Modular Development

of Certified Program

Verifiers with a Proof
Assistant

Adam Chlipala
University of California, Berkeley
ICFP 2006

Who Watches the Watcher?

Might want to ensure:

. * Memory safet
- Program Verifier Y Y

e Resource usage
bounds

e Total correctness

Program Verifier Verifier

 Type-checker for
stylized verifier
language?

 Result checker on
witnesses outputted by
verifiers?

* Interactive proof
assistant? Untrusted Program

Java Bytecode Verifier
Extended Static Checking
Typed Assembly Language
Proof-Carrying Code

Model Checking

m
T
mwIlrFe:T

Proof

y
Proof-Carrying Code

Compact proofs in a
language specialized to
one safety mechanism
(e.g., a type system)
Every new safety
mechanism requires
trusting a new body of
code

But Why?

B ov eax, ecx

Proof

y

Foundational
Proof-Carrying Code

Proofs about the real
machine semantics,
written in a very
general language
Proofs are much
larger, making them
expensive to check and
transmit

Certified Program
Verifiers

Allow custom
executable verifiers
that can be reused
Require that every
verifier be proved
sound

No proofs generated
or checked at runtime

3

The Big Picture 4%

]

Coq Proof
Checker

<-.ij!l
Native
Code

Safe
UnkHown

Annotations\

The Big Picture

Outline

 Programming with dependent types
- ...using a proof assistant

A library for constructing certified
verifiers

* Implementation

Classical Program Verification

- - el

Verification Condition A'AB' — C'
Generator

Interactive Provers
(Coq, Isabelle, PVS, etc.)

I

Internal Verification .o

and

Precongltlon postcondition

an
postcondition

Proof of g Precondition

and

postcondition
of postcondition

Benefits vs. Classical

Verlflcatlon
Type

Query

?in Loop Query (+ precondition proof)
ition proo

\ &/
Type(+ postcondition proof) Instru V oder

[Type Inference

Verification Condition Generator

/ “This,verifier is sound.”

new

Ly y N

e error

at line
1234!

——» Proof of precondition

Dealing with Proof Terms

list ind
(fun 1s2 : list =>
forall 1s3 1s4 : list,
append (append 1ls2 1s3) 1ls4 = append 1ls2 (append 1ls3 1s4))
(fun 1s2 1s3 : list => refl equal (append 1ls2 1s3))
(fun (n : nat) (1ls2 : list)
(IHlsl : forall 1s3 1s4 : list,
append (append 1ls2 1s3) 1ls4 = append 1ls2 (append 1s3 1ls4))
(1s3 1s4 : list) =>
eq ind r (fun 1 : list => cons n 1 = cons n (append 1ls2 (append 1s3 1s4)))
(refl equal (cons n (append 1ls2 (append 1ls3 1s4))))

(IHl?l]‘;s3 1s4)) 1sl ~

X1+1=2 ""/ SR
Proof of postcondition - *

Mixing Programming with
Tactics

Definition isEven : forall n, [even(n)].
refine (fix 1 en (n : nat) 5?

: [even(n)

match n retu

The type of
O -=> Ye— an optional
St 1. Declare the roof of a
| s 0 —> > :
| S (S n St@. Yol oof part” of the
il Generate a tactics.
proof <- .. proof
> liaati
Yes); — obliga |on
auto. Monadic notation: fail if the
Qed . recursive call fails; otherwise, » of the

bind proof in the body. bn

A Verification Stack

= int| 7 ptr

Phantom state: Map from addresses to types
Phantom state: Map from flags to correlation with
registers/memory

Weak Update
Type System

= int | 7 ptr

Phantom state: Map from flags to correlation with sliple Fligs /
registers/memory]
e FProndS 1nNAatrt INtTereencao nra e]
= int | 7 ptr Stack Types
semantics *
7= int | 7 ptr | stackptr(n) | retptr | callee_save(r) \ Type System /

D ::= register — r
step : state x RISC instruction — state \ TUAEE ERe /

Assumption: Code is immutable +
Reduction
D ::= register — 7 /
step : state x RISC instruction — state al

Abstract
Interpretation

L4

D ::= register — 7

step : state x x86 instruction — state x86 Semantics

Generic fixed point computation procedure 12

Implementation

Component Lines of code
Verification stack

Xx86 semantics

Utility library

X86 binary parser 1500 (OCaml)
New extraction optimizations 1k (OCaml)
Algebraic datatype verifier 600 (Coq)

Total trusted ~5k

13

Sample Code: Type Language

Inductive ty : Set :=

Constant : 1nt32 -> ty
Product : product -> ty

Sum : ty -> ty -> ty

Var : var -> ty

Recursive : var -> ty -> ty

with product : Set :=
| PNil : product
| PCons : ty -> product -> product.

14

Sample Code: Subtype Checker

Definition subTy : forall (tl t2 : ty),
poption (forall ctx v,

hasTy ctx v tl1 -> hasTy ctx v t2).

refine (fix subTy (tl t2 : ty) {struct t2}

: poption (forall ctx v,
hasTy ctx v tl1 -> hasTy ctx v t2)
match (tl, t2) with
| (Constant nl, Constant n2) =>
pfEq <- int32 eq nl n2;

Yes
| (Product (PCons (Constant n) (PCons t PNil)),

Sum tl1l t2) =>
if int32 eq n 0 && ty eq t tl then Yes
else if int32 eq n 1 && ty eq t t2 then Yes
else No
| (Recursive x body, t2) =>
pfSub <- subTy
(subst x (Recursive x body) body) t2;

Yes

end);

Qed.

15

Related Work

 CompCert certified C compiler project
[Leroy et al.]

 Foundational proof checkers with small
withesses [Wu et al.]

 Lots of work on building bytecode
verifiers with proof assistants

16

Conclusion

 Today's technology makes constructing
certified verifiers with dependent types
feasible

 Good mixture of soundness guarantees,
ease of engineering, and runtime
efficiency

Code and documentation on the web at:

http://proofos.sourceforge.net/

