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Abstract

We report on an experience using the Coq proof assistant to develop a program verification

tool with a machine-checked proof of full correctness. The verifier is able to prove memory

safety of x86 machine code programs compiled from code that uses algebraic datatypes. The

tool’s soundness theorem is expressed in terms of the bit-level semantics of x86 programs, so

its correctness depends on very few assumptions. We take advantage of Coq’s support for

programming with dependent types and modules in the structure of the development. The

approach is based on developing a library of reusable functors for transforming a verifier

at one level of abstraction into a verifier at a lower level. Using this library, it is possible

to prototype a verifier based on a new type system with a minimal amount of work, while

obtaining a very strong soundness theorem about the final product.

1 Introduction

It is widely accepted that bugs in software are a very serious problem today, creating

both high costs of software development and far too many exploitable security holes.

The research community has developed a plethora of techniques for finding bugs in

programs or even proving programs to be free of certain classes of bugs. In most

cases, these bug-finders and verifiers are applied post-facto to programs developed

using standard, informal techniques. However, there has long been support in the

community for the idea of applying formal methods throughout the software life-

cycle. In a sense, increasingly rich static type systems are such a class of solutions.

It seems fair to classify them as formal specification and proof systems, but the

prevalence of tools that make type systems easy to use prevents most programmers

from thinking of them in such imposing terms. A general and interesting question is,

how much more effective can we make the software development process by using

even more expressive formal systems from the time the first line of code is written?

In this paper, we will present the results of a particular experiment along these

lines. The interesting twist to the specific problem we tackle is that it adds an

1 This is a revised and extended version of the paper that appeared in the 11th ACM SIGPLAN
International Conference on Functional Programming (ICFP’06) (Chlipala 2006).

2 This research was supported in part by a National Defense Science and Engineering Graduate
Fellowship and National Science Foundation Grants CCF-0524784, CCR-0234689, CNS-0509544, and
CCR-0225610.
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additional layer of reflection to the approach we just described: we have been

working on proving the correctness of programs tools that prove the correctness of

programs. A proof of this kind provides correctness proofs “for free” for all the

inputs the verified verifier can handle.

In particular, we have developed a framework for coding certified program verifiers

for x86 machine code programs. The end results are executable programs that take

x86 binaries as input and return either “Yes, this program satisfies its specification”

or “I’m not sure.” By virtue of the way that these verifiers are constructed using

the Coq proof assistant, it is guaranteed that they are sound with respect to the

unabstracted bit-level semantics of x86 programs. Yet this guarantee does not

make development impractical; by re-using components outfitted with rich semantic

interfaces, it is possible to whip together a certified verifier based on, for example, a

new type system in a few hundred lines of code and an afternoon’s time.

This work is related to two main broad research agendas, which we will describe

next: proof-carrying code and general software development techniques based on

dependent types and interactive theorem proving.

1.1 Applications to proof-carrying code

The idea of certified program verifiers has important practical ramifications for

foundational proof-carrying code (FPCC) (Appel 2001). Like traditional proof-

carrying code (PCC) (Necula 1997), FPCC is primarily a technique for allowing

software consumers to obtain strong formal guarantees about programs before

running them. The author of a piece of software, who knows best why it satisfies

some specification that users care about, is responsible for distributing with the

executable program a formal, machine-checkable proof of its safety. He might

construct this proof manually, but more likely he codes in a high-level language

that enforces the specification at the source level through static checks, allowing a

certifying compiler (Necula & Lee 1998) for that language to translate the proofs

(explicit or implicit) that hold at the source level into proofs about the resulting

binaries.

The original PCC systems were very specialized. A particular system would, for

instance, only accept proofs based on a fixed type system. FPCC addresses the two

main problems associated with this design.

First, traditional PCC involves trusting a set of relatively high-level axioms about

the soundness of a type system. We would rather not have to place our faith in the

soundness of so large a formal development, so FPCC reduces the set of axioms

to deal only with the concrete semantics of the underlying machine model. If the

soundness of a type system is critical to a proof, that soundness lemma must be

proved from first principles.

The other problem is that a specialized PCC system is not very flexible. Typically,

one of these systems can only check safety proofs for the outputs of a particular

compiler for a particular source language. To run programs produced with different

compilers or that otherwise require fundamentally different proof strategies, it is

necessary to install one trusted proof checker or set of axioms for each source. This
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is far from desirable from a security standpoint, and FPCC fixes this problem by

requiring all proofs to be in the same language and to use the same relatively small

set of axioms. The axiomatization of machine semantics is precise enough that the

more specific sets of axioms used in traditional PCC are usually derivable with

enough work, if they were sound in the first place.

The germ of the project we will describe comes from past work on improving

the runtime efficiency of FPCC program checking (Chang et al. 2006). Perhaps the

largest obstacle to practical use of FPCC stems from the delicate trade-offs between

generality on one hand and space and time efficiency of proofs and proof checkers

on the other. Program verifiers like the Java bytecode verifier have managed to

creep into widespread use almost unnoticed by laypeople, but naive FPCC proofs

are much larger than the metadata included with Java class files and take much

longer to check. It is unlikely that this increased burden would be acceptable to the

average computer user.

Fundamentally, custom program verifiers with specialized algorithms and data

structures have a leg up on very general proof-based verifiers. In our initial work on

certified program verifiers, we proposed getting the best of both worlds by moving

up a level of abstraction: allow developers to ship their software with specialized

proof-carrying verifiers. These verifiers have the semantic functionality of traditional

program verifiers and model-checkers, but they also come with machine-checkable

proofs of soundness. Each such proof can be checked once when a certified verifier

is installed. After the proof checks out, the verifier can be applied to any number of

similar programs. These later verifications require no runtime generation or checking

of uniform proof objects, which we found to be the major bottleneck in previous

experience with FPCC. Our paper (Chang et al. 2006) presented performance results

showing an order of magnitude improvement over all published verification time

figures for FPCC systems for Typed Assembly Language (Morrisett et al. 1999a)

programs, by using a certified verifier. The verifier had a complete soundness proof,

so no formal guarantees were sacrificed to win this performance.

The main problem that we encountered was in the engineering issues of proof

construction. We used a more or less traditional approach to program verification

in proving the soundness of our verifiers, writing them in a standard programming

language and extracting verification conditions (Dijkstra 1976) that imply their

soundness. Keeping the proof developments in sync with changes to verifier source

code was quite a hassle. We also found that the structure of the verifier program and

its proof were often very closely related, leading to what felt like duplicate work.

We decided to investigate what could be gained by writing verifiers from the start

in a language expressive enough to encode verifier soundness in its type system.

1.2 Programming with dependent types and proofs

Coq (Bertot & Castéran 2004) and related formal logic tools are based on Martin-

Löf constructive type theory (Martin-Löf 1996). They identify logical specifications

with types and proofs with values of those types. Coq allows values traditionally

thought of as “programs” and “proofs” to coexist in the same calculus; the former
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simply have the kinds of types we are used to seeing, while the latter have logical

propositions as types. If we avoid dependent types, Coq essentially provides a pure

and total subset of ML. Through selective use of dependent types and “logical”

features, we can choose the precision of specifications that the type checker should

ensure, working towards a program type that implies full correctness. Through

its program extraction feature, Coq can build an ML version of a Coq term

that has a type associated with “programs,” which can then be compiled into an

efficient executable version. Thus, one reasonable view of Coq is as a programming

environment supporting very expressive dependent types.

Recent programming languages like Epigram (McBride & McKinna 2004), ATS

(Chen & Xi 2005), and RSP (Westbrook et al. 2005) have drawn on the theory

underlying more traditional approaches associated with theorem provers in providing

support for practical programming with dependent types. Why create these new

languages when tools like Coq already exist? The answer is that Coq is primarily

designed for doing math, not for writing software. It is missing many convenient

features we expect in “real” programming languages, like non-terminating functions,

imperative state, and exceptions. ATS and RSP allow the sound use of features like

these in the presence of explicit proofs. Similarly, dealing with type equalities in Coq

can be quite aggravating. Support for automatic and implicit proof and use of type

equalities and other “obvious” lemmas is an important time-saving feature.

The hot subject of generalized algebraic datatypes (GADTs) (Sheard 2004) is

also closely related to these issues. GADTs are a particular restriction of the type

systems supported by the tools we have mentioned above. The restriction is designed

to make type inference more feasible. As the more general type systems used by

tools like Coq are strong enough to express most of mathematics, there is little hope

for general inference without sacrificing some expressivity.

Despite these potential objections to the use of Coq, we hope to make a case here

that it is a good choice for programming with rich specifications. The foundations of

both Coq’s implementation and its formal metatheory are very simple and elegant

compared to approaches based on traditional programming. A small dependently-

typed lambda calculus suffices for the effective encoding of most of math and, as we

hope to justify, most of programming. As a mature tool for formal math, Coq has

many features for organizing mathematical developments and automating proofs

that do not have clear translations to environments with larger sets of orthogonal

primitive features.

Program verifiers make a nice subject for a study of this kind. As we summarized

in the last section, certification of verifiers has significant application to proof-

carrying code and related areas. There are also established, rigorous standards of

what the correctness of a verifier is. Finally, program analysis tools are frequently

written in a purely functional style with no non-terminating functions. While Coq

forces all recursive function definitions to follow very regular recursion schemes,

almost all of the kinds of functions we associate with program analysis tend to be

written via simple recursive case analysis in the first place. A common exception is

a main loop that explores a state space or calculates a fixed point, but it is easy to

express these as recursive in a new “time-out” parameter, which counts how many
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more steps we are willing to allow. In practice, we can start these processes with very

large time-outs and notice no difference from unbounded implementations, and the

bothersome reasoning about time-outs is confined to the final steps of correctness

proofs.

Leroy’s recent work on certifying a complete compiler written in Coq (Leroy

2006b) provides some strong evidence that Coq can be, at the least, an effective

starting point in developing the ideal system for programming with specifications.

That work mostly takes the traditional approach of implementing the compiler

without dependent types and then proving it correct. In the work we will present

here, we have tried to take as much advantage of dependent types as we can to

simplify development.

1.3 Contributions

In the remainder of the paper, we will describe our approach to the modular

development of certified program verifiers. The key novelty is the use of dependent

types in the “programming” part of development and in conjunction with Coq’s

ML-style module system. The end result is a set of components with rich interfaces

that can be composed to produce a wide range of verifiers with low cost relative to

the strength of the formal guarantees that result.

We will begin by giving some preliminary background on the FPCC problem

setting and on dependent types, extraction, and modules in Coq. With these tools

available, we describe the design and implementation of a library to ease the

development of certified verifiers via functors with rich interfaces. Next, we describe

a particular completed application of that library, a memory safety verifier for

machine code programs that use algebraic datatypes. We conclude by comparing

with related work and summarizing the take-away lessons from the experience.

1.4 Differences from the ICFP version

This article is an extended version of a paper presented at ICFP 2006 (Chlipala

2006). The main changes have been:

• The refactoring of Section 2.2 to better explain the advantages of the

dependently-typed programming style used in this project

• The addition of Section 2.4, which gives some detail on the concrete program

annotation format used by the case study verifier

• An alternate lay-out for Sections 3 and 4, interspersing code with prose discus-

sion instead of keeping the code separate in floating figures, including breaking

some monolithic code excerpts down further using auxiliary definitions

• Walking through a running example throughout Section 3

• In Sections 5.1 and 5.2, discussing briefly two libraries/tools of independent

interest developed as part of this project

• Many improvements to the clarity of the prose, thanks to suggestions by the

referees.
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2 Preliminaries

2.1 Types and extraction in Coq

To introduce the basics of dependent types in Coq, we will start with a definition

for the Coq version of the polymorphic option type familiar to ML programmers

(and Haskell programmers as Maybe):

Inductive option (T : Set) : Set :=

| Some : T -> option T

| None : option T.

This has more or less the same information content as the ML definition. The

Coq version is a little more verbose, because here we use a general mechanism

designed to handle much more complicated types. Since Coq unifies values, types,

proofs, and propositions in a single syntactic class, option is expressed as a function

from sets to sets, with T bound as the name of the function’s argument. Also, the

full type of each constructor is given explicitly, without the result type being left

implicit. This explicitness will be familiar to readers who have seen GADTs, as the

same is necessary there. This is because the result type of a constructor can depend

on the types of the arguments, in the case of GADTs; or even on the values of the

arguments, in Coq.

In the code fragment, we use an inductive definition of a family of Sets. The

high-level intuition is that runnable programs with computational content belong

to the sort Set, while mathematical proofs belong to Prop. The types of programs

are introduced with Inductive definitions with Set specified immediately before

the :=, while propositions (i.e., the types of proofs) are introduced with Prop in that

position.

Now we can consider this slight modification of option’s definition:

Inductive poption (P : Prop) : Set :=

| PSome : P -> poption P

| PNone : poption P.

Here we have changed the argument type of the polymorphic poption type to

Prop, but left the result type the same at Set. A poption is a package that might

contain a proof of a particular proposition or might contain nothing at all. The

interesting thing about it is that, while it may contain a proof, it itself exists as

a program. A helpful way to think about poption is as the rich return type of

a potentially incomplete decision procedure that either determines the truth of a

proposition or gives up. Such types will show up often in describing the building

blocks of a system that tackles an undecidable problem like program verification.

As a concrete example, consider this function that determines if its argument is

even:

Definition isEven : forall (n : nat), poption (even n).

refine (fix isEven (n : nat) : poption (even n) :=

match n return (poption (even n)) with
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| O => PSome _ _

| S (S n) =>

match isEven n with

| PSome pf => PSome _ _

| PNone => PNone _

end

| _ => PNone _

end); auto.

Qed.

We are using a lot of Coq notation here, but only a few details are relevant. First,

in the first line, the type of isEven is given as a dependent function type, where Coq

uses forall in place of the more usual Π. A type forall (x : T1), T2 describes

functions taking arguments of type T1 and returning results of type T2, where the

variable x is bound in T2, providing the opportunity for the function’s result type to

depend on the value of the argument.

Second, we provide a partial implementation for the function. We would rather

not fill in the proofs manually; as Coq is designed for formalizing math, we rightfully

expect that it can do this dirty work for us. By using the command form Definition

x : t. (* code *) Qed. instead of Definition x : t := e., we declare that we

will construct this value with Coq’s interactive proof development mode. In this mode,

proof goals are iteratively refined into subgoals known to imply the original, until

all subgoals can be eliminated in atomic proof steps. Individual refinements are

expressed as tactics, small, untyped programs in the language that Coq provides for

scripting proof strategies (Delahaye 2000). Theorem proving with tactics is not our

focus in this work, so we will just describe the two simple tactics refine and auto

that we have used in the example.

At any stage in interactive proof development, the goal is expressed as a search

for a term having a particular type. The refine tactic specifies a partial term; it

contains underscores indicating holes to be filled in, and we believe that there is

some substitution for these holes that leads to a term of the proper type. Some holes

are filled in automatically using standard type inference techniques, while the rest

are added as new subgoals in the proof search.

In the use of refine in the example, we suggested a recursive function definition,

filling in all of the computational content of the function and leaving out the details

of constructing proofs. The holes standing for proofs turn out to be the only ones

that Coq does not fill in through unification, and we invoke the auto automation

tactic to solve these goals through Prolog-style logic programming.

We can make the code nicer-looking through some auxiliary definitions and by

extending Coq’s parser, which is built on “camlp4,” the Caml Pre-Processor and

Pretty Printer:

Definition isEven : forall (n : nat), [[even n]].

refine (fix isEven (n : nat) : [[even n]] :=

match n return [[even n]] with

| O => Yes
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| S (S n) =>

pf <- isEven n;

Yes

| _ => No

end); auto.

Qed.

We introduce the syntax [[P]] for poption P, along with Yes and No for the

PSome and PNone forms from the earlier example version. There is also the

pf <- isEven n; Yes code snippet, which treats poption as a failure monad in

the style familiar from Haskell programming (Wadler 1992). The meaning of that

code is that isEven n should be evaluated. If it returns PNone, then the overall

expression also evaluates to PNone. If it returns PSome, then bind the associated proof

to the variable pf in the body Yes. Here, it looks like the proof is not used in the

body, but remember that Yes is syntactic sugar for a PSome with a hole for a proof.

refine will ask us to construct this proof in an environment where pf is bound.

We construct terms like this to use in programs that we eventually hope to

execute. With Coq, efficient compilation of programs is achieved through extraction

to computationally equivalent OCaml code. With the right settings, our example

extracts to

let rec isEven (n : nat) : bool =

match n with

| O -> true

| S (S n) -> isEven n

| _ -> false

Notice that the proof components have disappeared. In general, extraction erases

all terms with sort Prop, leaving us with only the OCaml equivalents of Coq terms

that we designated as “programs.” Thanks to some subtle conditions on legal Coq

terms, Coq can guarantee that the extraction of any Coq term in Set has the same

computational semantics as the original.

Besides poption, there is another type of similar flavor that will show up often

in what follows. The soption type, which is an optional package of a value and a

proof about that value, is defined as

Inductive soption (T : Set) (P : T -> Prop) : Set :=

| SSome : forall (x : T), P x -> soption T P

| SNone : soption T P.

The type soption is the return type of a potentially incomplete procedure that

searches for a value satisfying a particular predicate. For instance, a type inference

procedure infer for some object language encoded in Coq might have the type

forall (e : exp), soption type (fun t : type => hasType e t). We could

then use this function in failure monad style with expressions like t : pfT <-

infer e;. . . , which attempts to find a type for e. If no type is found, the expression

evaluates to SNone; otherwise, in the body t is bound to the value found, and pfT
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is bound to a proof that t has the property we need. The important difference of

soption with respect to poption is that the value found by a function like infer

is allowed to have computational content and is preserved by extraction, while the

only computational content of a poption is a yes/no answer.

In the bulk of this paper, we will use a more eye-friendly, non-ASCII notation

for these types. We will denote poption P as [[P ]] and soption (fun x : T =>

P) as {{x : T | P }}. We will also use the usual Π instead of Coq’s forall to denote

dependent function types.

2.2 Modules and correctness-by-construction

The development strategy that we just outlined is certainly not the fastest route

to certified functions. More traditionally, the programmer writes a function in a

standard programming language with a relatively weak type system. He next uses a

verification condition generator to produce a logical formula whose truth implies that

the function satisfies its specification. Finally, he proves this verification condition,

maybe even using an automated first-order theorem prover.

Such techniques tend to be geared towards views of software as static artifacts.

While the tools driving traditional verifiers do often exploit modularity, support for

this tends to be viewed as an optimization. With an appropriately efficient theorem

proving black box, we would be just as happy to verify whole programs from scratch

after each change to their source code. Systems like those in the ESC family (Detlefs

et al. 1998) exemplify this sort of approach. They tend to be focused more on the

“prove shallow properties of large programs” end of the verification spectrum, rather

than the “prove deep properties of modestly-sized programs” tasks that concern us

here.

There does not seem to be much hope of automating the tricky parts of a

proof of verifier soundness. This means that a human must take an active role as

proof architect. Just as in software engineering, the inevitable consequence is that

abstraction and modularity techniques are critical in enabling this human architect

to do his job. What we really need is a convenient way of composing proofs about

software components in parallel to the components themselves. We turn now to some

examples demonstrating the value of this idea, which takes a variety of forms in

idiomatic Coq code.

2.2.1 Dependent types and composition

First, a trivial example based on the isEven function from the last subsection.

Imagine that we had elected to code isEven in a more traditional way, with no

dependent types, leading to

isEven : nat→ bool

Now we want to build a new function to check that both components of a pair of

natural numbers are even.

pairEven(n1, n2) = isEven(n1) && isEven(n2)
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Next, we write down the obvious specification for pairEven:

∀n1, n2 ∈ �, pairEven(n1, n2) = true⇒ (∃k1 ∈ �, n1 = 2k1) ∧ (∃k2 ∈ �, n2 = 2k2)

How should we go about proving this theorem? We can prove a similar correctness

theorem for isEven and use it to derive our goal straightforwardly. This verification

style seems natural, but in practice it has a serious flaw. What happens as a

certified program built in this way from components evolves? We have many ad-hoc,

implicit connections between parts of programs and parts of proofs. For instance, the

inductive argument used to prove the correctness of a recursive function will usually

mirror the recursive structure of that same function. When we modify the function’s

source code, we need to hunt down the affected proof pieces and rewrite them, in a

quite unprincipled way. In traditional software, we see such implicit dependencies as

evidence of poor use of abstraction and modularity. There is no reason to be more

forgiving when we move to certified programming.

To see a better approach, we return to the original version of isEven, having type

isEven : Π(n : nat).[[∃k ∈ �, n = 2k]]

Now we can write pairEven like this, using the monadic notation introduced in

the last subsection:

pairEven(n1, n2) =

pf1 ← isEven(n1);

pf2 ← isEven(n2);

Yes

The final “Yes” adds a logical subgoal to be proved using tactics.

Why is this version superior? First, we have made explicit the connection between

each function and its correctness proof. This helps us in the same way that grouping

related program pieces into modules or classes helps. It establishes a machine-checked

convention that can help keep a lone developer honest and facilitate collaboration

between multiple developers with a reduced need for informal documentation.

Second, the explicit program-proof connection makes it easier to express com-

piler/prover error messages with the traditional idiom of type errors. Proof-related

error messages can signal not only a point within a proof with ad-hoc structure, but

also the particular line of code in the program where that proof was built. When a

program modification leads to incompatibilities in transitive dependencies, this kind

of error message can be much more effective in determining what needs changing.

Another very compelling advantage is not illustrated directly by our example. To

build a new function by composing old functions, we had to do some new tactic-

based proving. However, in many cases, dependent types let us write new certified

code without ever writing anything we would call a “proof.” For instance, say we

generalized the basic idea of pairEven with a library function:

pairCheck : Π(τ : Set)(P : τ→ Prop).

(Π(x : τ). [[P (x)]])

→ Π(y : τ× τ). [[P (π1y) ∧ P (π2y)]]
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We define pairCheck as a polymorphic function for lifting a test on values of type

τ to a test on values of type τ × τ, where it should be verified that the original

property holds for both components of the pair. Now we can write a complete

implementation of pairEven with

pairEven = pairCheck � (λn, ∃k ∈ �, n = 2k) isEven

We get the same strong type that we came up with originally, without doing any

more work than we would in traditional programming. (Here we give the evenness

predicate as an explicit argument that the programmer must type, but Coq can

actually infer such arguments automatically, in this case from the type of isEven.)

2.2.2 Modules and proofs

The quest for “correctness theorems for free” has driven the design of much of

the certified software architecture that we will present in this paper. In practice,

most of the interesting cases do require some new proof inputs. It is beneficial

to seek out reusable idioms for soliciting these proofs. Analogous problems in

traditional programming have been solved quite elegantly by ML-style module

systems (MacQueen 1984). Coq features a natural extension of such systems to its

dependently-typed setting, and we make essential use of modules for structuring

certified components.

As an example, we can revisit the standard example of functorized containers,

which past work has treated in the context of certified Coq programming (Filliatre &

Letouzey 2004). A container family implemented with balanced trees requires a

comparison operation over the type of keys that it stores. In ML, additional

requirements on the comparator are stated in documentation but not checked. One

reasonable requirement is that the comparator implement a total order. In Coq,

we can make this requirement explicit and enable machine checking of it with this

signature:

ORDERED = sig

T : Set

leq : T → T → bool

leq antisym : ∀x, y : T , leq x y = true⇒ leq y x = true

⇒ x = y

leq trans : ∀x, y, z : T , leq x y = true⇒ leq y z = true

⇒ leq x z = true

leq total : ∀x, y : T , leq x y = true ∨ leq y x = true

end

The signature resembles one from an algebra textbook. Here we avoid using

dependent types proper and rely instead on a more traditional axiom-based presen-

tation. An equivalent formulation would leave out the three axioms and declare leq

to have type {f : T → T → bool | (* the axioms hold for every input pair *)}. This

kind of type formed from a base type and a predicate over its values is called a subset

type. The choice of which style to use depends on the circumstances. When we care
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about multiple distinct properties of a single operation, the axiomatization approach

is often more convenient. It is worth noting here that we can always transform an

axiom-based implementation into one using only dependent types and no modules.

In contrast to the situation for ML, the Coq module system adds no expressive

power, but only convenience. Dependent record types subsume its features, though

they can be significantly more clumsy to use.

We can define a signature of applicative sets, with some representative operations

and one representative axiom:

SET = sig

T : Set

set : Set

member : set → T → bool

empty : set

add : set → T → set

add ok : ∀(S : set)(x : T ),member (add S x) x = true

end

We can write a Coq functor that transforms ORDEREDs into SETs:

Module MakeSet(O : ORDERED) : SET with Definition T := O .T

:= struct (*. . .*) end.

The body of the functor will define the types and operations just as they would be

defined in ML. The axiom add ok would probably be proved using tactics, drawing

on the axioms from the parameter O as lemmas.

Our main use of functors in this work has been for lowering a program verifier’s

level of abstraction. That is, such a functor takes as input a verifier and returns a

new verifier at a lower level of abstraction, filling in the details that separate the

two levels. The composition of these functors will give a method of transforming a

high-level type-system description into a machine code analyzer. Naturally, we will

require axioms establishing properties like type system soundness. Section 3 goes

into detail on the component architecture that we use.

2.3 Problem formulation

The goal of this work is to support the verification of safety properties of executable

x86 machine code programs. We have opted to simplify the problem by focusing on

a single safety policy, where the safety policy simply forbids execution of a special

“Error” instruction. As in model-checking, many interesting safety policies can then

be encoded with assertion checks that execute “Error” on failure.

The first task is to define formally the semantics of machine code programs. The

style is standard for FPCC (Appel 2001), but we summarize the formalization here

to make it clear exactly what a successful verification guarantees.

Machine words word w ::= 0 | 1 | . . . | 232 − 1

Registers reg r ::= EAX | ESP | . . .
Flags flag f ::= Z | . . .
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Register files regFile R = reg→ word

Flag files flagFile F = flag→ bool

Memories memory M = word→ byte

Machine states state S = word× regFile

× flagFile×memory

Instructions instr I ::= ERROR | MOV r, [r]

| JCC f, w | . . .

Step relation �→ : state ⇀ state

The main thing to notice is that the semantics follows precisely a conservative

subset of the programmer-level idea of the “real” semantics of x86 machine code. We

have chosen a subset of x86 instructions that is sufficient to allow many interesting

programs and only included in the semantics those aspects of processor state needed

to support those instructions.

The various elements of the formalization follow from the official specification of

the x86 processor family (Intel 2006), with the exception of the ERROR instruction

added to model the safety policy. We briefly review the different syntactic classes

and definitions before continuing.

A machine state consists of a word for the program counter, giving the address

in memory of the next instruction to execute; a register file, giving the current word

value of every general purpose register; a boolean valuation to each of the flags,

which indicate conditions like equality and overflow relevant to the last arithmetic

operation; and a memory, an array of exactly 232 bytes indexed by words. The

instructions are a subset of the real x86 instruction set, with the addition of the

ERROR instruction.

A small-step transition relation �→ describes the semantics of program execution.

One transition involves reading the instruction from memory at the address given

by the program counter and then executing it according to the x86 instruction

set specification. Actually, �→ is a partial function; it fails to make progress if the

instruction loaded is ERROR. In this way, when we treat only non-terminating

programs, violations of the safety policy are encoded with the usual idiom of the

transition relation “getting stuck.” A “production quality” implementation would

no doubt keep the real semantics separate from a library of safety policies, but the

design decision we made simplifies the formalization, and the main interesting issues

therein are the same between the two approaches.

We can define what it means for a machine state to be safe with this co-inductive

inference rule:

S �→ S ′ safe(S ′)

safe(S)

This is defined using Coq’s facility for co-inductive judgments (Giménez 1995),

which may have infinite derivations that are well-formed in a particular sense. Infinite

derivations are important here for non-terminating programs. Similar techniques



612 A. Chlipala

have been used in recent related work, including Leroy’s co-inductive big-step

operational semantics (Leroy 2006a).

The last ingredient is a means to connect a program to the first machine state

encountered when it is run. Assume the existence of a type program and a function

load : program → state. Concretely, program is a particular file format that GCC

will output, and load expresses the algorithm for extracting the initial contents of

memory from such a file, zeroing out registers and flags, and setting the program

counter to the fixed address of the program start. To simplify reasoning while still

remaining faithful to real semantics, we deal with programs that run “on a bare

machine” with no operating system, virtual memory, etc.; and in fact the programs

really do run as such in an emulator.

We have now established enough machinery to define formally the correctness

condition of a certified verifier. A certified verifier is any value of the type:

Π(p : program). [[safe(load(p))]]

The type of the extracted function is program → bool. By the soundness of

extraction, we know that the value of the function on an input p is a boolean whose

truth implies the safety of the program. Thus, if p is unsafe, the function must return

false, and we can take a return of true as conclusive evidence that p is safe. A trivial

certified verifier implementation is one that always returns false, but this is an issue

of completeness, not soundness, to be dealt with through testing. Alternatively, one

could craft a specialized declarative proof or type system, as is common in Typed

Assembly Language, and prove that the verifier enforces exactly its rules, though we

have not done this to date. This is not so urgent a requirement as it may sound, as

a formally-defined decision procedure is already quite close to a declarative proof

system.

2.4 An example input

The techniques we describe in this paper are meant to be used with certifying

compilers. However, since we chose to analyze machine code that follows a relatively

simple type discipline not supported by any existing certifying compiler, it seemed

more expedient to simulate the operation of a hypothetical compiler in producing

test cases. To provide an idea of the real input format that these verifiers will be

dealing with, we have included in Figure 1 a concrete listing of one of our test cases.

This is meant to be used with one of the verifiers produced using the component

architecture that we will describe in the next section: a verifier based on a simple

type system of integers and lists.

This C source file, length.c, uses GCC-specific code to annotate the eventual

machine code with metadata. This metadata can be thought of as consisting of a

precondition for each basic block of the program. The header files shown in Figure 2

(generic metadata support) and Figure 3 (type system-specific support) define macros

that emit inline assembly to save binary-encoded metadata in a special section of

program binaries.
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#include "intlist.h"

BEGIN_FUNC(70);

STACK_TYPE(4, CUSTOM(LIST(INT)));

END_FUNC();

int int_list_len(list *ls) {

int len = 0;

BEGIN_CUTPOINT(50);

REG_TYPE(ESP, STACK(16));

REG_TYPE(EBP, STACK(12));

STACK_TYPE(4, CUSTOM(LIST(INT)));

STACK_TYPE(8, RETPTR);

STACK_TYPE(12, OLDEBP);

END_CUTPOINT();

for (;;) {

if (ls) {

++len;

ls = ls->next;

} else {

BEGIN_CUTPOINT(50);

REG_TYPE(ESP, STACK(16));

REG_TYPE(EBP, STACK(12));

STACK_TYPE(8, RETPTR);

STACK_TYPE(12, OLDEBP);

END_CUTPOINT();

return len;

}

}

}

Fig. 1. length.c.

The arguments of the BEGIN FUNC and BEGIN CUTPOINT macros are stack size

bounds, used to support usage of a stack discipline without dynamic overflow

checks, which can be trickier to reason about than fixed stack bounds. REG TYPE

annotations assign types to registers, and STACK TYPE annotations assign types to

stack slots numbered by offset from the stack pointer in effect at entry to the current

function. The various uses of literal stack sizes and offsets are an example of mixing

the C level of abstraction with the machine code level of abstraction. The example

code listing should be thought of as a piece of machine code that we write using

C as a macro assembler to automate the parts of low-level layout that it can easily

be coerced to perform, without hesitating to calculate some offsets ourselves where

necessary, based on knowledge of how GCC operates.

After sketching this hairy, ad-hoc scheme, it is worth pointing out that there are no

formal proofs about it. Rather, an uncertified piece of OCaml code is responsible for

reading this data and putting it into a nice, purely functional format at verification

time. The certified Coq code then picks up this description and uses it as a “hint”

in verification. A similar scheme could be used for other sorts of verifiers, including
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#define EAX "0"

#define ECX "1"

#define EDX "2"

#define EBX "3"

#define ESP "4"

#define EBP "5"

#define ESI "6"

#define EDI "7"

#define TOP "0"

#define CONST(n) "1, " #n

#define STACK(n) "2, " #n

#define OLDEBP "3"

#define RETPTR "4"

#define CUSTOM(n) "5, " n

#define BEGIN_FUNC(ss) __asm__("0:;.section .cutpoints; .int 1, 0b, " #ss)

#define END_FUNC() __asm__(".int 0; .section .text")

#define BEGIN_CUTPOINT(ss) __asm__("0:;.section .cutpoints;.int 2, 0b," #ss)

#define END_CUTPOINT() __asm__(".int 0; .section .text")

#define REG_TYPE(r, t) __asm__(".int 1, " r ", " t)

#define STACK_TYPE(r, t) __asm__(".int 2, " #r ", " t)

Fig. 2. firstorder.h.

#include "firstorder.h"

#define INT "0"

#define LIST(t) "1, " t

#define NELIST(t) "2, " t

typedef struct list {

void *data;

struct list *next;

} list;

Fig. 3. intlist.h.

more ambitious approaches that require the inclusion of arbitrary logical formulas

or even proof snippets with program binaries, although the particular component

architecture that we will present next is not very well-suited to many such styles of

verification.

3 Components for writing certified verifiers

The final goal of the case study we are presenting here was to produce a certified

x86 machine code memory safety verifier that supports general product, sum, and

recursive types, which we will call MemoryTypes. It would have been possible to
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write this verifier monolithically, but we thought it would be more interesting and

useful to do it in stages, writing reusable components with rich interfaces to handle

different parts of verification and allow later components to reason at increasingly

high levels of abstraction.

A word about generality. The rest of this paper can be thought of as presenting two

distinct contributions. One is the particular architecture that is the subject of this

section. We present a particular set of components that can be put to good use

crafting verifiers for a particular class of programs.

That class is far from universal, however. The architecture we will describe cannot

be used in the verification of programs with first-class code pointers, to name just one

major weakness. Rather, this architecture is intended as a case study in support of

the second contribution, which is a methodology for constructing certified program

analysis tools.

We believe that the techniques we present, based on dependent types and

abstraction-spanning functors, could be put to good use in designing a system

to make it easier to implement, say, traditional typed assembly languages (Morrisett

et al. 1999a). We have no empirical evidence to present here for that claim, but, in any

case, the results here are interesting in their own right. The world of certified verifiers

is a new one, and, as is usually the case in domains like this that depend on formal

proofs, it is much easier to draw conclusions about what works and what does not

by starting with relatively simple examples. So, in that light, we invite the reader to

consider the final verifier produced in this work as a case study within a case study.

Introduction to the architecture. The component structure that we present here is

born of necessity; a layered decomposition of verifier structure or something like it

is critical to making the overall task feasible. As traditional software built from many

simple pieces can become unmanageably complex, the problem is only exacerbated

when formal correctness proofs are required, since now even the “simple” pieces

can involve nontrivial proofs. The component structure we have settled on has been

designed not just to support effective programming, but also to support effective

proof construction, by minimizing the need for repeated work. The issues and

complexities specific to our domain of machine code verifiers are probably not

clear to readers who do not have experience in that field, but we hope that the

following walk-through of the steps in our solution can shed some light on them.

The important question at each stage of this abstraction hierarchy is “How hard

would it be to develop and maintain a new verifier (with a soundness proof)

handling all of the hidden lower-level details?”. Some designs that would work fine

in traditional programming may force the proving of overly complicated soundness

theorems for single modules, motivating better use of abstraction and modularity.

It is also true that we will be drilling down to a significant level of detail in this

section. We invite the overwhelmed reader to look ahead to the light at the end of

the tunnel in Section 4, where we show how all of this machinery pays off in making

it very easy to build a new certified verifier.

Figure 4 presents the particular component structure that we settled on. An arrow

from one component to another indicates that the target component of the arrow
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builds on the source component. Ovals represent logical theories that are used in the

correctness conditions of other modules, such as the x86 semantics. Rounded boxes

stand for components that contribute code to the extracted version of a verifier; i.e.,

they contain implementations of verifiers at particular levels of abstraction, along

with the associated correctness proofs. Solid boxes (like the WeakUpdate component)

are best viewed as library components, while transparent boxes represent certified

verifiers, the final products. We include a number of verifier boxes with dashed

borders. These stand for hypothetical verifiers that we have not implemented but

that we believe would best be constructed starting from the components that connect

to them in the diagram.

The basic paradigm here is that we use functors to transform abstractions to

“lower levels;” that is, we enrich abstractions with explicit handling of details that

they had previously considered to be tracked by “their environments.” At the end

of this process, an abstraction that makes the simplifying assumptions typical of

high-level type systems will have “learned” to track all of the pertinent minutiae

of x86 machine code. For our purposes here, an “abstraction” can be thought of

as a perspective on how to “think about” the execution of programs, assuming

that certain kinds of (abstraction-specific) information are available from an oracle.

The concept of abstraction will remain informal, as different verification strategies

suggest different categories of abstraction. The unifying similarity across all cases

will be that each abstraction provides a language for describing program states and

an account of how these states are affected by different concrete operations.

We will describe each library module in detail in the following subsections, but

we will start by providing an overview of the big picture.

• The only module that belongs to the trusted code base is the x86 Semantics,

the basic idea of which we presented in Section 2.3.

• ModelCheck provides the fundamental method of proving theorems about

infinite state systems through exhaustive exploration of an appropriate abstract

state space; or, since x86 states are finite in reality and in our formalization,

proving theorems about intractably large state spaces through exhaustive

exploration of smaller abstract state spaces.

• The x86 instruction set is in the CISC family and thus involves lots of

complications that one would rather avoid as much as possible, so we do most

verification on a tiny RISC instruction set to which we reduce x86 programs.

SAL semantics defines the behavior of this Simplified Assembly Language.

• Reduction enables multiple steps of abstraction: model checking an abstraction

of an abstraction of a system suffices to verify that system. In the component

chain used to build MemoryTypes, Reduction is used to do model checking

on the SAL version of an x86 program. One way of viewing traditional PCC

approaches is that they apply proof-checking on the result of a reduction to

whatever internal format they use to represent programs.

• FixedCode deals with a basic simplification used by most program verifiers,

which is that a fixed region of memory is designated as code memory, and

that code memory cannot be modified in any run of the program. General
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FPCC frameworks in theory support verification of self-modifying programs,

but we usually want to work at a higher level of abstraction where we think of

program code as fixed and independent of machine state. FixedCode’s level

of abstraction would be appropriate for an adaptation to machine code level

of traditional verification in the style of Extended Static Checking (Detlefs

et al. 1998).

• TypeSystem provides support for model checking where the primary compo-

nent of an abstract state is an assignment of a type to every general purpose

machine register. This would be a good starting point for traditional Typed

Assembly Language (Morrisett et al. 1999a; Morrisett et al. 2003), which

handles stack and calling conventions with its own kind of stack types.

• However, for most verifiers, StackTypes would be a more convenient starting

point than TypeSystem. It takes as input a type system ignorant of stack and

calling conventions and produces a type system that understands them. An

application of StackTypes to an “int-only” type system gives us a verifier

capable of checking memory safety of simple pointer-free C programs.

• SimpleFlags handles tracking of condition flag values relevant to conditional

jumps. This is critical for verifying programs that use pointers that might be

null, general sum types, or any of a large variety of type system features.

SimpleFlags would be a reasonable starting point for a verifier based on alias

types (Smith et al. 2000) or some other way of supporting manual memory

management.

• However, in the case of automatic memory management, WeakUpdate provides

a much more convenient starting point. WeakUpdate is used with type systems

that have a notion of a partial map from memory addresses to types, where

this map can only be extended, never modified, during a program execution.

Though addresses can usually change types when storage is reclaimed, this is

handled by, e.g., a garbage collector that is verified using different methods.

WeakUpdate would also provide a good foundation for machine code-level

verification of programs compiled from Java source code.

In general, each of these arrows between rounded boxes in Figure 4 indicates a

functor translating a verifier at the target’s level of abstraction to a verifier at the

source’s level. These functors are used as in the example in Section 2.2. For instance,

for the arrow between TypeSystem and StackTypes, we have the form of the earlier

example with ORDERED changed to STACK TYPE SYSTEM, the output signature of the

functor changed from SET to TYPE SYSTEM, and the functor’s innards assembling a

richer type system by extending that presented by its input module.

We will now describe the most important aspects of the interfaces and imple-

mentations of each of these reusable library components. We avoid describing how

the actual proofs are constructed, focusing instead on component interfaces and

a bird’s-eye view of an overall structure that we have found to work in practice.

Nonetheless, there are many important engineering issues in proof construction, and

doing the subject justice would require another article of its own. The main thing to

keep in mind through the following sections is that every piece is supported by Coq
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Fig. 4. A component structure for certified verifiers.

proofs of the relevant properties, and that we were able to construct these proofs

using the techniques sketched in Section 1.2.

The reader can follow along with a more detailed version of this discussion at∗

http://proofos.sourceforge.net/doc/

The section of that page headed “The AbsInt Coq library” links to automatically-

generated HTML pages giving the interfaces of all of the Coq module implemen-

tations. In this article, we present simplified versions of the modules that may have

some incompatibilities with their “real” counterparts, but the online documentation

should make the broad correspondences clear.

∗ Also available at http://journals.cambridge.org/issue Journaloffunctionalprogramming/
Vol18No5-6.
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Module Type MC ABSTRACTION.

Module Mac : MACHINE.

Parameter absState : Set.

Parameter context : Set.

Parameter �S : context → Mac.state → absState → Prop.

Definition mcstate := absState × list absState.

Parameter init : {states : list (absState × list absState)

| ∃Γ : context , ∃α : absState,

(α, nil) ∈ states ∧ Γ �S Mac.start : α}.

(* Auxiliary definitions *)

Parameter step : Π(hyps : list absState)(α : absState).

{{succs : list absState | progress(α)

∧ preservation(α, hyps, succs)}}.
End MC ABSTRACTION.

Module Type VERIFIER.

Module Mac : MACHINE.

Parameter check : Π(p : Mac.program).[[Mac.safe(Mac.load(p))]].

End VERIFIER.

Module ModelCheck (A : MC ABSTRACTION)

: VERIFIER with Module Mac := A.Mac.

(* Definitions *)

End ModelCheck.

Fig. 5. Input and output signatures of ModelCheck.

3.1 ModelCheck

Figure 5 shows the input and output signatures of the first component in the

pipeline, ModelCheck. Since such figures can be hard to digest, in the rest of this

section we have opted to follow a different convention. We will not discuss the

output signatures of functors, as they just match up with the inputs of earlier

pipeline stages, in general. We will present input signatures member-by-member,

interleaved with explanatory text in the main body of this section. Moving through

the subsections describing the different functors, the input signatures will build on

their predecessors. Thus, we will only describe new members; old members that do

not draw explicit mention should be assumed to stay the same as in the previous

cases. When an old member is mentioned again later, the new definition should be

taken to replace the original.

The definitions of the fixed component input signatures will alternate with

illustrative examples. To help distinguish which symbols are which, names of

signature pieces (“formal parameters”) will be written in italics, while names of

pieces of examples (“actual parameters”) will be written in a serif font. Following
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the same “interface versus implementation” convention, standard abbreviations that

are included in signatures will also have serif names.

The astute reader will be able to notice cases where, following this convention

literally, some of the signatures that would be assigned to the different components

will be incomplete or inconsistent. We have chosen what to include with pedagogic

effectiveness in mind. A pleasant consequence of describing a completely formal

piece of theory is that we need not worry about this sort of omission as much

as usual, since the formalization is available in full on the Web. (See Section 5.)

We hope that the result in these pages manages to express the key ideas of the

components while not taxing the reader’s patience.

An input to ModelCheck specifies a particular machine semantics Mac, imple-

mented as a module ascribing to a particular common MACHINE signature. An

abstraction for this machine is defined with an implementation of a signature that

we will describe piece by piece.

Before going into these details, we note that this formalization of model-checking

is specific to “first-order” uses of code pointers. Each point in the abstract state

space can have any number of known code pointers that it is allowed to jump

to, but the descriptions of these code pointers cannot themselves refer to other

code pointers. The formulation we give is expressive enough to handle, for instance,

standard function call and exception handling conventions. Naturally, this design

decision precludes the easy handling of functional languages, but one would simply

write another component to serve as a starting point there; and there are plenty

of interesting issues in this restricted setting, related to data structures and other

program features.

Now we will give the high level picture of what an abstraction is and what

properties it must satisfy. The fundamental piece of an abstraction is its set absState

of abstract states. These will be the constituents of the state spaces explored at

verification time.

absState : Set

Next, we have an abstraction relation:

context : Set

�S : context → Mac.state → absState → Prop

As per usual in abstraction-based model checking, we need to provide a relation

characterizing compatibility of concrete and abstract states. �S is a ternary relation

serving in this role. It is very closely related to the abstraction relations of abstract

interpretation (Cousot & Cousot 1977). However, here it relies on an extra, perhaps

unexpected, component, a set context . The basic idea behind the separation of

abstract states and contexts is that abstract states will be manipulated in the

extracted OCaml version of a verifier, while contexts will be used only in the

proof of correctness and erased during extraction. Though we define contexts to

have computational content, it will turn out that, if we use a naive extraction

that preserves all definitions in sort Set, a dependency analysis starting from the

resulting verifier’s entry point will show that contexts are not used. Coq’s Recursive
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Extraction command achieves the same effect by outputting definitions lazily, as

needed to export one root definition.

A canonical example of a context is a valuation to free type variables used in an

abstract state:

Type variables tyvar β

Types type τ ::= β | . . .
absState = reg→ type

context = tyvar→ type

Contexts provide a sort of polymorphism that lets us check infinitely many

different abstract states by checking a finite set of representatives. For instance, we

check a finite set of abstract states containing type variables in place of checking the

infinite set of all of their substitution instances. We use the infix notation Γ �S s : α

to denote that, in context Γ, concrete state s and abstract state α are compatible,

i.e., s belongs to α’s concretization.

Now we need a way of computing an abstract state space that conservatively

approximates the concrete state space. To describe ModelCheck and the functors

that follow it, we will use a simple running example, based on elements of verifying

simple compiled C programs. Some features that we present monolithically here

will actually be added modularly by earlier functors, and we omit some details here

necessary for real verification.

type τ ::= int | τ ptr | retptr

absState = (word ∪ {retptr})× (reg→ type)

context = word

As in the real final verifier of our case study, this is a type-based checker. Our types

include untagged integers, pointers, and a distinguished type for a saved function

return pointer.

Abstract states have two components. First, we have a representation of the

program counter. This will either be a word, giving the known program counter

value; or a distinguished retptr value, for a state immediately after jumping to the

saved return pointer. The second abstract state component is the standard map from

registers to types.

Our contexts are very simple here. There is only one piece of information needed

in reasoning about the verifier’s correctness but not in its algorithmic operation:

the concrete value of the return pointer. We check functions with the return pointer

treated symbolically, but our soundness proof refers to the context to show that the

verification applies to any concrete function call that might be made.

In general, each element of a ModelCheck state space consists of one absState

describing the current state and zero or more hypotheses (represented with a

list absState) describing other abstract states known to be safe.

mcstate = absState × list absState

The canonical example of a hypothesis is a function call’s return pointer. If

verification inside a function ever reaches an abstract state compatible with the
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0 : MOV EAX, p ((0, []), ∅)
4 : CALL 12 ((4, [EAX �→ int ptr ptr]), ∅)
8 : JMP 8 ((8, [EAX �→ int ptr ptr]), ∅)

12 : MOV [EAX], EAX ((12, [EAX �→ int ptr ptr,EBX �→ retptr]), {(retptr, [EAX �→ int ptr])})
16 : JMP EBX ((16, [EAX �→ int ptr,EBX �→ retptr]), {(retptr, [EAX �→ int ptr])})

20 : MOV [EAX], EAX ((20, [EAX �→ int ptr ptr,EBX �→ retptr]), {(retptr, [EAX �→ int ptr])})
24 : JMP 28 ((24, [EAX �→ int ptr,EBX �→ retptr]), {(retptr, [EAX �→ int ptr])})

. . .

28 : . . . ((28, [EAX �→ int ptr,EBX �→ retptr]), {(retptr, [EAX �→ int ptr])})
. . .

45 : JMP 28 ((45, [EAX �→ int ptr,EBX �→ retptr]), {(retptr, [EAX �→ int ptr])})

Fig. 6. Example program for Section 3.1.

return pointer’s hypothesis, then there is no need to explore that branch of the state

space further.

Here is an example element of a ModelCheck state space. We overload set

notations to work for lists, where a list is interpreted as the set of its elements. We

also write [r1 �→ τ1, . . . , rn �→ τn] to denote the function mapping each register ri to

type τi and all other registers to int.

((42, [EAX �→ int ptr ptr,EBX �→ retptr]), {(retptr, [EAX �→ int ptr])}) : mcstate

This tuple is a standard state for the inside of a function body. The program counter

is known to be 42, register EAX points to a pointer to an integer, and register EBX

holds the saved return pointer. Our single hypothesis reflects the conditions under

which it is safe to return from the function: the program counter must be restored

to the saved value, and EAX must point to an integer.

Our next ingredients are the algorithmic pieces of a verifier. These are init, which

calculates the roots of the state space; and step, which describes how to expand the

visited state space by following the edges out of a single node. Starting with init:

init : {states : list (absState × list absState)

| ∃Γ : context , ∃α : absState,

(α, nil) ∈ states ∧ Γ �S Mac.start : α}

The value init of subset type provides a set (actually a list) of state descriptions,

along with a guarantee that some abstract state compatible with the concrete initial

state is included. The condition for init requires that some abstract state with no

hypotheses (i.e., that makes no special assumptions) is found among the initial states.

An example should make the intended usage of init clearer. Consider the program

(annotated with abstract states) in Figure 6. Let us say that the concrete initial

state has the program counter, registers, and memory cells all initialized to 0. The

program we want to verify has, in addition to start-up code at PC 0, two functions.

The start-up code calls the first function and then enters an infinite loop.

Each function takes an int ptr ptr as an argument and returns an int ptr. Their

entry points are PC’s 12 and 20. The first function has just a single basic block, and
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the second function has an additional basic block starting at PC 28 and containing

a loop. For the purposes of this example, we will use a calling convention where the

first argument to a function is passed in register EAX, and the return value is stored

in the same register. We also use register EBX to store the saved return pointer. This

determines the states on entry to the functions, and let us consider that the loop

entry point (PC 28) assumes that EAX has been modified to contain an int ptr.

Here is a good set of initial states to give for the computational piece of init.

There is one entry for each underlined program counter in Figure 6.

{((0, []), ∅),
((8, [EAX �→ int ptr ptr]), ∅),
((12, [EAX �→ int ptr ptr,EBX �→ retptr]), {(retptr, [EAX �→ int ptr])})
((20, [EAX �→ int ptr ptr,EBX �→ retptr]), {(retptr, [EAX �→ int ptr])})
((28, [EAX �→ int ptr,EBX �→ retptr]), {(retptr, [EAX �→ int ptr])})}

As the discussion to follow shortly will show, init cannot simply return a complete

description of the initial concrete state, but must rather contain enough states that

every point in the program’s execution reaches one in finitely many steps. In this

sense, init is like a precomputed fixed point of an abstract interpretation. We could

have required that init contain enough elements to describe every reachable concrete

state, but that would just contribute to verification-time inefficiency, and we really

only need to fix enough abstract states to cut every cycle in the abstract state space.

In the implementation, init will be computed mostly by ML code. This code gets the

information by reading annotations out of the binary being analyzed. It could just

as easily use abstract interpretation to infer the information from a less complete set

of annotations. Notice that an error in constructing the fixed point can only effect

completeness, not soundness, so it is OK to implement this part outside of Coq.

We now turn to the step function. It has a complicated type with several pieces,

so we will present it in stages, using a series of predicates to be defined one at a

time.

step : Π(hyps : list absState)(α : absState).

{{succs : list absState | progress(α) ∧ preservation(α, hyps, succs)}}

The overall form of step is simple enough. It is a dependent function taking as

inputs the current hypothesis set and the current abstract state. Note that while

init ’s type is a standard subset type, step has an soption type that allows it the

option of failing for any input. Naturally, this is important, since otherwise the

implementation of ModelCheck would somehow need to produce a model checker

that is able to prove any program safe!

When step succeeds, it returns the set of new states that should be explored before

declaring the program safe. The subset type imposes some standard requirements

on such a set of states. We have a progress condition, expressing that the program

is able to make at least one execution step; and a preservation condition, expressing

that every possible concrete state transition matches up with an abstract transition

to a member of succs.
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The progress condition is the simpler of the two:

progress(α) = ∀(s : Mac.state)(Γ : context),

Γ �S s : α⇒ ∃s′ : Mac.state, s �→Mac s
′

For every concrete state and context compatible with the current abstract state,

execution must make at least one more step of execution. In other words, the

program counter must not be pointing to an ERROR instruction.

The preservation condition is broken into two cases, roughly corresponding to

regular and control-flow instructions.

preservation(α, hyps, succs) = ∀(s, s′ : Mac.state)(Γ : context),

s �→Mac s
′ ∧ Γ �S s : α

⇒ ∃Γ′ : context , regular(hyps, succs, s′,Γ′)

∨ controlFlow(hyps, succs, s′,Γ,Γ′)

In the definition of preservation, we consider any concrete state transition with

a source state compatible with α in some context Γ. There must exist a new context

Γ′ such that one of the two subconditions regular and controlFlow applies. The

first kind of preservation is the simple one, corresponding to most instructions in a

program:

regular(hyps, succs, s′,Γ′) = ∃α′ : absState, α′ ∈ (hyps ∪ succs)

∧ Γ′ �S s′ : α′

When regular holds, we have a new abstract state α′ that is either a hypothesis or

one of the new states queued for exploration. In either case, the fact that α′ describes

s′ in Γ′ shows us that the work we have already done or queued to do will cover

this concrete transition.

The definitions so far are sufficient to demonstrate the handling of two represen-

tative cases for our running example. Consider first the entry point:

((12, [EAX �→ int ptr ptr,EBX �→ retptr]), {(retptr, [EAX �→ int ptr])})

for the example’s first function. The first instruction is MOV [EAX], EAX, which

dereferences the pointer stored in register EAX and writes the result back into EAX.

Passed the given hypotheses and state, step could return

{(16, [EAX �→ int ptr,EBX �→ retptr])}

We establish the progress condition by looking up address 12 in the program code

and verifying that it contains the encoding of a non-ERROR instruction. We establish

preservation using the regular case, setting α′ to be the sole member of our successor

state set and keeping the original context Γ as Γ′. Proving Γ′ �S s′ : α′ involves

proving a typing condition for each register. We handle it trivially for the registers

that have not changed, and the case for EAX is proven directly from the semantics

of the MOV instruction and ptr types.

A more interesting case is a return from the function. Observe that the last

instruction that we considered put the program into a state where it is ready for
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a return, and the next instruction JMP EBX does exactly that. The abstract state

beforehand is

((16, [EAX �→ int ptr,EBX �→ retptr]), {(retptr, [EAX �→ int ptr])})

The function step can return the empty set, since we will assume that all possible

return states are queued for visitation at the times their calls are made. We establish

progress in the same way as before. To show preservation, we exhibit this state as

α′:

(retptr, [EAX �→ int ptr])

The only changes from the starting state are that the program counter has changed

to retptr and we have forgotten what we knew about the type of EBX. We exercise the

first possibility in the condition α′ ∈ (hyps∪ succs), as α′ is exactly our return pointer

hypothesis. Assuming reasonable definitions for the underlying typing judgment, it

is easy to establish Γ′ �S s′ : α′ when we set Γ′ = Γ. A primary element of this

reasonableness is that retptr should be interpreted as the singleton type of words

equal to the return pointer saved in the context Γ.

The second kind of preservation is associated with direct jumps and function calls

controlFlow(hyps, succs, s′,Γ,Γ′) = ∃(hyps′ : list absState)(α′ : absState),

(α′, hyps′) ∈ π1init

∧ Γ′ �S s′ : α′

∧ (Γ′, hyps′) �succs
S (Γ, hyps)

It requires that we look into the roots of the state space and find one (α′, hyps′) that

is compatible with s′. The operator π1 expresses projecting out the computational

part of a subset type, in this case giving us the list of roots without the proof

concerning them. Again we may provide a new context Γ′. However, this time not

only do we need to guarantee Γ′ �S s′ : α′, but we also need to be sure that every

hypothesis in hyps′ describes a set of states that are all safe. That is the purpose of

the final condition, which says that every hypothesis hyp′ in hyps′ has a counterpart

hyp among the current hypotheses and successor states, such that any concrete state

described by hyp′ in Γ′ is also described by hyp in Γ. The notation �S expresses this

requirement:

(Γ′, hyps′) �succs
S (Γ, hyps) = ∀h′ ∈ hyps′, ∃h ∈ (hyps ∪ succs),

∀s,Γ′ �S s : h′ ⇒ Γ �S s : h

This implication at first seems to be reversed from the natural order, but it makes

sense in the light of standard function subtyping rules when we think of hypotheses

as distinguished function arguments.

Another two example cases help illustrate the use of controlFlow. We look first

at a direct jump within a function. Let us start at PC 24, a point in the second

function just after dereferencing the function’s argument into EAX. We are in this

abstract state:

((24, [EAX �→ int ptr,EBX �→ retptr]), {(retptr, [EAX �→ int ptr])})
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We encounter a direct jump to program counter 28. Now we use the following

singleton set of successor states and draw α′ from it:

{(28, [EAX �→ int ptr,EBX �→ retptr])}

We can verify that the pairing of this state with the current return hypothesis

is indeed found among the elements of init. The compatibility conditions from

controlFlow are verified trivially, since the starting abstract state differs from the

result only in a change of program counter.

Finally, let us look at the entry point to the example program, which initializes

EAX to a valid pointer of proper type, calls the function, and then loops forever at

its return site. Before the call, the abstract state would look something like

((4, [EAX �→ int ptr ptr]), ∅)

The ∅ shows that we have no hypotheses yet. Upon using a fictitious function call

instruction that sets the program counter and EBX simultaneously, we would want

to present a list of successor states like this one:

{((8, [EAX �→ int ptr]), ∅)}

The single successor is for the return point. It is our responsibility as the caller to

queue it for visitation, so that the function may assume it safe to return to. To prove

preservation, we present an (α′, hyps′) that has gone through a point-of-view shift to

the function’s perspective:

((((12, [EAX �→ int ptr ptr,EBX �→ retptr]), {(retptr, [EAX �→ int ptr])})

It is easy to show Γ′ �S s′ : α′ with Γ′ set to 8, the address of the return site. The

hypothesis safety condition also comes easily, establishing the safety of the single

hypothesis by pointing out that an equivalent to it has been queued for visitation.

With these components provided to it, ModelCheck produces a standard model

checker that uses the requested abstraction. This model checker performs a depth-

first search through the state space, where the search terminates in every branch of

the tree where preservation is shown through the controlFlow case, corresponding

to a jump or call to one of the root states. The computational content of init and

step determines the shape of the state space to explore.

This description reveals that ModelCheck does not quite produce a standard model

checker. Rather, it produces a standard validator for the results of a traditional fixed

point calculation. The calculation must have been performed ahead of time by a

certifying compiler or some other noncertified (and untrusted) algorithm that relays

its answer to the certified piece of the code through init, as described in Section 2.4.

3.2 Reduction

The literal x86 machine language is not ideal for verification purposes. Single

instructions represent what are conceptually several basic operations, and the same

basic operations show up in the workings of many instructions. As a result, a

verifier that must handle every instruction will find itself doing duplicate work.
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In our implementation, we handle this problem once and for all by way of a

component to model check a program in one instruction set by reducing it to a

simpler instruction set.

The particular simplified language that we use is a RISC-style instruction set

called SAL (Simplified Assembly Language), after a family of such languages used

in traditional proof-carrying code work (Necula 1997). The main simplifications

are the use of arbitrary arithmetic expressions, instead of separate instructions for

loading a constant into a register, performing an arithmetic operation, etc., and a

new invariant that each instruction has a single effect on machine state.

Here is a brief summary of the language grammar:

Machine words w

SAL registers rs ::= r | TMPi

Binary operators ◦
SAL expressions e ::= w | rs | e ◦ e
SAL instructions Is ::= ERROR | SET rs, e

| LOAD rs, [e] | STORE [e], e | . . .

We add a finite set of extra temporary registers, to be used when a single compli-

cated x86 instruction is translated into an equivalent RISC sequence. For example,

the x86 instruction PUSH [EAX], which pushes onto the stack the value pointed to

by register EAX, is compiled into LOAD TMP1, [EAX]; STORE [ESP − 4], TMP1;

SET ESP, ESP− 4.

It is worth pointing out that, while the temporary registers introduced here bear

a superficial resemblance to the infinite supplies of temporaries typically associated

with compiler intermediate languages, they are purely a semantic trick and need no

accounting for how they may be supported “on real hardware.” They only appear

in the language to allow us to decompose x86 instructions as in the example above,

since there are not, in general, any spare “real” registers to take the place of, e.g.,

TMP1 in the example.

The details of SAL and Reduction are not especially enlightening, so we omit

them here. The main technical component is the expected compatibility relation

between states of the two kinds of programs, along with a compilation function and

a proof that it respects compatibility.

3.3 FixedCode

The most basic knowledge a model checker needs is how to determine which

instructions are executed when. The full semantics of SAL programs allows writing

to arbitrary parts of memory, including those thought of as housing the program.

We usually do not want to allow for this possibility and would rather simplify the

verification framework. The FixedCode module is used to build verifiers based on

this assumption. It is a functor that takes as input an abstraction that assumes a

fixed code segment and returns an abstraction that is sound for the true semantics.

We modify the verifier signature used by ModelCheck. (Recall the convention

introduced in Section 3.1 that definitions that we present in the context of a
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component should be treated as emending the input signature of the previous

component.) The first addition is a memory value prog that contains in some

contiguous region of its address space the encoding of the fixed program. The

memory region code tells us which address space range this is. Here we use a type

memoryRegion that describes a contiguous span of a 32-bit address space.

prog : word→ byte

code : memoryRegion

Next, we have a function absPc for determining the program counter for some

subset of the abstract states. The model checker that FixedCode outputs will take

responsibility for determining which instruction is next to execute in any state for

which absPc returns SSome of a program counter. Other states may only be used as

hypotheses and never appear directly in the abstract state space. For instance, we do

not know the precise program counter of a hypothesis describing a return pointer,

but this does not matter, since we are sure to visit all of the concrete program

locations it could stand for.

absPc : Π(α : absState) . {{pc : word

| ∀Γ, s,Γ �S s : α⇒ s.pc = pc}}

The final change to the signature of an abstraction is that, of course, we must now

require that the code is never overwritten. If it were, then we would no longer know

at verification time which instruction was being executed when, since the verifier will

simply look instructions up in prog for this purpose. The progress condition of step

is augmented to require that the destination of any STORE instruction is outside of

the code region, using an auxiliary function instrOk.

progress(α) = ∀(s : Mac.state)(Γ : context),

Γ �S s : α⇒ ∃s′ : Mac.state, s �→Mac s
′

∧ instrOk(s)

To define instrOk, we use the notation |e|s to stand for the result of evaluating

expression e in machine state s, and the operation lookupInstr(s) decodes the

instruction pointed to by s’s program counter in s’s memory.

instrOk(s) =

{
|dst|s �∈ code, lookupInstr(s) = STORE [dst], src

True, otherwise

3.4 TypeSystem

The next stage in the pipeline is the first where a significant decision is made on

structuring verifiers. The TypeSystem component provides support for a standard

approach to structuring abstract state descriptions: considering the value of each

register separately by describing it with a type. This rules out, for instance, direct

verification based on the relational domains common in abstract interpretation.
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We give an overview here of the signature required of type systems. We omit

many of the details, but the pieces we have chosen to include illustrate the key

points.

The basic idea is that we have an abstraction as before that can assume that, in

addition to the custom abstract state that it maintains itself, a type assignment to

each register is available at each step. The abstraction provides the set ty of types,

along with a typing relation �T to define their meanings, plus a subtyping procedure

�T .

ty : Set

�T : context → word→ ty → Prop

�T : Π(τ1 : ty)(τ2 : ty). [[∀Γ, w,
Γ �T w : τ1 ⇒ Γ �T w : τ2]]

It is worth noting that there is no need to go into further detail on exactly how to

allow typing relations to be defined. Coq’s very expressive logic is designed for just

such tasks, and natural-deduction style definitions of type systems via inference rules

are accommodated naturally by the same mechanism for inductive type definitions

that we demonstrated in Section 1.2, where the defined relation is placed in sort

Prop.

We can see how our running example fits this signature, setting ty = type. We first

expand our notion of contexts to include a map from memory locations to types, in

addition to the return pointer it stored before:

context = word× (word→ type)

Now a simple set of typing rules suffices

Γ �T w : int

Γ(w) = τ

Γ �T w : τ ptr Γ �T Γ.retptr : retptr

The notation Γ(w) denotes looking up the type of a memory location in the type map

part of Γ, and Γ.retptr denotes projecting out Γ’s return pointer. We define the state

abstraction relation �S to enforce that every memory location really does have the

type assigned to it. Here we are following the syntactic approach to FPCC (Hamid

et al. 2003) by using these type maps in place of potentially-complicated recursive

conditions in typing rules.

We can also define a simple subtyping relation:

τ �T int τ �T τ

This is “semantic” subtyping in the sense that we are identifying a (possibly strict)

subset of the pairs of types that can be proved compatible in terms of �T , rather

than defining a new syntactic notion.

Naturally, TypeSystem will need a way to determine the types of expressions if

it is to track the register information that an abstraction assumes is available. The
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typeof function that a client abstraction must provide explains how to do this.

typeof : Π(α : absState)(�r : reg→ ty)(e : exp).

{τ : ty | ∀Γ, s,
Γ �S s : α

⇒ (∀r,Γ �T s.regs(r) :�r(r))

⇒ Γ �T |e|s : τ}

Given an abstract state α, a register type assignment�r, and an expression e, typeof

must return a type that describes the value of the expression in any compatible

context Γ and concrete state s. It only needs to work correctly under the assumption

that, in Γ, α accurately describes s and�r accurately describes all of s’s register values.

The typeof function is quite uninteresting for our running example. Omitting proof

components, we have

typeof (α,�r, e) =

{
�r(r), e = register r

int, otherwise

As SAL expressions are side effect-free, we need a separate typeofLoad function

for a memory dereference.

typeofLoad : Π(α : absState)(�r : reg→ ty)(e : exp).

{{τ : ty | ∀Γ, s,
Γ �S s : α

⇒ (∀r,Γ �T s.regs(r) :�r(r))

⇒ Γ �T s(|e|s) : τ}}

Note that typeofLoad’s range is a partial subset type, since not all types are valid

for reading. For our running example, we have the following, using ⊥ to denote

SNone, the failure case:

typeofLoad (α,�r, e) =

{
τ, typeof (α,�r, e) = τ ptr

⊥, otherwise

The full TypeSystem signature also includes an analogue for writes, enforcing that a

“writable pointer” cannot point into program memory and other similar conditions.

A value viewShift provides an important piece of logic that might not be obvious

by analogy from type systems for higher-level languages. At certain points in its

execution (and so in model checking), a program “crosses an abstraction boundary”

which takes a different view of the types of values. A canonical example is a function

call. The stack pointer register may switch from type “pointer to the fifth stack slot

in my frame” to “pointer to the first stack slot in my frame.” In the presence of

type polymorphism via type variables, a register’s type may change from “pointer

to integer” to “pointer to β,” where β is a type variable instantiated to “integer”

for the call. There are many ways of structuring modularity in programs, so it is
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important that the requirements on viewShift be very flexible. Its type is

viewShift : Π(α : absState)(�r : reg→ ty)(i : instr).

{{(α′,�r′) : absState × (reg→ ty)

| ∀Γ, s,
Γ �S s : α

⇒ (∀r,Γ �T s.regs(r) :�r(r))

⇒ ∃Γ′,Γ′ �S s : α′

∧ (∀r,Γ′ �T s.regs(r) : �r′(r))}}

The type expresses that viewShift may provide any new abstract state α′ and register

type assignment �r′ for which there exists some context Γ′ in which α′ and �r′ are

correct whenever α and�r were correct in the original Γ. Another way of thinking of

viewShift is that it is a hook into the generic verifier that makes it possible to “cast”

abstract states whenever a proof can be provided that the cast’s target state is “no

narrower than” the source state.

To illustrate a simple use of viewShift, we extend our running example type system

temporarily with parametric polymorphism:

typevar β

type τ ::= int | τ ptr | retptr | β
context = word× (word→ type)× (typevar→ type)

We might specify the entry point to a polymorphic identity function like this,

where return values are passed through register EAX:

((39, [EAX �→ β,EBX �→ retptr]), {(retptr, [EAX �→ β])})

If the concrete return pointer for a particular call is 92, then the state before

calling the function for type int might be

((88, [EAX �→ int]), {(retptr, [])})

Incorporating the effects of the call instruction, viewShift returns the abstract

state for the function’s entry point. Starting from a context (pc, w, v), we construct a

new context (92, w, [β �→ int]) to justify the equivalence of the old and new abstract

states.

It is worth recalling the setting in which TypeSystem is being used, which is to

support construction of Coq terms to be extracted to OCaml code. �T exists only in

the Prop world, and so it will not survive the extraction process; it is only important

in the proof of correctness of the resulting verifier. The types in ty are manipulated

explicitly at verification time, so those survive extraction intact. �T , typeof , and

viewShift have both computational and logical content. For instance, the extracted

version of �T is a potentially incomplete decision procedure with boolean answers.

The extracted OCaml version of the verifier ends up looking like a standard type

checker. One can think of the Coq implementation as combining a type checker

and a proof of soundness for the type system it uses. There is considerable practical

benefit from developing both pieces in parallel through the use of dependent types.
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3.5 StackTypes

There are a wide variety of interesting type systems worth exploring for verifying

different kinds of programs. At least when using the standard x86 calling conventions,

every one of these type systems needs to worry about keeping track of the types of

stack slots, which registers point to which places in the stack, proper handling

of callee-save registers, and other such annoyances. StackTypes handles all of

these details by providing a functor from a stack-ignorant TypeSystem abstraction

to a TypeSystem abstraction aware of stack and calling conventions. The input

abstraction can focus on the interesting aspects of the new types that it introduces

rather than getting bogged down in the details of stack and calling conventions.

To make this feasible, the input abstraction only needs to provide a few new

elements. First, a region of memory is designated to contain the runtime stack. It is

accompanied with a proof that it has no overlap with the region where the program

is stored.

stack : memoryRegion

stackCodeDisjoint : disjoint(stack , code)

The remaining ingredient is a way of making sure that the custom verification

code of the abstraction will never allow the stack to be overwritten. The checkStore

function is used for this purpose. The verifier StackTypes builds calls checkStore on

an expression that is the target of a STORE instruction to make sure that it will not

evaluate to an address in the stack region.

checkStore : Π(α : absState)(�r : reg→ ty)(e : exp).

[[∀Γ, s,Γ �S s : α

⇒ (∀r,Γ �T s.regs(r) :�r(r))

⇒ |e|s �∈ stack ]]

In our current implementation, the type of checkStore “exposes” the underlying

stack implementation, though the client of StackTypes can avoid worrying too much

about these details through the use of a library of helper functions.

With these ingredients, StackTypes builds a verifier that adds a few new types to

the input abstraction’s set ty . First, there are types Stack i, indicating the ith stack

slot from the beginning of the stack frame. Types for the stack slots are tracked in

another part of abstract states. With this additional information, it is possible to

determine the type of the value lying at a certain offset from the address stored in

a register of Stack i type. There is also a type Saved r for each callee-save register r,

denoting the initial value of r on entry to the current function call. These values will

probably be saved in stack slots, and we will require that each callee-save register

again has its associated Saved type when we return from the function. We know that

we have reached this point when we do an indirect jump to a value of type Retptr ,

where the saved return pointer on the stack is given this type at the entry point to

the function. While we have included an ad-hoc retptr type in our example so far,
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from here on we will let StackTypes add it uniformly to whatever type system we

are considering.

Perhaps surprisingly, StackTypes was the most involved to construct out of the

components that we have listed. The most complicated implementation work dealt

with the view shifts that occur during function calls and returns. Precise, bit-level

proofs about calling conventions end up much more complex than they seem from an

informal understanding. There is definitely room here for better automatic decision

procedures for the theory of fixed-precision integers, as those sorts of proofs made

up a good portion of the work.

We can now look at our running example, minus the ad-hoc retptr type, run

through the StackTypes functor. While we have been using a simple fictitious calling

convention to this point, we are ready now for a more realistic example. Here is

a reasonable state description to apply right after the preamble at the start of a

function from int to int ptr. The general organization is reminiscent of stack-based

typed assembly language (Morrisett et al. 2003).

((81, [ESP �→ Stack 8], [0 �→ int, 4 �→ Retptr , 8 �→ SavedEBX])

{(Retptr , [EAX �→ int ptr,EBX �→ SavedEBX], [ ])})

We follow the x86 C calling convention, though we omit some of the details here

for clarity. On the stack, we have (in order) the function’s argument, the saved return

pointer, and the saved value of register EBX (which is designated as callee-save). The

stack pointer register ESP points to the end of these values. The return hypothesis

tells us that, before returning, the function must have stored the int ptr return value

in EAX and restored EBX to its original value.

To allow us to define checkStore, we need to modify our original typing rules to

preclude ptr-type values that point into the stack:

Γ(w) = τ w �∈ stack

Γ �T w : τ ptr

We as clients of StackTypes do not need to define typing rules for the stack-

related type constructors, because StackTypes adds those to our typing judgment

parametrically. The domain of contexts is expanded similarly to include the concrete

starting address of the current stack frame and a map from callee-save registers to

their initial values. The custom abstract states are extended to record stack frame

length information.

3.6 SimpleFlags

In x86 machine language, there are no instructions that implement conditional test

and jump atomically. Instead, all arithmetic operations set a group of flag registers,

such as Z, to indicate a result of zero; or C, to indicate that a carry occurred. Each

condition, formed from a flag and a boolean value, has a corresponding conditional

jump instruction that jumps to a fixed code location iff that condition is true relative

to the current flag settings. Thus, to properly determine what consequences follow

from the fact that a conditional jump goes a certain way, it is necessary to track the
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relationship of the flags to the other aspects of machine states. Understanding these

jumps is critical for such purposes as tracking pointer nullness and array bounds

checks.

SimpleFlags is a functor that does the hard part of this tracking for an arbitrary

abstraction, feeding its results back to the abstraction through this function:

considerTest : Π(α : absState)(�r : reg→ ty)(co : cond)

(◦ : binop)(e1 e2 : exp)(b : bool),

{{(α′,�r′) : absState × (reg→ ty)

| ∀Γ, s,Γ �S s : α

⇒ (∀r,Γ �T s.regs(r) :�r(r))

⇒ |e1 ◦ e2|cos = b

⇒ ∃Γ′,Γ′ �S s : α′

∧ (∀r,Γ′ �T s.regs(r) : �r′(r))}}

The type of considerTest looks similar to the type of viewShift from TypeSystem.

Its purpose is to update an abstract state to reflect the information that a particular

condition is true. The arguments α and �r are as for viewShift . co names one of

the finite set of conditions that can be tested with conditional jumps. ◦, e1, and

e2 describe the arithmetic operation that was responsible for the current status of

co. Finally, b gives the boolean value of co for this operation, determined from the

result of a conditional jump. The notation |e1 ◦e2|cos denotes the value of co resulting

from evaluating the arithmetic operation e1 ◦ e2 in state s.

Behind the scenes, SimpleFlags works by maintaining in each abstract state a

partial map from flags to arithmetic expressions. The presence of a mapping from

flag f to e1◦e2 means that it is known for sure that the value of f comes from e1◦e2, as

it would be evaluated in the current state. SimpleFlags must be careful to invalidate

a mapping conservatively each time a register that appears in it is modified. At

each conditional jump, SimpleFlags checks to see if the relevant condition’s value is

known based on the flag map. If so, it calls considerTest to form each of the two

abstract successor states, corresponding to the truth and falsehood of the condition.

We can demonstrate the basic operation with another extension of our running

example. We consider the simplified setting where the only flags are Z (zero) and

C (carry). For clarity, we ignore the StackTypes functionality added in the last

subsection and focus instead on registers alone.

We extend our type system with nullness information on pointers:

type τ ::= int | τ ptr | τ ptr? | retptr

τ ptr? is the new type standing for a possibly-null pointer to τ.

Now consider the following program state.

((81, [EAX �→ int ptr?], []), {(Retptr , [], [])})



Modular development of certified program verifiers with a proof assistant 635

We omit stack slot type information and include flag information in its place. Here,

EAX is a possibly-null pointer to int, and nothing is known about the values of the

flags.

If the next instruction is CMP 0, EAX, which compares the value in EAX against

the constant 0 to set the flags, we would transition to a state like

((85, [EAX �→ int ptr?], [Z �→ EAX− 0, C �→ EAX− 0]), {(Retptr , [], [])})

The state describes each flag as arising from the expression EAX − 0 because

comparison on x86 processors is modeled as performing a subtraction only for its

side effects of setting flags. If after this we have a JCC Z, 123 instruction, two

successor states are produced. When the Z flag is true, we get the successor

((123, [EAX �→ int ptr?], [Z �→ EAX− 0, C �→ EAX− 0]), {(Retptr , [], [])})

When Z is false, we get

((89, [EAX �→ int ptr], [Z �→ EAX− 0, C �→ EAX− 0]), {(Retptr , [], [])})

While we describe the choice here as though the program verifier determines which

branch is taken, it actually conservatively queues both successors for exploration.

How were these successors generated? The considerTest function provided by our

running example must recognize the special case where co = (Z, true), ◦ = −, e1 is

some register r, e2 = 0, b = false, and �r(r) = τ ptr? for some τ. In other words, we

have verified that some register of type τ ptr? is nonzero. In such a case, we promote

r to type τ ptr in the returned �r′.

If the instruction at location 123 is MOV EAX, 3, which stores the constant 3 in

register EAX, then the state that will result is

((123, [EAX �→ int], []), {(Retptr , [], [])})

The custom code for our example is not involved in this transition. Instead,

SimpleFlags sees that the value of a register mentioned in all of the known flag

states has changed, and so it erases all of that flag information.

After reading these last two subsections, the reader may be wondering why

StackTypes and SimpleFlags received this relative order. Indeed, neither depends on

the other, and this is the one case in the component pipeline where a reordering

would have been acceptable.

3.7 WeakUpdate

We have now built up enough machinery to get down to the interesting part of a

type-based verifier, designing the type system. WeakUpdate provides a functor for

building verifiers from type systems of a particular common kind. These are type

systems that are based on weak update of memory locations, where each accessible

memory cell has an associated type that does not change during the course of a

program run. A cell may only be overwritten with a value of its assigned type.

Of course, with realistic language implementations, storage will be reused, perhaps

after being reclaimed by a garbage collector. Though handling storage reclamation
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is beyond the scope of this work, we believe that the proper approach is to verify

each program with respect to an abstract semantics where storage is never reclaimed,

separately verify a garbage collector in terms of the true semantics, and combine

the results via a suitable composition theorem.

We will now present the signature of a WeakUpdate type system piece by piece.

In contrast to the signatures given for the previous components, this signature does

not extend its predecessors. With one small exception that we will describe below,

the elements that we will list are all that a type system designer needs to provide

to produce a working verifier with a proof of soundness. It is also true that, while

we have simplified the presentation of the signatures in previous subsections, this

signature is a literal transcription of most of the requirements imposed by the real

implementation.

Like for the TypeSystem module, a WeakUpdate type system is based around a

set ty of types, with a typing relation �T and a subtyping procedure �T .

ty : Set

context = word→ option ty

�T : context → word→ ty → Prop

�T : Π(τ1 : ty)(τ2 : ty). [[∀Γ, w,
Γ �T w : τ1 ⇒ Γ �T w : τ2]]

An important difference is that here we hard-code contexts to be partial maps

from memory addresses to types. Other standard context elements from previous

examples, such as the saved return pointer, will now be handled internally by the

WeakUpdate functor. As WeakUpdate is only intended as one simple example of

a terminal verification component, it does not support polymorphism in the style

found in some earlier examples.

A few simple procedures suffice to plug into a generic type-checker for machine

code:

typeofConst : Π(w : word).{τ : ty | ∀Γ,Γ �T w : τ}

typeofArith : Π(◦ : binop)(τ1 τ2 : ty).{τ : ty

| ∀Γ, w1, w2,Γ �T w1 : τ1

⇒ Γ �T w2 : τ2

⇒ Γ �T w1 ◦ w2 : τ}

typeofCell : Π(τ : ty).{{τ′ : ty | ∀Γ, w,
Γ �T w : τ

⇒ Γ(w) = Some τ′}}

The typeofConst function gives a type for every constant machine word value;

typeofArith gives a formula for calculating the type of an arithmetic operation in

terms of the types of its operands; and typeofCell provides a function from a pointer
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type to the type of any values that it may point to, returning SNone for nonpointer

types.

The final element is a way of taking advantage of knowledge of conditional jump

results, based behind the scenes on SimpleFlags:

considerNeq : Π(τ : ty)(w : word).{τ′ : ty | ∀Γ, w′,
Γ �T w′ : τ

⇒ w′ �= w ⇒ Γ �T w′ : τ′}

When the result of a conditional jump implies that some value of type τ is definitely

not equal to a word w, considerNeq is called with τ and w to update the type of that

value to reflect this. A canonical example of use of considerNeq is with a nullness

check on a pointer, to upgrade its type from “pointer” to “non-null pointer.”

The two significant omissions from this signature description are functions very

similar to considerNeq . They consider the cases where not a value itself but the value

it points to in memory is determined to be equal to or not equal to a constant. A

canonical example of usage of these functions is in compilation of case analysis over

algebraic datatypes.

The proper use by WeakUpdate of these three functions requires some quite

nontrivial bookkeeping. WeakUpdate performs a very simple kind of online points-

to analysis to keep up-to-date on which values particular tests provide information

on. The most complicated relationship tracked by the current implementation is

one such as: TMP1 holds the result of dereferencing EAX, which holds a value read

from stack slot 6. If stack slot 6 is associated with a local variable of a sum type,

then a comparison of TMP1 with some potential sum tag should be used to update

the types of both EAX and stack slot 6 to rule out some branches of the sum. As

for SimpleFlags, WeakUpdate must be careful to erase a saved relationship when it

cannot be sure that a modification to a register or to memory preserves it.

Happily, these complications need not concern a client of WeakUpdate. In the

next section, we illustrate this with a simple use of it to construct a type system

handling some standard types for describing linked, heap-allocated structures.

First, we will give a quick overview of how our running example can be expressed

succinctly as a WeakUpdate type system, ignoring proof components as in previous

sections. We add a singleton integer type to our type system, for reasons that should

become clear shortly.

type τ ::= int | τ ptr | τ ptr? | S(n)

We use these typing rules:

Γ �T w : int Γ �T w : S(w)

Γ(w) = τ w �∈ code ∪ stack

Γ �T w : τ ptr Γ �T 0 : τ ptr?

Γ(w) = τ w �∈ code ∪ stack

Γ �T w : τ ptr?

We can use this simple subtyping relation:

τ �T int τ �T τ S(0) �T τ ptr? τ ptr �T τ ptr?
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The pieces we need to plug into the extensible type-checker are

typeofConst(w) = S(w)

typeofArith(◦, τ1, τ2) = int

typeofCell (τ) =

{
τ′, τ = τ′ ptr

⊥, otherwise

considerNeq(τ, w) =

{
τ′ ptr, τ = τ′ ptr? and w = 0

τ, otherwise

. . . and that is about the entirety of a formal description of this verifier. We have

omitted proofs in this summary, but an actual implementation of this verifier

(included as an example with the software distribution) is only about 150 lines of Coq

code, most of it concerned with filling in trivial proofs for default implementations

of the various operations. The end result is a certified verifier that runs on real x86

binaries.

3.8 Architecture summary

We review the overall pipeline by summarizing it again, this time in top-down order:

1. WeakUpdate: High-level type system description

2. SimpleFlags: Add instrumentation tracking correlations between conditional

flags and register values.

3. StackTypes: Add standard types modeling stack and calling conventions.

4. TypeSystem: Add tracking of register types by plugging user-specified handlers

into a generic type checker.

5. FixedCode: Add enforcement of immutability of the program code area in

memory.

6. Reduction: Convert from a verifier for a simple RISC language to a verifier

for x86 assembly language.

7. ModelCheck: Implement the actual state-space traversal.

The input to any stage involves both algorithmic pieces and proof pieces. A client

of the library need not concern himself with the interfaces of components that come

later in this list than the one he chooses to use as a starting point. Each component

assembles new executable verifier code and new soundness proofs from those passed

to it as input, with the composition of the components in any suffix of this list

spanning the entire corresponding abstraction gap.

4 Case study: A verifier for algebraic datatypes

In this section, we will present some highlights of the Coq implementation of

the MemoryTypes verifier, based on the library components from the last section.

Recall that this verifier is designed to handle programs that use algebraic datatypes.

For clarity, we have made some simplifications from the real Coq code, especially

regarding dependent pattern matching.

MemoryTypes is implemented simply using WeakUpdate, the last component

described in the last section. All we need to do is provide an implementation of
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WeakUpdate’s input signature, which we described in Section 3.7. The first step is

to define the language of types, which includes the standard low-level types used to

implement algebraic datatypes.

Definition var := nat,

Inductive ty : Set :=

| Constant : int32 -> ty

| Product : list ty -> ty

| Sum : ty -> ty -> ty

| Var : var -> ty

| Recursive : var -> ty -> ty.

The set ty of types includes the usual elements; namely, constructors for building

product, sum, and recursive types in the usual ways. There are also Constant types

for sum tags of known values and Var types to represent the bound variables of

recursive types.

Next we must define the typing relation:

Inductive hasTy : context -> int32 -> ty -> Prop :=

| HT_Constant : forall ctx v,

hasTy ctx v (Constant v)

| HT_Unit : forall ctx v,

hasTy ctx v (Product nil)

| HT_Product : forall ctx v t ts,

ctx v = Some t

-> hasTy ctx (v + 4) (Product ts)

-> hasTy ctx v (Product (t :: ts))

| HT_Suml : forall ctx v t1 t2,

hasTy ctx v (Product (Constant 0 :: t1 :: nil))

-> hasTy ctx v (Sum t1 t2)

| HT_Sumr : forall ctx v t1 t2,

hasTy ctx v (Product (Constant 1 :: t2 :: nil))

-> hasTy ctx v (Sum t1 t2)

| HT_Recursive : forall ctx x t v,

hasTy ctx v (subst x (Recursive x t) t)

-> hasTy ctx v (Recursive x t).

The typing relation hasTy is defined in terms of its inference rules in the standard

way. The same inductive definition mechanism that is used for standard algebraic

datatypes works just as naturally for defining judgments. We have that any word

has the corresponding constant type; any word has the empty product type; a word

has a nonempty product type if it points to a value with the first type in the product,

and the following word in memory agrees with the remainder of the product; a word

has a sum type if it has type Constant(i)× t where t corresponds to the ith element

of the sum; and a word has a recursive type if it has the type obtained by unrolling

the recursion one level.
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Next we define the subtyping procedure:

Definition subTy : forall (t1 t2 : ty),

[[forall ctx v, hasTy ctx v t1 -> hasTy ctx v t2]].

intros t1 t2.

refine (subTy’ t1 t2

|| subTy’ (tryUnrollingOnce t1) t2

|| subTy’ t1 (tryUnrollingOnce t2));....

Qed.

The top-level procedure uses a subroutine subTy’ to do most of the work. subTy’

has no special handling of recursive types. Instead, subTy tries a heuristic set of

possible unrollings of recursive types, calling subTy’ on each result and concluding

that the subtyping relation holds if any of these calls succeeds. It is the responsibility

of a certifying compiler targeting this verifier to emit enough typing annotations

that no more sophisticated subtyping relation is required, effectively splitting a

multi-unrolling check into several simpler checks.

The definition of subTy’ proceeds in the standard way, defining a recursive

function with holes left to be filled in with tactic-based proof search:

Definition subTy’ : forall (t1 t2 : ty),

[[forall ctx v, hasTy ctx v t1 -> hasTy ctx v t2]].

refine (fix subTy’ (t1 t2 : ty) {struct t2}

: [[forall ctx v,

hasTy ctx v t1 -> hasTy ctx v t2]] :=

match (t1, t2) with

|...

end);....

Qed.

The pattern matching cases have the expected implementations. For one example,

consider the case for subtyping between constant types:

| (Constant n1, Constant n2) =>

pfEq <- int32_eq n1 n2;

Yes

Constant types are only compatible if their constants are equal. We use a richly-

typed integer comparison procedure int32 eq with our monadic notation. The proof

pfEq that results from a successful equality test will be used to discharge the proof

obligation arising for the correctness of this case.

Another example case is that for comparing a product type of the proper form to

a sum type:

| (Product (Constant n :: t :: nil), Sum t1 t2) =>

(int32_eq n 0 && ty_eq t t1)

|| (int32_eq n 1 && ty_eq t t2)

A product type is only compatible with a sum type if the product starts with a

constant tag identifying a branch of that sum and the next field of the product
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draws its type from the same sum branch. Here, the standard boolean operators are

custom “macro” syntax defined to do proper threading of known facts through the

expression to the points triggering proof obligations.

Omitted from this discussion are the typeof* functions and the consider*

functions, which are used to update sum types based on conditional jump results.

All of these work as expected, with nothing especially enlightening about their

implementations. The other big omission is the specification of proof scripts, or

sequences of tactics, that are required to describe strategies for proof construction.

In many cases, these proof scripts are atomic calls to automating tactics, but in

some cases they are longer than would be desired. Improving that aspect of verifier

construction is a fruitful area for future work.

Nonetheless, the entire MemoryTypes implementation is only about 600 lines long.

We were able to develop it in less than a day of work. Thanks to the common library

infrastructure, the reward for this modest effort is a verifier with a rigorous soundness

theorem with respect to the real bit-level semantics of the target machine. Thanks

to the support described below in Section 5.2, the verifier uses the native types of

the host processor in place of their first-principles recursively-defined counterparts

in Coq. Thus, the run-time behavior and performance of the result are comparable

to those of idiomatic OCaml programs, though the idioms used by the generated

OCaml code can be bizarre in places and involve unchecked casts. We do not have

meaningful performance benchmark results to share, since coming up with example

inputs was time consuming without the help of a certifying compiler. However, the

case study verifier works in roughly the same way as the Coq-based verifier whose

performance we measured in past work (Chang et al. 2006), with the additional

benefit of using native processor types where appropriate, so it seems reasonable

to assume that a production-quality version could hold its own against uncertified

analysis tools that use similar algorithms.

5 Implementation

The source code and documentation for the system described in this paper can be

obtained from∗

http://proofos.sourceforge.net/

The implementation is broken up into a number of separately-usable components:

a library of Coq and OCaml code dealing with semantics and parsing of machine

code in general and x86 machine code in particular; a Coq extension in support of

extracting programs that use native integer types; and the certified verifiers library

proper, including trusted code formalizing the problem setting and the collection of

untrusted verification components highlighted in Section 3.

5.1 The Asm library

When we began this project, we set out to survey the different choices of pre-

packaged libraries formalizing useful subsets of x86 assembly language. We were

∗ Also available at http://journals.cambridge.org/issue Journaloffunctionalprogramming/
Vol18No5-6.
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quite surprised to find that, not only was there no such package available for our

chosen proof assistant, but the situation seemed to be the same for all other choices

of tools, as well! Since this kind of formalization is key to the project, we created

our own, designing it as a library useful in its own right, called Asm.

Some of our choices veer away from formality and small trusted code bases in

favor of practicality. The library deals with a small subset of x86 machine language

that covers the instructions generated by GCC for the examples that we have tried.

It defines in both Coq and OCaml a language of abstract syntax trees for machine

code programs. There is a Coq operational semantics for these ASTs, along with an

OCaml parser from real x86 binaries to ASTs. The extracted Coq verifiers use the

OCaml parser as a “foreign function,” sacrificing some “free” formal guarantees. For

instance, the parser uses imperative code for file IO to initialize a global variable with

program data. Coq’s formal semantics contains no account of such phenomena, but

we believe that no unsoundness is introduced because all OCaml “foreign functions”

are observationally pure over single executions. In any case, some worthwhile future

work would be to move more of the process into genuine Coq code.

The Asm library contains a few other related pieces that we were not able to

find elsewhere, including formalizations of different fixed-width bitvector arithmetic

operations and their properties. Altogether, the Coq code size tallies for Asm

run to about 10,000 lines in a generic utility library, 1,000 to formalize bitvectors

and fixed-precision arithmetic, and 1,000 to formalize a subset of x86 machine

code.

5.2 Proof Accelerator

Different data structures make sense for rigorous formalization than for efficient

execution. For instance, Coq’s standard library defines natural numbers with the

standard Peano-style recursive type, effectively representing them in unary. This

provides a ready and effective induction principle, and issues of representation

efficiency do not come into play when we are proving generic properties of the

naturals and not examining particular individuals. However, when we extract to

OCaml programs that use natural numbers and run them on particular inputs,

we find ourselves in the unusual situation that basic arithmetic operations on

natural numbers are a primary performance bottleneck. We want to reason about

mathematical natural numbers but represent them at run-time in a way that takes

advantage of built-in processor capabilities. Similar concerns apply for the fixed-

width bitvector types that abound in any project working with machine language,

though there we only hope for constant-factor performance improvements by using

native types in our verifiers.

We have developed a Coq extension that we call “Proof Accelerator” which

achieves this by modifying the program extraction process in a very simple way.

Custom type mappings are already supported by Coq, so we request that nat be

mapped to the OCaml infinite-precision integer type (since the potential for silent

overflow would invalidate formal proofs), the Coq type of 32-bit words to the native

32-bit word type, etc. Using the same mechanism, we can identify some common
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functions (e.g., addition) that should be extracted to use their standard OCaml

implementations.

This leaves one more important class of modifications that Coq does not support

out of the box. In particular, we need to rewrite uses of pattern matching. We

have replaced inductive types with what are effectively abstract types, like native

integer types. Proof Accelerator rewrites pattern matches using when guards and

local bindings. The results should have the same semantics as the originals.

The whole approach and implementation are quite informal. The practical effect

of this implementation choice is that all of the Proof Accelerator must be counted

among the trusted code base, along with the Coq proof checker and extractor and

the OCaml compiler. An interesting future project would be to look at a more

general and rigorous system of proof-preserving transformations that replace one

implementation of an abstract data type with another.

5.3 Certified Verifiers library

We have already gone into detail in the previous sections on the content of the

certified verifiers library. The different components combine to take up about 7,000

lines of Coq code, highlighting the effectiveness of reuse, as only 700 lines were

needed for the last section’s case study, with about 150 of them either reasonable

candidates for relocation to the general utility library or unavoidable boilerplate

that would not grow with verifier complexity.

Most of the resulting implementation is Coq code which is extracted to ML. For

simplicity, we chose to implement in OCaml some pieces that must inevitably belong

to the trusted code base, along the lines of the OCaml instruction decoding in the

Asm library. There is also some OCaml code that has no effect on soundness; for

instance, to read metadata from a binary and pass it to the extracted verifier as

suggested preconditions for the basic blocks. Bugs in this metadata parsing can hurt

completeness, but they can never lead to incorrect acceptance of an unsafe program.

It would even be possible to replace this code with a complicated abstract interpreter

that infers much of what is currently attached explicitly, and the results could be

fed to the unchanged extracted verifier with the same soundness guarantees. (This,

of course, is modulo the lack of formality that we accept when interfacing Coq and

OCaml code.)

We can summarize the big picture of what these implementation pieces give us.

A final verifier can be checked for soundness by running the Coq Check command

on its entry point function and verifying that the type that is printed matches

the Π(p : program). [[safe(load(p))]] type we gave in Section 2.3. The “backwards

slice” of definitions that this type depends on constitutes the trusted part of the

development, and it contains only small parts of the Asm library and brief definitions

of abstract machines and safety from the certified verifiers library.

6 Related work

The verifiers produced in this project are used in the setting of proof-carrying

code. Relative to our past work (Chang et al. 2006) on certified verifiers, our new



644 A. Chlipala

contribution here is first, to suggest developing verifiers with Coq in the first place,

instead of extracting verification conditions about the more traditional programs;

and second, to report on experience in the effective construction of such verifiers

through the use of dependent types and reusable components. Several projects (Appel

2001; Hamid et al. 2003; Crary 2003) consider in a PCC setting proofs about

machine code from first principles, but they focus on proof theoretical issues rather

than the pragmatics of constructing proofs and verifying programs under realistic

time constraints. Our certified verifiers approach allows the construction of verifiers

with strong guarantees that nonetheless perform well enough for real deployment.

Wu et al. (2003) tackle the same problem based on logic programming, but they

provide neither evidence of acceptable scalability of the results nor guidance on the

effective engineering of verifiers as logic programs. We showed in our initial work on

certified verifiers (Chang et al. 2006) that we can achieve verification times an order

of magnitude better than both those of Wu et al. and those from our past work

on the Open Verifier (Chang et al. 2005). At the same time, the prototype verifier

that we used for these measurements stayed within a factor of 2 of the running time

of the traditional, uncertified Typed Assembly Language checker (Morrisett et al.

1999b).

The architecture that we have presented is only a first step towards a general

and practical system. Many Foundational PCC projects have considered in a proof

theoretical setting ideas that could profitably be used in concert with certified

verifiers. For instance, the component library that we have described only supports

whole-program verification. In contrast, the progression of verification frameworks

that culminates in OCAP (Feng et al. 2007) provides a rich setting for modular

verification of systems whose pieces are certified using different program logics. It

seems natural to consider the adaptation of this idea to cooperative verification using

different certified verifiers. The technology of certified verifiers also has a good way

to go to “catch up” with the FPCC world by common metrics like sophistication of

language features verified and minimality of the trusted code base.

Past projects have considered using proof assistants to develop executable ab-

stract interpreters (Cachera et al. 2005; Besson et al. 2006) and Java bytecode

verifiers (Klein & Nipkow 2001; Bertot 2001). Our work differs in dealing with

machine code, which justifies the kind of layered component approach that we

have described, and our work focuses more on accommodating a wide variety

of verification approaches without requiring the development of too much code

irrelevant to the main new idea of a technique. Our work has much in common

with the CompCert project (Leroy 2006b), which works towards a fully certified C

compiler developed in Coq. The main differences are our use of dependent types

to structure the “program” part of a development and our emphasis on reusable

library components.

The Rhodium project (Lerner et al. 2005) also deals with the construction of

certified program analyses. By requiring that analyses be stated in a very limited

Prolog-like language, Rhodium makes it possible to use an automated first-order

theorem prover to discharge all proof obligations. This approach is very effective

for the traditional compiler optimizations that the authors target, but it does not
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seem to scale to the kinds of analyses associated with FPCC. For instance, proofs

about type systems like the one demonstrated here are subtle enough that human

control of the proving process seems necessary, justifying our choice of a much

richer analysis development environment.

We have already mentioned the Epigram (McBride & McKinna 2004), ATS

(Chen & Xi 2005), and RSP (Westbrook et al. 2005) languages that attempt to inject

elements of the approach behind Coq program extraction into a more practical

programming setting. We believe that we have taken good advantage of many

of Coq’s mature features for proof organization and automation in ways that

would have been significantly harder with these newer languages, which focus

more on traditional programming features and their integration with novel proof

manipulations. It is also true that much of the specifics of our approach to designing

and implementing certified verifiers is just as interesting transposed to the contexts

of those languages, and the ideas are of independent interest to the PCC community.

7 Conclusion

There has been much interest lately in enriching the expressiveness of static type

systems to capture higher-level properties. Based on the results we have reported

here, we hope we have provided some evidence that technology that has been

found in computer proof assistants for some time is actually already sufficient to

support this kind of programming for nontoy problems. While recent proposals

in this space focus on integrating proofs and dependent types with imperativity

and other “impure” language features, we were able to construct a significant and

reasonably efficient certified program verification tool without using such features.

In other words, the advantages of pure functional programming are only amplified

when applied in a setting based on rigorous logical proofs, and the strengths of

functional programming and type theory are sufficient to support the construction

of a program with a formal proof of a very detailed full correctness property. More

and more convergence between programming and proving tools seems inevitable in

the near future, and we think that working out the details of this convergence is a

research direction with the potential for serious and lasting impact.
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