t1 -> hasTy ctx v t2) :=

match (t1, t2) with
| (Constant n1, Constant n2) =>
pfEq <- int32_eq n1 n2;
Yes

| (Product (PCons (Constant n) (PCons t PNil)),
Sum t1 t2) =>

if int32_eq n 0 && ty_eq t t1 then Yes
else if int32_eq n 1 && ty_eq t t2 then Yes
else No

| (Recursive x body, t2) =>
pfSub <- subTy
(subst x (Recursive x body) body) t2;

Yes
| ...

end); ....
Qed.

Figure 8. Excerpts from the implementation of MemoryTypes

Pieces of the definition of the subtyping procedure subTy are
also shown. It is defined as in the example from Section 1.2: the
desired type of the function is asserted as a proof search goal, and
we suggest a term with holes that we believe can be filled to yield
a term of that type. A constant type is a subtype of another if they
have the same constant, which I check with the dependently-typed
int32 eq function, expressing the check and its use in the failure
monad style. The next case demonstrates another way of using
dependently-typed decision procedures, based on the if notation,
which is overloaded to work over any type with two constructors.
By similarly overloading the boolean && operator, we can check
subtyping of a product type with a sum type by looking for either
of the two valid cases, returning Yes only if one of them holds.
Remember that Yes and No are syntactic abbreviations for terms
with proof holes in them, so that each of these Yes’s can have a
different proof, constructed in a different context dependent on the
if branch directions in its scope.

Another case recurses when no previous case has matched and
we have a recursive type on the left of the subtyping check. subTy
is called with the first argument unrolled. In the real implementa-
tion, I place a fixed bound of one unrolling on both the left and
right sides of the test. This is necessary to ensure termination, and
Coq even enforces the totality of every recursive function through
primitive recursion in one of its arguments, so the definition exactly
as shown isn’t well-formed. It’s worth noting that this bounded un-
rolling heuristic works fine at the machine code level, where every
instruction performs a single simple operation.

Omitted from the diagram are the typeof* functions and the
consider* functions, which are used to update sum types based
on conditional jump results. All of these work as you would expect,
with nothing especially enlightening about their implementations.
The other big omission is the specification of proof scripts, or
sequences of tactics, that are required to describe strategies for
proof construction. In many cases, these proof scripts are atomic
calls to automating tactics, but in some cases they are longer than
would be desired. Improving that aspect of verifier construction is
a fruitful area for future work.

Nonetheless, the entire MemoryTypes implementation is only
about 600 lines long. I was able to develop it in less than a day of
work. Thanks to the common library infrastructure, the reward for
this modest effort is a verifier with a rigorous soundness theorem
with respect to the real bit-level semantics of the target machine.

Most of the resulting implementation is Coq code which is ex-
tracted to ML. For simplicity, I chose to implement in OCaml some
pieces that must inevitably belong to the trusted code base, like de-
coding of instructions. There is also some OCaml code that has no
effect on soundness; for instance, to read metadata from a binary
and pass it to the extracted verifier as suggested preconditions for
the basic blocks. Bugs in this metadata parsing can hurt complete-
ness, but they can never lead to incorrect acceptance of an unsafe
program. It would even be possible to replace this code with a com-
plicated abstract interpreter that infers much of what is currently
attached explicitly, and the results could be fed to the unchanged
extracted verifier with the same soundness guarantees.

In comparison with the library code, the MemoryTypes im-
plementation is small and manageable. My implementation has
about 7000 lines of Coq code implementing the library compo-
nents, along with about 10,000 lines in a generic utility library,
1000 to formalize bitvectors and fixed-precision arithmetic, and
1000 to formalize a subset of x86 machine code. The final verifier
can be checked for soundness by running the Coq Check command
on its entry point function and verifying that the type that is printed
matches the Π(p : program).[[safe(load(p))]] type I gave in Section
2.3. The “backwards slice” of definitions that this type depends on



constitutes the trusted part of the development, and it contains only
small parts of the last three library pieces I mentioned above.

You can find the complete source code and documentation at
http://proofos.sourceforge.net/.

5. Related Work
The verifiers produced in this project are used in the setting of
proof-carrying code. Relative to our past work [CCN06] on cer-
tified verifiers, my new contribution here is first, to suggest devel-
oping verifiers with Coq in the first place, instead of extracting veri-
fication conditions about more traditional programs; and second, to
report on experience in the effective construction of such verifiers
through the use of dependent types and re-usable components. Sev-
eral projects [App01, HST+02, Cra03] consider in a PCC setting
proofs about machine code from first principles, but they focus on
proof theoretical issues rather than the pragmatics of constructing
proofs and verifying programs under realistic time constraints. Our
certified verifiers approach allows the construction of verifiers with
strong guarantees that nonetheless perform well enough for real
deployment. Wu et al. [WAS03] tackle the same problem based on
logic programming, but they provide neither evidence of acceptable
scalability of the results nor guidance on the effective engineering
of verifiers as logic programs.

Past projects have considered using proof assistants to develop
executable abstract interpreters [CJPR04] and Java bytecode ver-
ifiers [KN01, Ber01]. My work differs in dealing with machine
code, which justifies the kind of layered component approach that
I’ve described, and my work focuses more on accommodating a
wide variety of verification approaches without requiring the de-
velopment of too much code irrelevant to the main new idea of
a technique. My work has much in common with the CompCert
project [Ler06], which works towards a fully certified C compiler
developed in Coq. The main differences are my use of dependent
types to structure the “program” part of a development and my em-
phasis on reusable library components.

I have already mentioned the Epigram [MM04], ATS [CX05],
and RSP [WSW05] languages that attempt to inject elements of the
approach behind Coq program extraction into a more practical pro-
gramming setting. I believe I have taken good advantage of many
of Coq’s mature features for proof organization and automation in
ways that would have been significantly harder with these newer
languages, which focus more on traditional programming features
and their integration with novel proof manipulations. It’s also true
that much of the specifics of my approach to designing and im-
plementing certified verifiers is just as interesting transposed to the
contexts of those languages, and the ideas are of independent inter-
est to the PCC community.

6. Conclusion
There has been much interest lately in enriching the expressiveness
of static type systems to capture higher-level properties. Based on
the results I’ve reported here, I hope I’ve provided some evidence
that technology that has been found in computer proof assistants
for some time is actually already sufficient to support this kind of
programming for non-toy problems. While recent proposals in this
space focus on integrating proofs and dependent types with impera-
tivity and other “impure” language features, I was able to construct
a significant and reasonably efficient certified program verification
tool without using such features. In other words, the advantages of
pure functional programming are only amplified when applied in a
setting based on rigorous logical proofs, and the strengths of func-
tional programming and type theory are sufficient to support the
construction of a program with a formal proof of a very detailed
full correctness property. More and more convergence between pro-

gramming and proving tools seems inevitable in the near future, and
I think that working out the details of this convergence is a research
direction with the potential for serious and lasting impact.
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