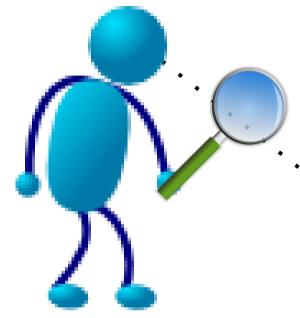
Modular Development of Certified Program Verifiers with a Proof Assistant

Adam Chlipala University of California, Berkeley ICFP 2006

Who Watches the Watcher?



Program Verifier Verifier

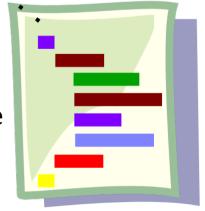
- Type-checker for stylized verifier language?
- Result checker on witnesses outputted by verifiers?
- Interactive proof assistant?

Program Verifier

- Java Bytecode Verifier
- Extended Static Checking
- Typed Assembly Language
- Proof-Carrying Code
- Model Checking

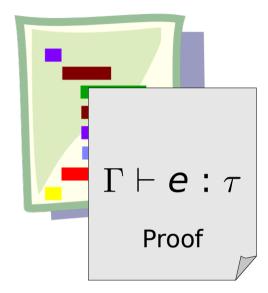
Might want to ensure:

- Memory safety
- Resource usage bounds
- Total correctness



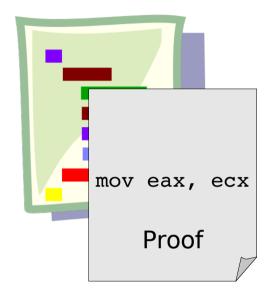
Untrusted Program

But Why?



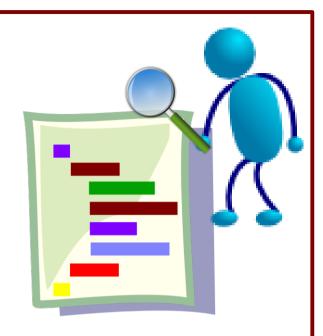
Proof-Carrying Code

- Compact proofs in a language specialized to one safety mechanism (e.g., a type system)
- Every new safety mechanism requires trusting a new body of code



Foundational Proof-Carrying Code

- Proofs about the real machine semantics, written in a very general language
- Proofs are much larger, making them expensive to check and transmit

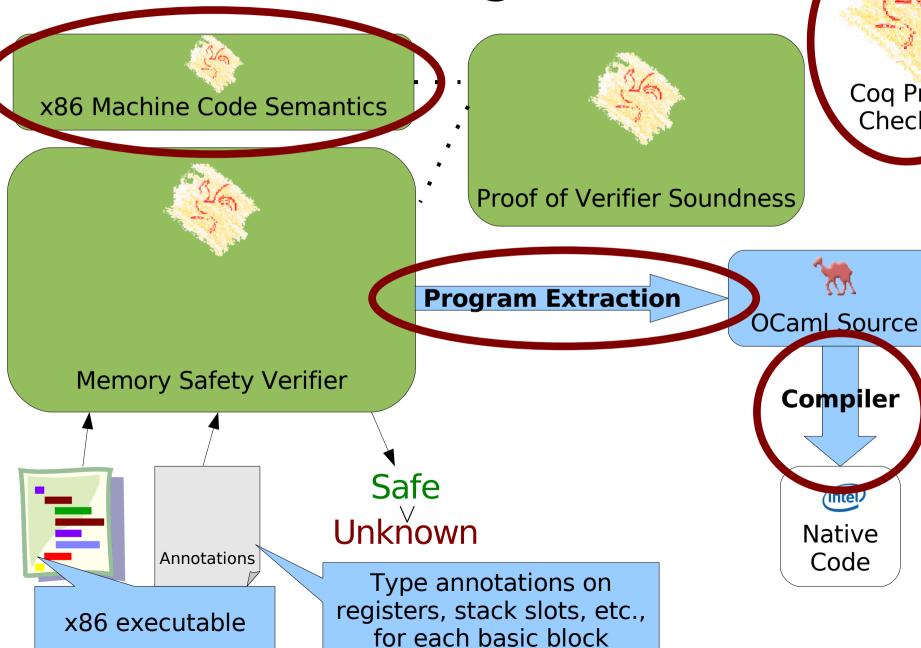


Certified Program Verifiers

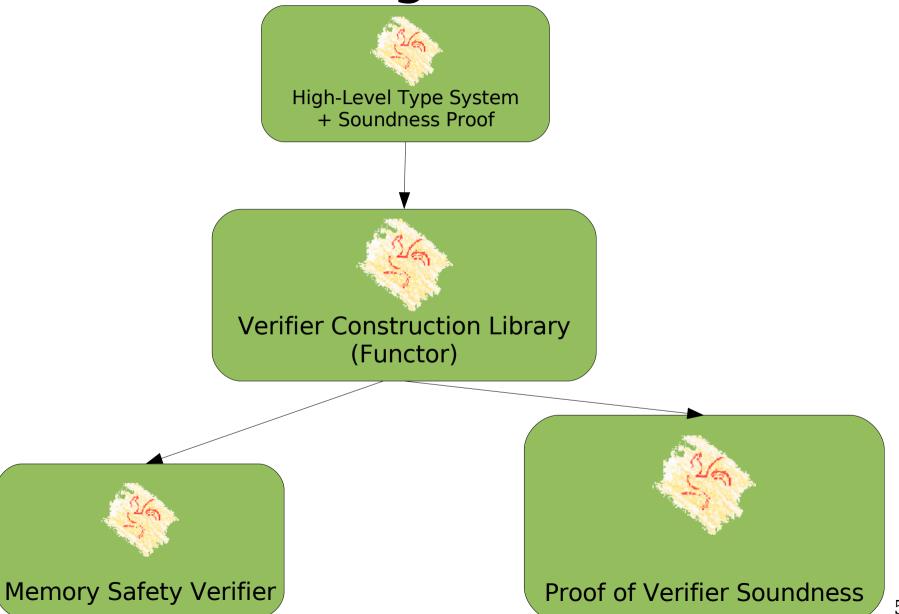
- Allow custom executable verifiers that can be reused
- Require that every verifier be proved sound
- No proofs generated or checked at runtime

3

The Big Picture



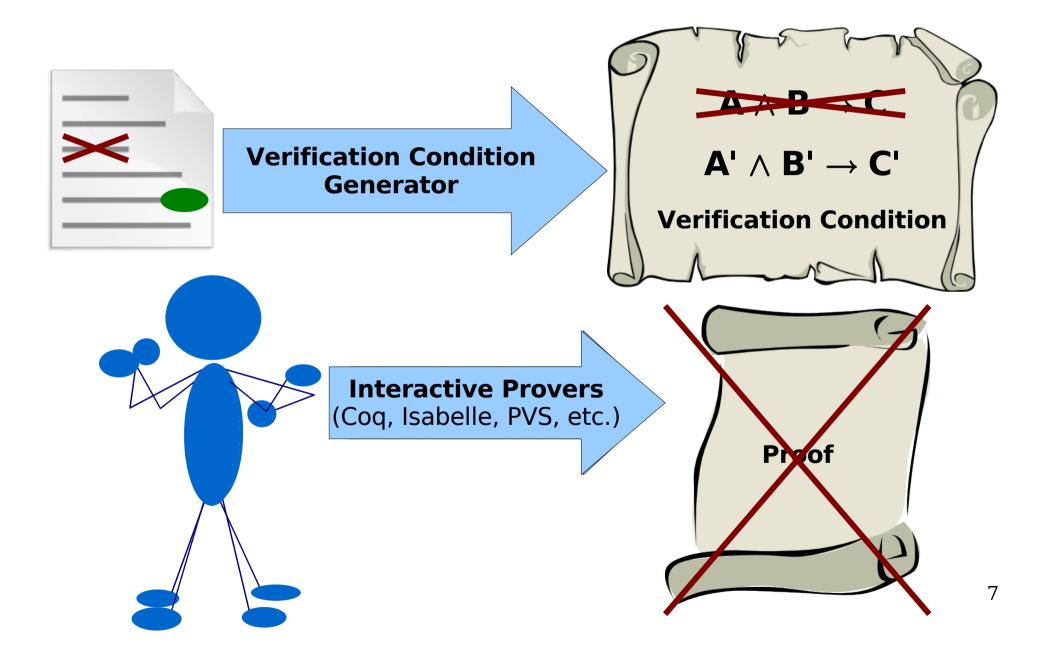
The Big Picture

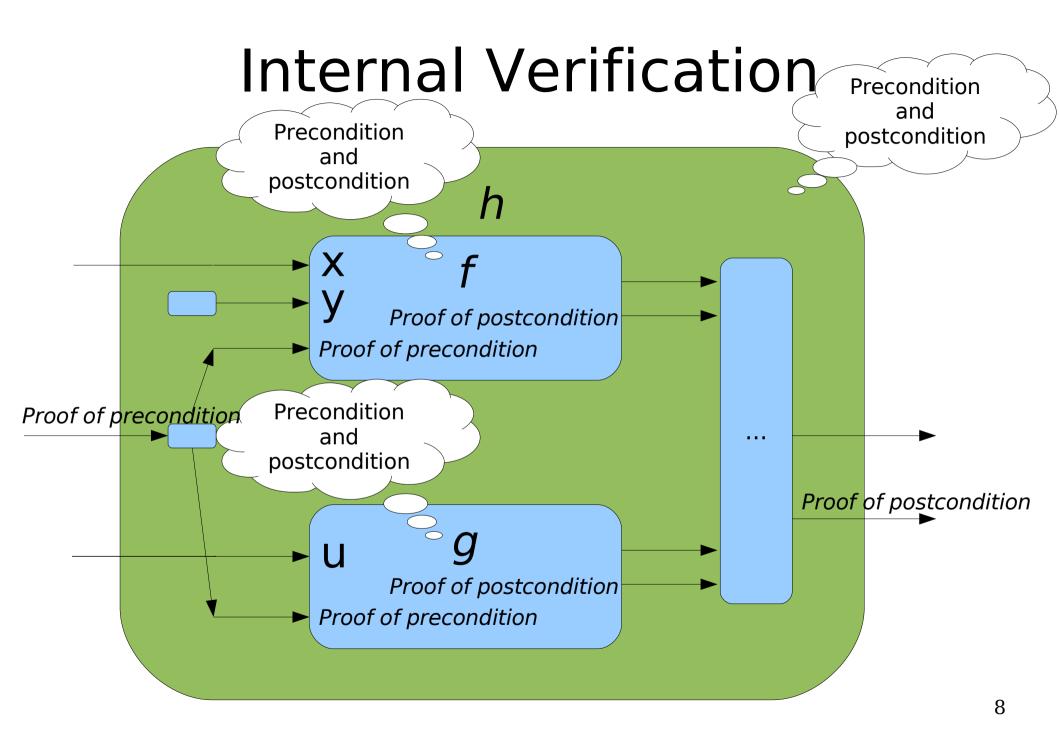


Outline

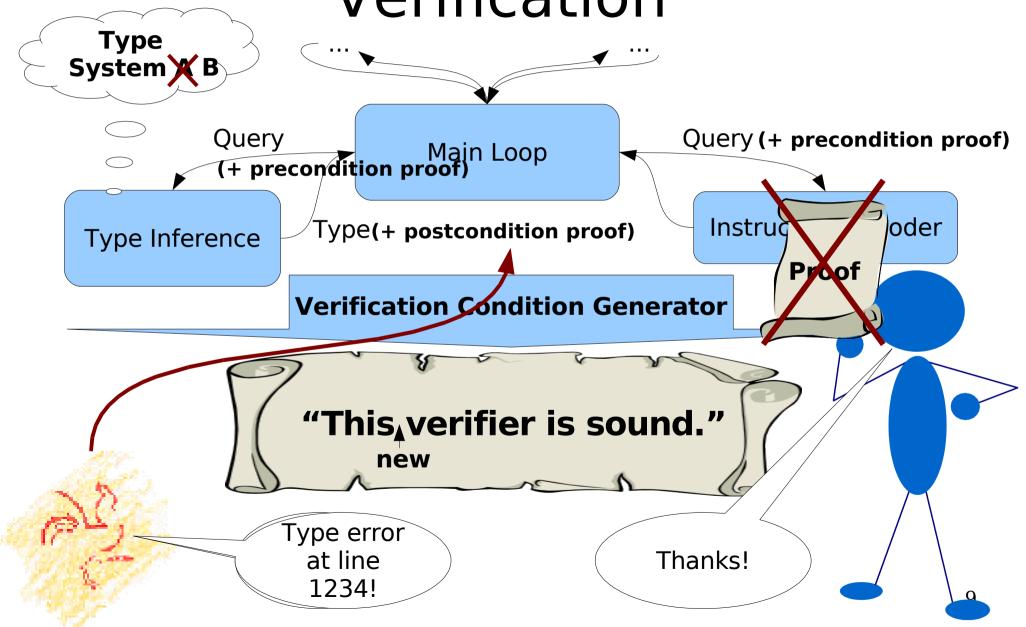
- Programming with dependent types
 - ...using a proof assistant
- A library for constructing certified verifiers
- Implementation

Classical Program Verification

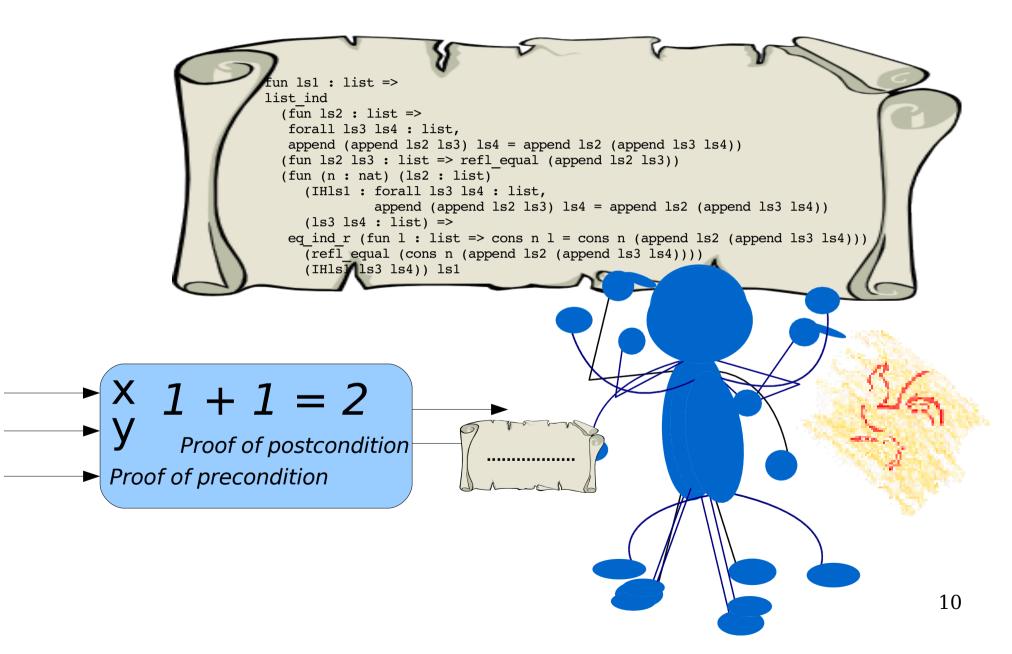




Benefits vs. Classical Verification



Dealing with Proof Terms



Mixing Programming with Tactics

```
Definition is Even: for all n, [even(n)].
   refine (fix is ven (n : nat)
         : [even(n)
      match n retui
                                en (n
                                          The type of
                                          an optional
         0 -> Ye
                    Sten 1. Declare the f
                                          proof of a
                       Step J. Gen
                                           gof part" of the
         S (S n
                                             tactics.
                               Generate a
         proof
                                 proof
                               obligation
         Yes);
   auto.
                  Monadic notation: fail if the
                  recursive call fails; otherwise,
Qed.
                                                  t'' of the
                    bind proof in the body.
                                            ₁on.
```


hal

 $\tau ::= int \mid \tau ptr$

Phantom state: Map from addresses to types **Phantom state**: Map from flags to correlation with
registers/memory

 $\tau ::= int \mid \tau ptr$

Phantom state: Map from flags to correlation with registers/memory

Proots that interence process.

 $\tau ::= int \mid \tau ptr$

semantics

 $\tau ::= int \mid \tau ptr \mid stackptr(n) \mid retptr \mid callee_save(r)$

 $\mathcal{D} ::= \text{register} \rightarrow \tau$

 $step: state \times \textbf{RISC instruction} \rightarrow state$

Assumption: Code is immutable

 $\mathcal{D} ::= \text{register} \rightarrow \tau$

step : state \times **RISC instruction** \rightarrow state

 $\mathcal{D} ::= register \rightarrow \tau$

step : state \times **x86 instruction** \rightarrow state

Generic fixed point computation procedure

Weak Update Type System

Simple Flags

Stack Types

Type System

Fixed Code

Reduction

Abstract Interpretation

x86 Semantics

12

Implementation

Component

Verification stack

Bitvectors and fixed-precision arithmetic 1k (Coq)

x86 semantics

Utility library

x86 binary parser

New extraction optimizations

Algebraic datatype verifier

Total trusted

Lines of code

7k (Cog)

1k (Coq)

10k (Coq)

1500 (OCaml)

1k (OCaml)

600 (Coq)

~5k

Sample Code: Type Language

```
Inductive ty : Set :=
   Constant: int32 -> ty
Product: product -> ty
Sum: ty -> ty -> ty
Var: var -> ty
Recursive: var -> ty -> ty
with product : Set :=
    | PNil : product
| PCons : ty -> product -> product.
```

Sample Code: Subtype Checker

```
Definition subTy: forall (t1 t2: ty),
  poption (forall ctx v,
    hasTy ctx v t1 -> hasTy ctx v t2).
  refine (fix subTy (t1 t2: ty) {struct t2}
    : poption (forall ctx v,
      hasTy ctx v t1 -> hasTy ctx v t2) :=
    match (t1, t2) with
      (Constant n1, Constant n2) =>
        pfEq <- int32 eq n1 n2;
        Yes
       (Product (PCons (Constant n) (PCons t PNil)),
          Sum t1 t2) =>
        if int32 eq n 0 && ty eq t t1 then Yes
        else if int32 eq n 1 && ty_eq t t2 then Yes
        else No
      (Recursive x body, t2) =>
        pfSub <- subTy
          (subst x (Recursive x body) body) t2;
        Yes
    end); ....
Oed.
```

Related Work

- CompCert certified C compiler project [Leroy et al.]
- Foundational proof checkers with small witnesses [Wu et al.]
- Lots of work on building bytecode verifiers with proof assistants

Conclusion

- Today's technology makes constructing certified verifiers with dependent types feasible
- Good mixture of soundness guarantees, ease of engineering, and runtime efficiency

Code and documentation on the web at: http://proofos.sourceforge.net/