
Probability from Possibility: Probabilistic
Confidentiality for Storage Systems Under

Nondeterminism
Atalay Mert Ileri
Computer Science

Kansas State University
Manhattan, USA
atalay@ksu.edu

Nickolai Zeldovich
CSAIL

MIT
Cambridge, USA

nickolai@csail.mit.edu

Adam Chlipala
CSAIL

MIT
Cambridge, USA

adamc@csail.mit.edu

Frans Kaashoek
CSAIL

MIT
Cambridge, USA
kaashoek@mit.edu

Abstract—Nondeterminism, such as system crashes, poses an
important challenge to the security of storage systems by making
leakages possible through secret-dependent result probabilities.
This paper proposes a new possibilistic confidentiality specifica-
tion prohibiting such probabilistic leakages. Our specification
is preserved under simulation to enable modularity and is
sequentially compositional. We implemented our specification in a
framework that contains structures to implement storage systems
and prove their confidentiality in a modular fashion. On top of
our framework, we implemented the first crash-safe file system
with a termination-insensitive version of our specification and
machine-checkable confidentiality proofs. Our evaluation shows
that proving confidentiality incurs 9.2x proof overhead per line
of implementation code. Both our framework and file system
are implemented in Coq and extracted to Haskell to obtain an
executable artifact.

Index Terms—formal methods, formal verification, nondeter-
minism, confidentiality, security, hyperproperties, storage sys-
tems, probabilistic security, Coq

I. INTRODUCTION

Storage systems are an integral part of many software
systems we use daily. Users expect their data stored in such
systems to stay secret. This paper investigates a key con-
fidentiality challenge surrounding storage-system verification
under nondeterminism and presents a solution. We will present
the challenge, describe our threat model, and explain our
contributions.

A. Probabilistic leakage

In addition to the standard challenges like confidentiality
being a hyperproperty and the complexity of storage systems,
nondeterminism poses unique challenges in specifying and
proving confidentiality. This section will focus on a challenge
arising from nondeterminism in implementation.

The challenge arises because an adversary may infer the
secret information stored in the system if the distribution of
the result of a function is dependent on a secret. We call this
behavior a probabilistic leakage. Such a vulnerability may

This research was supported by NSF awards CNS-1563763 and CNS-
1812522, and by Google.

Secret bit Output % 0 Output % 1
0 75% 25%
1 25% 75%

Fig. 2: Distributions of return values for each state.

exist even when the possibility of observing a particular result
is independent of the secret. Figure 1 shows a simple example
of this challenge.

maybe-leak() :=
if (get_random_bit() == 1)
return secret_bit

else
return get_random_bit()

Fig. 1: Example program that leaks information via result
probabilities.

If we assume that get_random_bit() outputs 0 or 1 with
equal probability, then this code leaks the secret bit 50% of
the time and outputs a random bit 50% of the time. It is also
important to note that it can output 0 or 1 independently of the
secret value. Therefore, by observing a single return value, an
adversary cannot infer the value of the secret bit with 100%
certainty. However, the probabilities of the output values in
Figure 2 show that they correlate with the value of the secret
bit. Any adversary aware of this behavior can infer the value
of the secret bit with a certain confidence.

These types of vulnerabilities are not limited to the usage
of randomization. They also manifest themselves when other
random events can affect the system’s behavior. For example,
in storage systems, a source of randomness comes from the
possibility of a system crash at any execution point. In the real
world, at any point in time, there is a certain probability of the
system crashing. Moreover, this probability depends on many
complex factors that make it hard to estimate precisely. Mod-
eling crashes as nondeterministic events instead of random
ones can circumvent this hardship. However, such a modeling

choice does not change the fact that an unknown probability is
associated with each nondeterministic event’s materialization.
Since the probabilities are unknown, a technique that addresses
these vulnerabilities should work regardless of the distribution.

B. Threat Model

Our goal in verifying a storage system is to ensure the
absence of bugs in its implementation that can compromise the
confidentiality of user data. This includes a range of potential
issues: for example, a file system with incorrect or missing
permission checks might allow an adversary to directly access
confidential data; a bug in crash-recovery code could result in
one user’s files being corrupted with another user’s data after
a crash, as was the case in ext4 [17], or could preferentially
commit or abort in-progress operations depending on the
contents of confidential files, when using checksum logging
such as in ext4 [19], [32]; a bug in a de-duplicating file system
could leak data through exposed reference counts to shared
data blocks, etc.

We would like to consider the developer well-meaning
but error-prone and capable of inadvertently introducing ex-
ploitable vulnerabilities if left to their own devices. To this
end, we would like to have confidence that the storage system
is secure purely based on the storage system’s confidentiality
specification if it is proven that it satisfies the specification. In
other words, our goal is to show that an adversary with the
capabilities within our threat model cannot obtain confidential
data from any implementation that satisfies our specifications.

We adopt a threat model where the adversary can examine
the source code and run an application on top of the storage
system as one of its users. The application is limited to in-
teracting with the storage system through its specified storage
API. As a result, the adversary cannot interact with the system
after a crash until recovery is completed.

Our threat model focuses on proving that the storage-system
implementation has no confidentiality vulnerabilities rather
than proving the absence of vulnerabilities in the environment
outside the storage system. Thus, we assume that our model
of the storage hardware’s operation is correct and the adver-
sary does not have physical access to the hardware. We are
not concerned with bugs in unverified software or hardware
outside the storage system or users mounting malicious disk
images. We prove that an initialization process produces a
correct image.

One of the limitations of our formalization is that it does not
model execution time; as a result, our threat model assumes
that the adversary does not exploit timing channels. We believe
this is a reasonable trade-off, given that our actual goal is
dealing with unintentional mistakes in the storage system
implementation. We leave extending the execution model to
be timing-sensitive to future work.

C. Contributions

This paper has four main contributions listed below:

∙ RDNI, a possibilistic confidentiality specification incor-
porating crash-reboot-recovery processes that provides
probabilistic confidentiality guarantees.

∙ A metatheory for transferring RDNI through abstrac-
tions, including modified refinement and simulation def-
initions.

∙ ConFrm, a framework for specifying and proving con-
fidentiality of storage systems with RDNI specifications.
ConFrm implements RDNI and its metatheory and sup-
ports implementing systems as layers of abstractions,
defining refinements, and proving simulations.

∙ ConFs, the first crash-safe file system with a termination-
insensitive RDNI specification accompanied with a
machine-checked confidentiality proof. ConFs is imple-
mented in ConFrm.

The source code of ConFrm and ConFs is publicly available
at https://github.com/Atalay-Ileri/ConFrm.

II. PRELIMINARIES

Our computational model is called an oraclized system. An
oraclized system is a tuple ⟨O,U,S,P,R, 𝑒𝑥𝑒𝑐⟩ where O is a
set of oracles, U is a set of users, S is a set of states, P is a set
of programs, R is a set of results, and 𝑒𝑥𝑒𝑐 is a relation defined
over O ×U × S × P × S ×R which represents operational
semantics. (𝑜, 𝑢, 𝑠, 𝑝, 𝑠′, 𝑟) ∈ 𝑒𝑥𝑒𝑐 means that when user 𝑢
runs program 𝑝 from state 𝑠 with oracle 𝑜, the end state is
𝑠′ and the result is 𝑟. We say that an oracle 𝑜 leads to an
execution of program 𝑝 from a start state 𝑠 for user 𝑢 if there is
a final state 𝑠′ and a result 𝑟 such that (𝑜, 𝑢, 𝑠, 𝑝, 𝑠′, 𝑟) ∈ 𝑒𝑥𝑒𝑐.

Throughout the paper, we will treat relations as sets of tuples
and write 𝑆(𝑖1, . . . , 𝑖𝑛) to indicate (𝑖1, . . . , 𝑖𝑛) ∈ 𝑆 for a set
𝑆. We will also leave the oraclized system implicit in our
definitions to improve readability.

One crucial requirement for our oraclized systems is relative
determinism. Relative determinism states that the oracle must
capture all the nondeterminism in the system. This is ensured
by having each oracle lead to at most one execution for
any program executed by any user from any starting state.
Formally, our models must satisfy the following condition to
achieve this:

∀ 𝑜 𝑢 𝑠 𝑝. |{(𝑠′, 𝑟)| 𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠, 𝑝, 𝑠′, 𝑟)}| ≤ 1

We want to clarify that programs in our model are pro-
cedures with their input arguments. For example, in this
formalism, the program that writes 0 to the disk is considered
different from the program that writes 1 to the disk, even
though they may be using the same implementation. One
side effect of this choice is that our definitions must be over
two programs to reason about the same implementation with
different input arguments. We decided to use this formalism
to align with our Coq formalization.

We define confidentiality as state indistinguishability. The
intuition behind this treatment is that if a user cannot access
confidential data, they can’t distinguish two states that differ
only in what is confidential to them. Another way to phrase

https://github.com/Atalay-Ileri/ConFrm

this view is that two states should look and behave the same
to a user if they differ only in the confidential data.

We formalize state indistinguishability as a family of equiv-
alence relations parameterized by a user, denoted as 𝑒𝑞𝑣𝑢. The
parameterization allows us to model systems where confiden-
tial information differs for different users. These equivalence
relations implicitly determine what is confidential. Any part
of the state that can change without breaking the equivalence
is considered confidential for that user.

We model the probability of a nondeterministic event hap-
pening in real life, which we call materializing, as a family of
probability distributions over oracles. However, some oracles
may not be able to materialize for every program or every user.
For example, a system may model crashes during privileged
execution differently from the crashes from ordinary user
executions by using different oracles. In that case, the oracle
for a crash during privileged execution cannot materialize
during the execution for an ordinary user. To accommodate
these distinctions, our family of distributions is parameterized
by a (user, state, program) tuple. We denote such distributions
with 𝑋(𝑢,𝑠,𝑝).

Let 𝑋(𝑢,𝑠,𝑝) be a family of probability distributions over
O. We say 𝑋 is compatible with an oraclised system 𝑆 if it
assigns nonzero probability to an oracle whenever that oracle
leads to an execution of 𝑝 from 𝑠 for 𝑢, and vice versa.
Compatibility captures the fact that only the oracles that lead
to an execution have a positive probability of materializing
and expressed formally as

Compatible (𝑋) :=
∀ 𝑜 𝑢 𝑠 𝑝.
𝑋(𝑢,𝑠,𝑝)(𝑜) > 0↔ ∃ 𝑠′ 𝑟, 𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠, 𝑝, 𝑠′, 𝑟)

We say that 𝑋 is invariant for user 𝑢 and programs 𝑝1
and 𝑝2 under a family of equivalence relations 𝑒𝑞𝑣 if the
distributions don’t change between equivalent states. Formally,

Invariant (𝑋,𝑢, 𝑝1, 𝑝2, 𝑒𝑞𝑣) :=
∀ 𝑠1 𝑠2. 𝑒𝑞𝑣(𝑢, 𝑠1, 𝑠2)→ 𝑋(𝑢,𝑠1,𝑝1) = 𝑋(𝑢,𝑠2,𝑝2)

An invariant distribution under a family of equivalence
relations can be interpreted as materialization probability being
independent of confidential data since equivalence determines
confidentiality.

We define the probability of observing a particular result
from a (𝑢, 𝑠, 𝑝) tuple as the total probability of materialization
of oracles that lead to executions with that result. Formally,
given an oraclised system 𝑆 and a compatible distribution 𝑋 ,
we can define a family of result distributions 𝑋R

(𝑢,𝑠,𝑝)(𝑟) as

𝑋R
(𝑢,𝑠,𝑝)(𝑟) =

∑︁
𝑜∈{𝑜′ | ∃ 𝑠′, 𝑒𝑥𝑒𝑐(𝑜′,𝑢,𝑠,𝑝,𝑠′,𝑟)}

𝑋(𝑢,𝑠,𝑝)(𝑜)

Note that 𝑋’s compatibility combined with the relative-
determinism condition ensures that each 𝑋R

(𝑢,𝑠,𝑝) is a prob-
ability distribution over results.

Finally, we define probabilistic leakage in oraclized system
𝑆 for programs 𝑝1 and 𝑝2 under a family of equivalence
relations 𝑒𝑞𝑣 as the existence of a compatible invariant dis-
tribution and two equivalent states for a user where result

Return Values
Generated Bits Secret = 0 Secret = 1

0, 0 0 0
0, 1 1 1

1 0 1

Fig. 3: Possible executions of maybe-leak

Matching-execs (𝑢, 𝑝1, 𝑝2, 𝑒𝑞𝑣) :=
∀ 𝑜 𝑠1 𝑠2 𝑠′1 𝑟.
𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠1, 𝑝1, 𝑠

′
1, 𝑟)→

𝑒𝑞𝑣(𝑢, 𝑠1, 𝑠2)→
∃ 𝑠′2. 𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠2, 𝑝2, 𝑠

′
2, 𝑟)

Fig. 4: Formalization of matching-executions property.

distributions are different. We formalized probabilistic leakage
for an oraclized system 𝑆 as follows:

Probabilistic-leakage (𝑢, 𝑝1, 𝑝2, 𝑒𝑞𝑣) :=
∃𝑋 𝑠1 𝑠2.

Compatible (𝑋) ∧
Invariant (𝑋,𝑢, 𝑝1, 𝑝2, 𝑒𝑞𝑣) ∧
𝑒𝑞𝑣(𝑢, 𝑠1, 𝑠2) ∧𝑋R

(𝑢,𝑠1,𝑝1)
̸= 𝑋R

(𝑢,𝑠2,𝑝2)

III. RELATIVELY DETERMINISTIC NONINFLUENCE

Section I shows that the probability of observing a result
depending on a secret leads to confidential data leakage. To
address this challenge, this paper introduces a new possibilistic
confidentiality definition that we call Relatively Deterministic
Noninfluence (RDNI) that implies probabilistic confidentiality.

A. Probability preservation

Possibilistic definitions can be interpreted as showing two
sets of executions from equivalent states having the same set
of possible results. Since nondeterminism is the reason behind
multiple possible results for the same program from a state,
we can think that each nondeterministic event corresponds to
a result.

One way to relate the result probabilities is by ensuring
that if a nondeterministic event leads to a result from a state, it
also leads to the same result from all equivalent states. We call
this property matching executions since it implies that one can
match each execution from a state with another execution from
an equivalent state. Figure 4 displays the formal definition of
the matching-executions property, and Figure 5 visualizes it.
Throughout the paper, dotted lines represent things that are
posited to exist.

Figure 3 illustrates how the example in Figure 1 does not
satisfy Matching-execs, although it satisfies conventional
noninfluence. The last row shows that when the generated bit
is 1, the equivalent states have different return values.

One important property of Matching-execs is that, due to
the relative determinism of the system, the matching is unique
and 1-to-1 if it exists.

Fig. 5: Visualization of matching executions property.

Our main theorem shows that matching executions is a
necessary and sufficient condition for the absence of prob-
abilistic leakages. The intuition is that if the nondeterministic
events lead to the same result from equivalent states, then
no matter what event ends up happening in the real world,
users will observe the same result from equivalent states. Since
the probability of observing a result is the total probability
of nondeterministic events that lead to that result, and each
nondeterministic event leads to the same result from equivalent
states, this will imply that the probability of observing a result
is the same between equivalent states. Theorem III.1 states
our probability-preservation result. Proof of the theorem can
be found in the Appendix.

Theorem III.1 (Probability preservation). Let 𝑆 be an ora-
clized system,
∀ 𝑢 𝑝1 𝑝2 𝑒𝑞𝑣.
Matching-execs(𝑢, 𝑝1, 𝑝2, 𝑒𝑞𝑣)↔
¬ Probabilistic-leakage(𝑢, 𝑝1, 𝑝2, 𝑒𝑞𝑣)

B. Relatively Deterministic Noninfluence

Even though Matching-execs implies probabilistic confi-
dentiality, it is insufficient to be a comprehensive confidential-
ity specification for a multi user system. There are two aspects
it falls short of: it doesn’t specify how an execution should
impact other users’ perception of the system and doesn’t
ensure the confidentiality of the stored data after the execution.

In a confidential multi user system, a user’s activity
shouldn’t break the confidentiality for himself and other users.
If equivalent states become distinguishable after the execu-
tion of the same program, a user can infer the initial state
by observing the final state and reasoning backward. So, a
desired property for confidential multi user systems is that
equivalent states should stay equivalent if a user takes the
same actions in both states. Our RDNI specification enhances
Matching-execs with this requirement by requiring equiva-
lent states to stay equivalent if two program arguments are the
same. Below is the formal definition of our specification.

RDNI (𝑢, 𝑝1, 𝑝2, 𝑒𝑞𝑣) :=
∀ 𝑢′ 𝑜 𝑠1 𝑠2 𝑠′1 𝑟1.
𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠1, 𝑝1, 𝑠

′
1, 𝑟1)→

𝑒𝑞𝑣(𝑢′, 𝑠1, 𝑠2)→
∃ 𝑠′2 𝑟2. 𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠2, 𝑝2, 𝑠

′
2, 𝑟2) ∧

(𝑝1 = 𝑝2 → 𝑒𝑞𝑣(𝑢′, 𝑠′1, 𝑠
′
2)) ∧

(𝑢 = 𝑢′ → 𝑟1 = 𝑟2)

Termination Sensitivity: The RDNI definition requires,
for each execution, an execution to exist from any equivalent
state. This requirement is called termination sensitivity. In
its essence, termination sensitivity implies that an adversary
cannot learn confidential information by observing if the
program terminates. In the nondeterministic case, termination
insensitivity requires adding nontermination as a possible
result.

The relatively deterministic nature of RDNI allows us to
define a termination-insensitive variant without needing to add
nontermination as a possible result. In this variant, pairs of
executions with the same oracles are required to have the same
result, but there are no restrictions for a pair of executions with
different oracles. The formal description is below.

TI-RDNI (𝑢, 𝑝1, 𝑝2, 𝑒𝑞𝑣) :=
∀ 𝑜 𝑢′ 𝑠1 𝑠2 𝑠′1 𝑠′2 𝑟1 𝑟2.

𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠1, 𝑝1, 𝑠
′
1, 𝑟1)→

𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠2, 𝑝2, 𝑠
′
2, 𝑟2)→

𝑒𝑞𝑣(𝑢′, 𝑠1, 𝑠2)→
(𝑝1 = 𝑝2 → 𝑒𝑞𝑣(𝑢′, 𝑠′1, 𝑠

′
2)) ∧

(𝑢 = 𝑢′ → 𝑟1 = 𝑟2)

An important limitation of the termination-insensitive defi-
nition is that it does not imply Matching-execs. As a result,
systems that only satisfy TI-RDNI do not benefit from the
probability-preservation theorem.

IV. CONFRM

ConFrm is a framework for implementing and proving the
confidentiality of storage systems. It contains the RDNI imple-
mentation, structures to implement storage systems, definitions
for defining abstractions, and relevant metatheory to prove the
confidentiality of implementations.

A. System Structures

ConFrm splits defining a system into two components that
build on each other: a core and a layer. Cores capture what is
unique in a system, like its states and its operations. Layers
augment cores with what is common in all system definitions,
like sequencing of operations and recovery semantics. ConFrm
adds the recurring parts to defined cores to create layers,
reducing the implementations’ clutter. This separation makes
implementing systems easier and avoids redundant work on
the developer’s side.

1) Cores: ConFrm introduces cores as the main way to
model a system. A core has six components following the
definition in section II. It consists of a set of users, a set of
states, a set of operations, a set of nondeterminism tokens, the
execution semantics, and a relative-determinism proof. The set
of operations corresponds to programs from section II. Non-
determinism tokens are our implementation of oracles from
section II, where each token corresponds to a nondeterministic
event. An example of a core can be found in the appendix.

𝑒𝑥𝑒𝑐𝑟 :=

| Exec-finished :
∀ 𝑝 𝑟𝑒𝑐 𝑢 𝑜 𝑠 𝑠𝑓 𝑟.

𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠, 𝑝, 𝑠𝑓 , (Finished 𝑟))→
𝑒𝑥𝑒𝑐𝑟([𝑜], [], 𝑢, 𝑠, 𝑝, 𝑟𝑒𝑐, 𝑠𝑓 .(Finished 𝑟))

| Exec-recovered :
∀ 𝑝 𝑟𝑒𝑐 𝑢 𝑜 𝑙𝑜 𝑠 𝑠𝑐 𝑠𝑟 rf lrf 𝑟.

𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠, 𝑝, 𝑠𝑐, Crashed)→
𝑒𝑥𝑒𝑐𝑟(𝑙𝑜, lrf , 𝑢, rf (𝑠𝑐), 𝑟𝑒𝑐, 𝑟𝑒𝑐, 𝑠𝑟, 𝑟)→
𝑒𝑥𝑒𝑐𝑟((𝑜 :: 𝑙𝑜), (rf :: lrf), 𝑢, 𝑠,

𝑝, 𝑟𝑒𝑐, 𝑠𝑟, Recovered)

Fig. 6: Provided recovery semantics.

Crashes: ConFrm supports crash semantics by defining
two different execution results: Finished and Crashed. A
Finished result means the program has completed and con-
tains a return value. A Crashed result means that the program
crashed during its execution, and the end state is the system’s
state after the crash but before rebooting. Developers define
the crash semantics of the system by defining execution rules
that lead to a Crashed result.

2) Layers: Layers are ConFrm’s model of full systems.
They augment the cores with the ability to create programs,
i.e., a sequence of core operations, and provide semantics to
programs using the semantics of individual operations. In addi-
tion to the ability to define programs, layers contain semantics
for the crash-reboot-recovery process. We will explain each of
these parts in order.

Sequencing: Layers equip a core with Bind and Return
operations. A Bind operation allows sequencing of operations.
A Return operation passes values to the consequent opera-
tions. We call a sequence of operations a program.

The semantics of programs are derived from the semantics
of the core. Since a program consists of a sequence of
operations, layer semantics take a list of tokens, which we call
an oracle, and consume exactly one token at each execution
step.

On top of eliminating the clutter from an implementation,
separating sequencing from core operations allows ConFrm to
provide core-agnostic theorems and tactics.

Recovery semantics: Layers provide predefined recovery
semantics to model repeated crash-reboot-recovery processes.
To distinguish recovery semantics from the semantics of the
execution of a single program, we will refer to recovery
semantics as executing-with-recovery and denote it with 𝑒𝑥𝑒𝑐𝑟

when the distinction is important. Figure 6 illustrates the
provided recovery semantics.

Recovery semantics differs from layer semantics in three
ways. Firstly, recovery semantics take two program arguments:
a program to run and a recovery program to run in case of a
crash.

Refinement 𝐿𝑖 𝐿𝑎 :=
compile : 𝑝𝑟𝑜𝑔𝑎 → 𝑝𝑟𝑜𝑔𝑖
refines : 𝑠𝑡𝑎𝑡𝑒𝑖 → 𝑠𝑡𝑎𝑡𝑒𝑎 → 𝑃𝑟𝑜𝑝
refines-reboot : 𝑠𝑡𝑎𝑡𝑒𝑖 → 𝑠𝑡𝑎𝑡𝑒𝑎 → 𝑃𝑟𝑜𝑝
oracle-refines : 𝑢𝑠𝑒𝑟 → 𝑠𝑡𝑎𝑡𝑒𝑖 → 𝑝𝑟𝑜𝑔𝑎 →
(𝑠𝑡𝑎𝑡𝑒𝑖 → 𝑠𝑡𝑎𝑡𝑒𝑖)→ 𝑜𝑟𝑎𝑐𝑙𝑒𝑖 → 𝑜𝑟𝑎𝑐𝑙𝑒𝑎 → 𝑃𝑟𝑜𝑝

Fig. 7: Refinement definition.

Secondly, the effects of a reboot on a system may be
nondeterministic. One example is an asynchronous disk. When
a system crashes and reboots, the disk can be nondeterminis-
tically in one of the multiple possible states due to buffered
and reordered writes. To capture and quantify this source
of nondeterminism, we introduce reboot functions. A reboot
function takes a state after a crash and returns the system’s
state after the reboot. Reboot functions serve as oracles for
the reboot process. Similar to the tokens, different outcomes
of a nondeterministic reboot are represented by different
reboot functions. Although reboot functions and tokens are
conceptually the same and can be combined, we decided to
separate them in our implementation to simplify the refinement
definitions and make incorporating the assumptions on the
reboot process easier.

Thirdly, the execution semantics of a crash-reboot-recovery
process capture multiple crash and recovery attempts with the
Exec-recovered rule by providing an inductive rule that
refers to the future recovery attempts after a crash. Since
each execution requires an oracle and each crash requires a
reboot function to determine the after-reboot state, recovery
semantics take a list of oracles and a list of reboot functions.
The provided semantics implicitly assume that recovery will
eventually succeed.

B. Abstraction and Metatheory

Modularity is essential to manage the complexity of a
system and necessary to build large-scale verified systems.
ConFrm’s support for modularity consists of support for
abstraction and the metatheory to prove confidentiality through
abstraction. We will first present the infrastructure for defining
abstractions and then explain the metatheory. Throughout the
section, we will use subscripts 𝑖 and 𝑎 to refer to implemen-
tation and abstraction, respectively.

1) Abstraction Structures: ConFrm uses refinements and
simulations for defining abstractions. We will explain them in
that order.

a) Refinements: ConFrm’s primary mechanism for re-
lating abstractions and implementations is refinement. Con-
Frm defines refinement in four parts, extending the standard
refinement definition: a compile function that turns abstract
programs into implementation programs, a state-refinement
relation for the normal states, a state-refinement relation for
after-reboot states, and an oracle-refinement relation that re-
lates implementation oracles to abstraction oracles. Figure 7
displays the formal refinement definition.

Recovery-oracles-refine (𝑢, 𝑠𝑖, 𝑝𝑎, 𝑟𝑒𝑐𝑎,

lrfi , 𝑙𝑜𝑖, 𝑙𝑜𝑎) :=

(∃ 𝑜𝑖 𝑜𝑎 𝑠′𝑖 𝑣.

𝑙𝑜𝑖 = [𝑜𝑖] ∧ 𝑙𝑜𝑎 = [𝑜𝑎] ∧ lrfi = [] ∧
𝑒𝑥𝑒𝑐𝑖(𝑜𝑖, 𝑢, 𝑠𝑖, compile(𝑝𝑎), 𝑠

′
𝑖, Finished 𝑣) ∧

∀ rfi . Oracle-refines (𝑢, 𝑠𝑖, 𝑝𝑎, rfi , 𝑜𝑖, 𝑜𝑎))

∨
(∃ 𝑜𝑖 𝑜𝑎 rfi 𝑙𝑜′𝑖 𝑙𝑜𝑎 lrf ′i 𝑠′𝑖.

𝑙𝑜𝑖 = 𝑜𝑖 :: 𝑙𝑜
′
𝑖 ∧ 𝑙𝑜𝑎 = 𝑜𝑎 :: 𝑙𝑜′𝑎 ∧

lrfi = rfi :: lrf
′
i ∧

𝑒𝑥𝑒𝑐𝑖(𝑜𝑖, 𝑢, 𝑠𝑖, compile(𝑝𝑎), 𝑠
′
𝑖, Crashed) ∧

Oracle-refines(𝑢, 𝑠𝑖, 𝑝𝑎, rfi , 𝑜𝑖, 𝑜𝑎) ∧
Recovery-oracles-refine(𝑢, rfi(𝑠

′
𝑖), 𝑟𝑒𝑐𝑎,

𝑟𝑒𝑐𝑎, lrf
′
i , 𝑙𝑜

′
𝑖, 𝑙𝑜

′
𝑎))

Fig. 8: Recovery-oracles-refine definition.

The refinement definition in the literature consists of
compile and refines [8]. We added refines-reboot
and oracle-refines relations to accommodate crash-reboot-
recovery and oracles, respectively.

We separate refines-reboot from refines because, in
general, a refines relation is too strong to hold for after-
reboot states. For example, a file system may have an in-
memory, write-through cache that contains exactly its log data
to speed up disk reads. In this case, the refines relation, in
addition to the facts about the disk, would include the fact
that cache contents exactly match the log. This fact wouldn’t
be true after a reboot since memory contents will be arbitrary.
However, we also need some information about after-reboot
states to ensure recovery restores the original refines relation
and refines-reboot contains such information.
oracle-refines relates the implementation oracles that

lead to the same abstract representation with an abstraction
oracle. Intuitively, an abstraction oracle concisely represents
multiple nondeterministic implementation events that lead to
the same abstract representation.

ConFrm adapts a provided oracle-refines relation
to lists of oracles used in execution-with-recovery
by deriving a Recovery-oracles-refine relation.
Recovery-oracles-refine recursively relates oracles
in the lists via oracle-refines through multiple iterations
of the crash-reboot-recovery process. Figure 8 shows the
definition of Recovery-oracles-refine.

b) Simulations: ConFrm uses simulation proofs to ensure
abstractions capture implementation behavior correctly. We
modified the standard simulation definition to accommodate
our refinement definition. Our simulation definition is pa-
rameterized over implementation and abstraction layers and
a refinement between them. We left those parameters implicit
to improve readability. Figure 9 displays the formal definition.

Simulation (𝑢, 𝑝𝑎, 𝑟𝑒𝑐𝑎, lrfi , 𝑙𝑟𝑓𝑎,

refbegin , refend) :=

∀ 𝑙𝑜𝑖 𝑠𝑖 𝑠
′
𝑖 𝑟 𝑠𝑎.

refbegin (𝑠𝑖, 𝑠𝑎)→
𝑒𝑥𝑒𝑐𝑟𝑖 (𝑙𝑜𝑖, lrfi , 𝑢, 𝑠𝑖, compile(𝑝𝑎),

compile(𝑟𝑒𝑐𝑎), 𝑠
′
𝑖, 𝑟)→

∃ 𝑙𝑜𝑎 𝑠′𝑎.

Recovery-oracles-refine (𝑢, 𝑠𝑖, 𝑝𝑎, 𝑟𝑒𝑐𝑎,

lrfi , 𝑙𝑜𝑖, 𝑙𝑜𝑎) ∧
𝑒𝑥𝑒𝑐𝑟𝑎 (𝑙𝑜𝑎, lrfa , 𝑢, 𝑠𝑎, 𝑝𝑎, 𝑟𝑒𝑐𝑎, 𝑠

′
𝑎, 𝑟) ∧

refend (𝑠′𝑖, 𝑠
′
𝑎)

Fig. 9: Simulation definition.

(a) Normal execution.

(b) Recovery execution.

Fig. 10: Visualization of simulation for different cases.

RDNI-transfer :=

∀ 𝑢 𝑝1𝑎 𝑝2𝑎 𝑟𝑒𝑐𝑎 lrfi lrfa 𝑒𝑞𝑣𝑎.

RDNI (𝑢, 𝑝1𝑎, 𝑝2𝑎, 𝑟𝑒𝑐𝑎, 𝑒𝑞𝑣𝑎, lrfa)→
Simulation (𝑢, 𝑝1𝑎, 𝑟𝑒𝑐𝑎, lrfi , lrfa ,

refines, refines)→
Simulation (𝑢, 𝑝2𝑎, 𝑟𝑒𝑐𝑎, lrfi , lrfa ,

refines, refines)→
Oracles-refine-same (𝑢, 𝑝1𝑎, 𝑝2𝑎, 𝑟𝑒𝑐𝑎,

lrfi , 𝑒𝑞𝑣𝑎)→
RDNI (𝑢, compile(𝑝1𝑎), compile(𝑝2𝑎),

compile(𝑟𝑒𝑐𝑎), Refines-eqv(𝑒𝑞𝑣𝑎), lrfi)

Fig. 11: RDNI-Transfer theorem.

The first change is that the modified simulation definition
has two relations: one for the starting and one for the end
states. We separate the relations for starting and end states to
be able to reason about recovery, where the relations that hold
at the beginning and the end are different.

The second change is that a simulation is defined over
an entire execution-with-recovery. This allows the relation to
be broken temporarily after a crash as long as the recovery
process restores it. This change is necessary because crashes
may leave the system in an implementation state that doesn’t
refine an abstract state but is also not visible to users. Since
after-crash states are not visible to users until recovery is
completed, they do not compromise confidentiality. Figure 10
displays the simulation definition in normal and recovery
execution cases.

2) Metatheory: At the heart of ConFrm’s metatheory
lies the RDNI transfer theorem, which derives a compiled
program’s confidentiality from its abstraction. The theorem
reveals sufficient conditions for preserving RDNI through
refinement. The two conditions are that there should be a
simulation between implementation and abstraction for the
refinement relations and that oracle refinement is independent
of confidential data. Figure 11 illustrates our theorem.

Simulation ensures that the abstraction captures all the
behavior of the implementation. Oracles-refine-same cap-
tures the necessity that oracle refinement is independent of
confidential data. Abstractions modeling some deterministic
behaviors of an implementation as nondeterminism is a typical
pattern. This property ensures the developer does not abstract
the behavior that depends on confidential data as nondetermin-
ism. The formal definition is displayed in Figure 12.

Finally, using the abstraction-equivalence relation, ConFrm
generates an equivalence relation for implementation states.
The new relation states that two implementation states are
equivalent if they refine two equivalent abstract states. Below
is the formal definition of the derivation, and Figure 13 shows
its visualization. The user is not displayed in the visualization
for clarity.

Oracles-refine-same (𝑢, 𝑠𝑖, 𝑝1𝑎, 𝑝2𝑎,

𝑟𝑒𝑐𝑎, lrfi , 𝑒𝑞𝑣𝑎) :=

∀ 𝑙𝑜𝑖 𝑙𝑜1𝑎 𝑙𝑜2𝑎 𝑠1𝑖 𝑠2𝑖.

Refines-eqv(𝑒𝑞𝑣𝑎, 𝑠1𝑖, 𝑠2𝑖)→
Recovery-oracles-refine(𝑢, 𝑠1𝑖, 𝑝1𝑎,

𝑟𝑒𝑐𝑎, lrfi , 𝑙𝑜𝑖, 𝑙𝑜1𝑎)→
Recovery-oracles-refine(𝑢, 𝑠2𝑖, 𝑝2𝑎,

𝑟𝑒𝑐𝑎, lrfi , 𝑙𝑜𝑖, 𝑙𝑜2𝑎)→
𝑙𝑜1𝑎 = 𝑙𝑜2𝑎

Fig. 12: Oracles-refine-same definition.

Fig. 13: Visualization of equivalence derivation.

Refines-eqv(𝑒𝑞𝑣𝑎, 𝑢, 𝑠𝑖, 𝑠
′
𝑖) :=

∃ 𝑠𝑎 𝑠′𝑎.
refines (𝑠𝑖, 𝑠𝑎) ∧
refines (𝑠′𝑖, 𝑠

′
𝑎) ∧

𝑒𝑞𝑣𝑎(𝑢, 𝑠𝑎, 𝑠
′
𝑎)

3) Proper Initialization: ConFrm provides a proper-
initialization definition to ensure the system is initialized cor-
rectly. The proper-initialization relation states that a successful
initialization should put the system into an initial state that
refines an abstract state, regardless of the starting implemen-
tation state. The formal definition is illustrated below.

Proper-initialization (𝑝𝑖𝑛𝑖𝑡) :=
∀ 𝑢 𝑜 𝑠 𝑠𝑖𝑛𝑖𝑡 𝑟.

𝑒𝑥𝑒𝑐𝑖 (𝑜, 𝑢, 𝑠, compile(𝑝𝑖𝑛𝑖𝑡),
𝑠𝑖𝑛𝑖𝑡, Finished 𝑟)→
∃ 𝑠𝑎. refines(𝑠𝑖𝑛𝑖𝑡, 𝑠𝑎)

In this section, we covered the formalization of system
components and support for modularity. Next, we will present
ConFs, our confidential file system implemented and proved
confidential in ConFrm.

V. CONFS FILE SYSTEM

ConFs is the first crash-safe file system with a termination-
insensitive RDNI specification and machine-checkable proofs.
The first half of the section will explain its design and im-

Fig. 14: Structure of ConFs.

plementation. The second half will explain its confidentiality
specifications.

A. Design

ConFs consists of three components: a checksum-based
write-ahead log with a log cache, a transaction system, and
file-system structures like block allocators and inodes.

The entire design of ConFs can be seen in Figure 14. Solid
boxes depict ConFrm cores. Shaded boxes represent imple-
mentation components. Colors distinguish different ConFrm
layers. Each shaded box uses functions and operations from
the boxes directly below it. For example, the log cache uses
both implemented log functions and cache operations from the
cache core. A solid box on top of a shaded box represents an
abstraction (e.g., the transactional disk abstracts the functions
of transactions into operations).

Now, we will explain the essential parts of our design.
a) Base Layer: We model disk, cache, and in-memory

data structures for transactions and cryptographic operations
in the base layer. It provides all the basic operations that can
be used in the system, which each file-system operation is
compiled into. The appendix shows the list of operations in
the base layer.

b) Log and Log Cache: ConFs contain a checksum-
based, encrypted write-ahead log. Encryption of the log is
necessary for a checksum-based log to avoid leaking the
contents of previous transactions. An example of a possible
leakage and how encryption solves it can be found in the
Appendix.

Since the log contents are encrypted, and encryption/decryp-
tion is computationally expensive, we implemented a write-
through log cache to speed up the read requests. The cache
contains unencrypted versions of the data stored in the log.

c) Logged-Disk Layer: We abstract the log-cache API
to a new core called the logged-disk core. The logged-disk
core provides two improvements over directly using the im-
plementation: it simplifies the disk model and the operational
semantics. The logged-disk layer simplifies the disk model

Operation Type Signature
read inum → addr → option block
write inum → addr → block → option unit
extend inum → block → option unit
create user → option inum
delete inum → option unit
change_owner inum → user → option unit

Fig. 15: File-system API.

by hiding the existence of the log, the cache, and previously
written values in the base-layer disk. Logged-disk’s crash
semantics are also significantly simpler because of the crash
safety the log provides.

d) File-System Structures: File-system structures include
inode and data allocators, inodes, and files.

Inodes: We designed inodes to be as simple as possible
while retaining the required functionality. Each inode contains
an owner and a list of direct block numbers. We decided
only to use direct blocks to avoid the complexity of indirect
addressing since it doesn’t pose any interesting confidentiality
issues.

Files: Our file-system API provides basic file operations
relevant to the challenge we are trying to address. Figure 15
shows the file-system API. To keep the system simple, all
operations are designed at a block granularity, i.e., they read
or write entire disk blocks because byte granularity adds extra
complexity without presenting any confidentiality challenges.
Similarly, we chose to use inode numbers as file handles to
focus on confidentiality without the complexity of managing a
directory structure. File-system structures contain a notion of
ownership, discretionary access control, and a nondeterminis-
tic functional specification for create. We also implemented
a change_owner call that transfers the ownership of a file to
another user to demonstrate that ConFrm and RDNI can handle
systems with dynamic data ownership. The existence of the
change_owner call poses challenges for providing a uniform
confidentiality specification for arbitrary sequences of system
calls. In later sections, we will explain how we accommodated
the change_owner specification.

e) File-Disk Layer: The file-disk layer is the abstraction
of the file-system API, where each system call is an operation
in its language. This layer presents a simple model, a map
from inode numbers to files. The simplification provides an
intuitive model for how a file system is perceived and also
simplifies the confidentiality specifications.

B. Specifiying Security

Security of ConFs is defined as an RDNI specification
for each compiled file-disk operation. The heart of these
specifications is the equivalence relation between two states.
For our definition of confidentiality, we treated user data as
confidential but the file system metadata as public. Our choice
is based on the fact that current file systems expose metadata
(e.g., the size of a directory shows the number of files in it, the

amount of free space, and the number of free inodes). ConFs
doesn’t treat some metadata that can be confidential in a file
system as confidential (e.g., private directory contents) since
it doesn’t implement all the functionalities of widely used file
systems.

The equivalence relation for ConFs captures the idea that
two states are equivalent for a user if they have the same
structure and the data owned by that user is identical in both
states. Following is the formalization of the idea.

same-for-user-except (𝑒𝑥𝑐𝑙𝑢𝑑𝑒, 𝑢, 𝑠1, 𝑠2) :=
(∀ 𝑖𝑛𝑢𝑚. 𝑠1(𝑖𝑛𝑢𝑚) = 𝑁𝑜𝑛𝑒↔
𝑠2(𝑖𝑛𝑢𝑚) = 𝑁𝑜𝑛𝑒)
∧
(∀ 𝑖𝑛𝑢𝑚 𝑓𝑖𝑙𝑒1 𝑓𝑖𝑙𝑒2.
𝑠1(𝑖𝑛𝑢𝑚) = 𝑓𝑖𝑙𝑒1 →
𝑠2(𝑖𝑛𝑢𝑚) = 𝑓𝑖𝑙𝑒2 →
𝑓𝑖𝑙𝑒1.𝑜𝑤𝑛𝑒𝑟 = 𝑓𝑖𝑙𝑒2.𝑜𝑤𝑛𝑒𝑟 ∧
𝑙𝑒𝑛(𝑓𝑖𝑙𝑒1.𝑏𝑙𝑜𝑐𝑘𝑠) = 𝑙𝑒𝑛(𝑓𝑖𝑙𝑒2.𝑏𝑙𝑜𝑐𝑘𝑠) ∧
(𝑒𝑥𝑐𝑙𝑢𝑑𝑒 ̸= 𝑖𝑛𝑢𝑚→
𝑓𝑖𝑙𝑒1.𝑜𝑤𝑛𝑒𝑟 = 𝑢→ 𝑓𝑖𝑙𝑒1 = 𝑓𝑖𝑙𝑒2))

The relation formalizes the following three properties: the
same inode numbers are in use, files with the same inode
number have the same owner and length, and if those files
belong to the specified user, their contents are the same. By
requiring files to be identical only for the specified user, our
relation captures the intuition of differing in confidential data
belonging to other users, whose connection to confidentiality
is explained in section I.

To make the relation usable in the change_owner speci-
fication, it takes an optional inode number of the file whose
owner is being changed. This is because if the new owner is
the user whose states are equivalent, then the resulting states
would be equivalent only if the files whose owner is being
changed are identical. However, the files that belong to the old
owner in the starting states are not guaranteed to be identical
since the equivalence relation does not require other users’ file
contents to be the same between equivalent states. Therefore,
the relation excludes the file being operated on and ensures
the user’s other files stay identical.

Since the equivalence relation used in change_owner’s
confidentiality specification excludes the file being operated
on, it only provides half of the required security: it restricts
the leakage from the changed file to the outside, but not the
other way around. The fact that no information leaks from
outside into the modified file is covered by change_owner’s
functional correctness, which states that the changed file’s
contents stay unchanged after the operation. However, this pre-
vents us from providing a succinct specification for arbitrary
sequences of system calls since such a specification needs to
account for each instance of change_owner appearing in the
sequence. This requirement makes an equivalence that will
provide such uniformity dependent on the sequence, which
is counter-intuitive. The existence of a succinct and uniform
specification for storage systems with dynamic ownership left
as future work.

Write-RDNI :=

∀ 𝑛 𝑢 𝑖𝑛𝑢𝑚 𝑎𝑑𝑟 𝑏𝑙𝑘1 𝑏𝑙𝑘2.

TI-RDNI(𝑢,

Write(𝑖𝑛𝑢𝑚, 𝑎𝑑𝑟, 𝑏𝑙𝑘1),

Write(𝑖𝑛𝑢𝑚, 𝑎𝑑𝑟, 𝑏𝑙𝑘2),

Recover,

same-for-user-except(𝑁𝑜𝑛𝑒),

𝑟𝑒𝑝𝑒𝑎𝑡(𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦, 𝑛))

Fig. 16: Specification for Write operation

Figure 16 shows the confidentiality specification for the
Write operation. Two cases where input blocks are the same
and different correspond to the confidentiality of stored and
input data. The first case guarantees that the confidential data
on the disk doesn’t affect the behavior, and the second case
guarantees the same for the input data.

1) Transactional Disk Layer Security: The derived equiva-
lence is not always sufficient to derive a suitable equivalence
relation. Sometimes, extra conditions are needed to establish
the relation between the parts of the implementation state that
are abstracted away. In our case, the main reason for requiring
additional conditions is that oracles in ConFs implicitly dictate
the number of execution steps and the types of operations
a program takes. The semantics of a program require the
consumption of exactly one token per operation executed. This
requirement implies that two programs with the same oracle
must follow the same execution path. An example can be found
in the Appendix.

2) Logged Disk and Base Layer Security: The logged disk
and base layers require extra conditions regarding the log
structure and the transaction list. Therefore, we supplemented
the equivalence relation with the following extra requirements:

∙ same addresses are present in the transactions,
∙ same addresses are present in the log caches,
∙ there are an equal number of transactions in both logs,

and
∙ corresponding transactions in both logs have the same

number of address and data blocks.
All of the above requirements can be summarized as equiv-

alent states having the same structure, which aligns with the
intuition behind our file-disk-equivalence relation.

C. Proving Security

As explained in subsection IV-B, proving confidential-
ity of our implementations in the base layer requires
three groups of theorems for each file-disk operation:
an RDNI confidentiality specification proof, a simulation
proof between operations and their implementations, and an
oracle-refinement-independence-from-confidential-data proof.
The vertically composable nature of each type allowed us
to prove the properties for each layer separately by deriving

intermediate RDNI specifications instead of one monolithic
proof from the file-disk layer to the base layer.

a) Confidentiality-specification proofs: Confidentiality-
specification proofs of file-disk operations directly follow
from the operational semantics of the operations. Since each
operation is executed in a single step and the file disk is crash-
safe, these proofs are straightforward and follow the same
pattern.

b) Simulation proofs: We split simulation proofs into
two parts to keep proofs shorter and more manageable: the
existence of a refined abstract oracle given an implementation
execution, and the existence of an abstract execution given a
refined abstract oracle and an implementation execution. Both
of these proofs took advantage of the functional-correctness
specifications of implementation programs. The biggest chal-
lenge regarding simulations is establishing oracle-refines
relations. Finding the correct relations required multiple it-
erations and corresponding changes in definitions and proof
scripts.

c) Oracle-independence proofs: Oracle-independence
proofs were the hardest due to their being two-execution
proofs. We split oracle-independence theorems into two
smaller theorems: two programs follow the same execution
path from related states with the same oracle, and if two
programs follow the same execution path from related states
with the same oracle, then those oracles refine the same
abstract oracle.

One interesting case appeared regarding a log-write opera-
tion that overwrites some data with itself, making the operation
effectively a ‘noop.’ The possibility of such a noop write
operation makes it impossible to determine whether a write
succeeds after a crash by examining the disk’s final state. This
causes a problem in the oracle-refinement-independence proof,
where only one execution of the same write from equivalent
states is a noop, which can refine two different oracles.

To resolve this problem, we included the precise number
of steps a write operation runs and the required conditions on
the crash and reboot states of the disk in the oracle-refinement
relation. This extra information prevents the above problem
from arising by making the conditions of refining two tokens
mutually exclusive, establishing that the same oracle cannot
refine different tokens from equivalent states.

However, such precise, low-level reasoning was tedious and
required significant proof effort to finalize—the discovery of
a proof strategy that requires less effort is left as future work.

d) Termination sensitivity: One concession we had to
make was using the termination-insensitive RDNI as our final
confidentiality specification for ConFs due to time constraints.
We discovered that termination sensitivity is orthogonal to the
other properties and needs a new set of theorems to prove. This
orthogonality is fundamental and comes from the definitions
themselves. All the theorems in ConFs are about the properties
of existing executions. In other words, the reasoning starts
with an existing execution and derives required facts from
it. However, termination sensitivity requires reasoning in the

Component Lines of Code
ConFrm 3610
ConFs implementation 2270
ConFs refinements and simulations 4594
Functional correctness 12691
Top-level RDNI proofs 1950
RDNI Transfer proofs 18887
Grand Total 44002

Fig. 17: Lines of code required to implement ConFrm and
apply it to build ConFs.

opposite direction: starting from some facts to establish the
existence of an execution.

D. Extraction and Trusted Computing Base

ConFs extracts to Haskell using Coq’s built-in extraction
functionality. We implemented three unverified components to
obtain a functional file system: an interpreter for base-layer
operations, a directory structure, and FUSE bindings for each
system call. The Coq kernel, Haskell base library, implemented
components, and the external libraries used in the components
are all part of the trusted computing base.

E. Evaluation

Since ConFrm and ConFs were built from scratch, we used
lines of code as the effort estimate. We broke down the
numbers to show how much effort went into each component.
Figure 17 displays the results. According to the data, func-
tional correctness has 5.6x and confidentiality has 9.2x proof
overhead per line of implementation.

Performance evaluation: We used five benchmarks to mea-
sure the performance of ConFs compared to existing file sys-
tems: FSCQ [4] and ext4. We used FSCQ as a representative
of verified file systems because it is similar to ConFs, and ext4
as a representative of widely used file systems.

Experimental Setup: We extracted the Coq implementa-
tion to Haskell to test our file systems and connected them
to the FUSE [11] library to provide the POSIX API. We
wrote an interpreter function in Haskell to implement the
operations in the disk and memory model. Since ConFs doesn’t
have directories, we implemented a simple directory structure
in Haskell. Directory blocks are written directly to the disk
instead of the log. The downside is that it incurs an extra disk
sync to ensure they are persisted correctly.

For our tests, we used two types of benchmarks: data-heavy
and metadata-heavy benchmarks. Data-heavy benchmarks con-
sist of makefile, which creates a file and writes 1MB data,
and writefile, which overwrites the file with 1MB data.

Metadata-heavy benchmarks are smallfile,
createdelete, and rename. smallfile creates a file
and then writes 100B of data. createdelete creates a file
and then immediately deletes it. Finally, rename creates a
file and then renames it to an existing file’s name.

(a) Metadata-heavy benchmarks

(b) Data-heavy benchmarks

Fig. 18: Performance comparison benchmarks

We tested ext4 in the checksum-logging configuration since
it is similar to ConFs’ design.

All tests are run on a machine with a 3.33GHz Intel Core i7-
980X CPU, 6x Samsung 4GB DDR3 1333 MHz memory, and
256GB Samsung 850 EVO SSD disk. We ran each benchmark
25 times and took the average of the results. We didn’t observe
any outliers in our results.

Results: Figure 18 show that ConFs perform better than
FSCQ and worse than ext4 in all benchmarks. In metadata-
heavy benchmarks, ConFs performed 1.5x to 1.8x of FSCQ
and 0.37x to 0.47x of ext4. In data-heavy benchmarks, ConFs
performed 3.3x of FSCQ and 0.02x to 0.04x of ext4.

ConFs’s performance speed-up over FSCQ can be attributed
to using axiomatic definitions for inner data structures im-
plemented efficiently with native types after extraction. Our
experiments with an earlier version of ConFs showed that
converting native Haskell types to and from extracted Coq
types for allocator bitmaps incurred a large performance over-
head. We believe this to be true for other nontrivial extracted
types. FSCQ uses an extracted Word type to represent disk
addresses, which is converted to and from native Haskell types
when necessary. We believe this is the source of FSCQ’s
low performance. Ext4 is written in C and contains many
optimizations that were not implemented in our research
prototype. Therefore, it is natural that ext4 outperforms ConFs.

if (get_random_bit() == 1)
return secret_bit

else
return negate(secret_bit)

Fig. 19: Example of a secure program if the generated bit is
uniformly random.

VI. LIMITATIONS AND FUTURE WORK

This section will discuss various limitations associated with
our specifications and implementations and will provide some
future directions to pursue.

A. Limitations

1) Specification Limitations: There are three important lim-
itations regarding the RDNI approach. First, RDNI prohibits
some implementations that are secure for a specific distribution
but may be insecure for others. Figure 19 shows a simple
implementation that is secure if and only if the generated bit
is uniformly random but doesn’t satisfy RDNI. An important
group of excluded systems is the ones whose security relies
on pseudorandom generators. Such systems’ security derives
from the fact that the number generated is indistinguishable
from a truly random number. We expect storage systems that
use per-user or per-file keys, such as APFS, EFS, and ext4, to
encounter verification challenges with our specifications. Even
though some of these challenges can be circumvented, as we
demonstrated in ConFs, we acknowledge that such solutions
may not be suitable for other systems due to the underlying
assumptions. We are unaware of any existing storage system
implementation that our specifications have explicitly ruled
out. However, this is due to the infeasibility of examining
their implementations in-depth, which is required to identify
such cases.

Second, our theorem requires that the probability distribu-
tion of nondeterministic events in real life is independent of
the secret data stored in the system. For example, in a system,
if writing a block of zeroes to the disk makes it more likely
to crash than writing any other value, then ours is not a fitting
model for that system.

Third, our model does not address side-channel security like
timing or power. This concession was made to keep the scope
manageable. However, we acknowledge the importance of side
channels in system security.

2) Implementation Limitations:
ConFrm Limitations: ConFrm has two important lim-

itations. The first one is that it doesn’t contain formaliza-
tion of probabilities and doesn’t implement our probability-
preservation theorem. Therefore, ConFrm does not support
reasoning about a formalized stochastic system.

The second limitation is that ConFrm doesn’t provide any
additional support for proving confidentiality of the top ab-
straction level. This may lead to lengthy proofs if the top
abstraction layer has a complex structure.

ConFs Limitations: The first limitation is due to our
design choices when implementing ConFs. ConFs cores in-
stantiate ConFrm with a mixed embedding where disk and
memory operations are deeply embedded, and the rest is
shallowly embedded [6]. Because of this embedding, ConFrm
can only apply nondeterminism oracles to memory operations.
This is not a limitation of ConFrm and can be overcome using
a fully deep embedded language for the implementations.

Secondly, due to time constraints, ConFs uses termination-
insensitive RDNI as its confidentiality specification. There-
fore, our probability-preservation theorem doesn’t hold for
ConFs. However, ConFrm supports termination-sensitive and
termination-insensitive RDNI and provides theorems to derive
one from the other.

B. Future Work

Our work can be extended in both theoretical and applied
fronts. On the theoretical side, we believe that our approach
can be extended to the stochastic systems where there is an
assumed prior by systematic oraclization of the stochastic
system. One promising direction to achieve this is by “du-
plicating” execution paths using oracles proportional to their
probabilities, such that each path has an equal probability
of being taken. An appropriate version of Matching-execs
would be sufficient to establish return-value equality in such
a system.

Similarly, given the flexibility of oraclization and the
matching-executions definition, we believe integrating side-
channel security into our definitions is possible by design-
ing oracles to enforce the desired properties. For example,
if oracles encode the runtime of each execution step, then
properties about timing can be proved through the oracles.
Accommodating both systems with priors and side-channel
security is very important for implementing various systems
with comprehensive security guarantees.

On the implementation side, ConFrm can be enhanced
by formalizing our probability-preservation theorem. We do
not see any major hardships in adding this support to the
framework using a well-established probability library such
as Polaris [31]. On top of enabling the formal reasoning about
stochastic systems, such integration would allow future results
to be incorporated into the framework and increase its usability
in diverse settings.

Another interesting direction is the generalization of our
framework and results to other systems that contain nonde-
terminism. Some immediate targets are concurrent and dis-
tributed systems due to the nondeterminism in execution order
and network reordering.

VII. RELATED WORK

Our work builds on a diverse body of prior work. We will
explain these works throughout this section.

a) Confidentiality properties: There is a significant body
of work formalizing noninterference properties [12], [15], [21],
[22], [26]–[28]. ConFrm’s definitions build upon this existing
work. One of particular interest is Oheimb’s noninfluence [34].

Noninfluence is introduced as a comprehensive specification
to ensure the confidentiality of a system that processes and
stores confidential data. Noninfluence achieves this goal via
two separate properties, one for the stored data and one for
the newly introduced data: nonleakage and noninterference,
respectively.

RDNI differs from its predecessors in how it treats nonde-
terminism in its formalism. RDNI takes a more fine-grained
approach in relating nondeterministic executions by requiring a
strong coupling between executions for each nondeterministic
execution branch.

b) Resolution of nondeterminism: One similar technique
to our oracle approach is called resolution of nondeterminism
for Markov Decision Procedures (MDPs) and probabilistic
labeled transition systems [1], [3], [13], [25], [29], [33]. Reso-
lution of nondeterminism reduces a nondeterministic and prob-
abilistic system into a fully probabilistic one via a scheduler.
A scheduler is a structure that picks a nondeterministic choice
whenever such a choice is necessary. The choice can be made
deterministically or probabilistically with a predetermined
distribution. Our nondeterminism oracles can be thought of
as schedulers that reduce a system to a deterministic one. Our
main difference is that we do not assume a prior distribution
for our oracles.

c) Machine-checked security in systems: Several prior
projects have proven security (and specifically confidentiality)
properties about their system implementations: seL4 [18], [22],
CertiKOS [7], Ironclad [14], and DiskSec [15]. For seL4 and
CertiKOS, the theorems prove complete isolation: CertiKOS
requires disabling IPC to prove its security theorems, and
seL4’s security theorem requires disjoint sets of capabilities.
In the context of a file system, complete isolation is not
possible: one of the main goals of a file system is to enable
sharing. Furthermore, CertiKOS is limited to proving security
via deterministic specifications. Nondeterminism is important
in a file system to handle crashes and to abstract away
implementation details in specifications.

Ironclad proves that several applications, such as a notary
service and a password-hashing application, do not disclose
their secrets (e.g., a private key), formulated as noninterfer-
ence. Also using noninterference, Komodo [9] reasons about
confidential data in an enclave and shows that an adversary
cannot learn the confidential data. Ironclad and Komodo’s
approach cannot specify or prove the properties of a file
system: both systems have no notion of a calling principal
or support for multiple users, and there is no possibility of
returning confidential data to some principals (but not others).
Finally, there is no support for nondeterministic crashes.
DiskSec supports nondeterministic crashes, discretionary ac-
cess control, and shared data structures. However, it lacks
support for branching on confidential data, abstraction layers,
and probabilistic confidentiality guarantees.

ConFrm’s contributions complement this line of work.
ConFrm provides tools that allow developers to preserve
confidentiality while creating abstraction layers. However,
it uses a specific definition of confidentiality. Even though

the definition can be customized by defining different state-
equivalence relations, it may not express an arbitrary confi-
dentiality specification.

d) Information-flow and type systems: Another approach
to ensuring confidentiality involves relying on type systems.
An advantage of this approach is that type checking can be
automated to reduce proof load for the developer.

Type systems and static-analysis algorithms, as with Jif’s la-
bels [23], [24] or the UrFlow analysis [5], have been developed
to reason about information-flow properties of application
code. UrFlow is specialized to database-backed web appli-
cations and uses querying language to define policies. Jif’s
analyzer would be hard to use for reasoning about dynamic
data structures inside a file system (such as a write-ahead log
or a buffer cache) containing data from different users.

Dynamic tools, such as Jeeves and Jacqueline [35], [36]
and Resin [37], deal with dynamic data structures but require
sophisticated and expensive runtime enforcement mechanisms.
ConFrm avoids the overhead of runtime enforcement and an
additional trusted runtime checker.

SeLoc [10] uses double weakest preconditions to prove
noninterference for fine-grained concurrent programs. It is
built on top of Iris [16], a separation logic-based framework
that proves the correctness of fine-grained concurrent pro-
grams. It provides developers with a confidentiality-ensuring
type system and a wide array of tools. However, employing
SeLoc requires Iris, which adds a substantial entry barrier.
Conversely, ConFrm is standalone and lightweight but does
not offer the full array of tools SeLoc offers.

e) Sequential composability and confidentiality-
preserving refinements: Since it is known that traditional
noninterference is not preserved in simulation-based
refinements [20], a body of work tries to identify the
conditions that make refinements noninterference-preserving.

Sun et al. [30] propose two confidentiality properties for
interface automata: SIR-GNNI and RRNI. Both properties are
based on refinements and defined relative to arbitrary security
lattices. They also provide sufficient conditions that make SIR-
GNNI and RRNI sequentially compositional.

Baumann et al. [2] formulate noninterference as an epis-
temic logic over trace sets. They define ignorance-preserving
refinements and prove that it is a sufficient condition to
preserve the noninterference of abstraction. They also show
that ignorance-preserving refinements are not compositional
w.r.t. sequential composition. They propose another class of
refinements called “relational refinements”, which are sequen-
tially compositional.

RDNI is also sequentially compositional but differs from
existing work in two points. First, RDNI provides probabilistic
guarantees for nondeterministic executions, while prior work
only provides possibilistic guarantees. Second, RDNI supports
reasoning about crashes and recovery of the system.

VIII. CONCLUSION

This paper investigates challenges related to probabilistic
leakages surrounding the confidentiality of nondeterministic

storage systems with rich sharing semantics. It lays the
groundwork for probabilistically confidential crash-safe stor-
age systems with machine-checkable proofs. It introduces a
possibilistic confidentiality specification, relatively determin-
istic noninfluence, that implies probabilistic confidentiality. It
also provides a formally verified framework, ConFrm, and
a confidential file system built using the framework with
machine-checkable proofs, ConFs.

Our confidentiality specification supports specifying a sub-
set of the data stored in the system as confidential and allows
obtaining probabilistic guarantees without modeling probabili-
ties. It is also preserved under simulations, which allows them
to be used with a wide variety of abstractions, which is not the
case with traditional definitions. The specification is supported
by techniques that can be used in different contexts.

ConFs is the first file system with termination-insensitive
RDNI specifications and machine-checked confidentiality
proofs. ConFs demonstrates that the confidentiality of storage
systems that safely manipulate confidential data can be proven
even with crashes and nondeterminism.

REFERENCES

[1] Erika Ábrahám, Ezio Bartocci, Borzoo Bonakdarpour, and Oyendrila
Dobe. Probabilistic hyperproperties with nondeterminism. ArXiv,
abs/2005.06115, 2020.

[2] C. Baumann, M. Dam, R. Guanciale, and H. Nemati. On compositional
information flow aware refinement. In 2021 2021 IEEE 34th Computer
Security Foundations Symposium (CSF), pages 79–94, Los Alamitos,
CA, USA, jun 2021. IEEE Computer Society.

[3] Marco Bernardo. Coherent resolutions of nondeterminism. In European
Performance Engineering Workshop, 2019.

[4] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. Using Crash Hoare Logic for
certifying the FSCQ file system. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP), pages 18–37,
Monterey, CA, October 2015.

[5] Adam Chlipala. Static checking of dynamically-varying security policies
in database-backed applications. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
pages 105–118, Vancouver, Canada, October 2010.

[6] Adam Chlipala. Skipping the binder bureaucracy with mixed embed-
dings in a semantics course (functional pearl). Proc. ACM Program.
Lang., 5(ICFP), aug 2021.

[7] David Costanzo, Zhong Shao, and Ronghui Gu. End-to-end verification
of information-flow security for C and assembly programs. In Proceed-
ings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’16, page 648–664, New York, NY,
USA, 2016. Association for Computing Machinery.

[8] John Derrick and Eerke Boiten. Labeled Transition Systems and Their
Refinement, pages 3–26. Springer International Publishing, Cham, 2018.

[9] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. Komodo: Using verification to disentangle secure-enclave hard-
ware from software. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 287–305, 2017.

[10] Dan Frumin, Robbert Krebbers, and Lars Birkedal. Compositional
non-interference for fine-grained concurrent programs. arXiv preprint
arXiv:1910.00905, 2019.

[11] FUSE: Filesystem in userspace, 2013. http://fuse.sourceforge.net/.
[12] J. A. Goguen and J. Meseguer. Security policies and security models.

In 1982 IEEE Symposium on Security and Privacy, pages 11–11, 1982.
[13] Hans A. Hansson. Time and probability in formal design of distributed

systems. In DoCS, 1994.
[14] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan

Parno, Danfeng Zhang, and Brian Zill. Ironclad apps: End-to-end secu-
rity via automated full-system verification. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14), pages
165–181, Broomfield, CO, October 2014. USENIX Association.

http://fuse.sourceforge.net/

[15] Atalay Ileri, Tej Chajed, Adam Chlipala, Frans Kaashoek, and Nickolai
Zeldovich. Proving confidentiality in a file system using DiskSec. In
13th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), pages 323–338, Carlsbad, CA, October 2018. USENIX
Association.

[16] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: A modular
foundation for higher-order concurrent separation logic. Journal of
Functional Programming, 28:e20, 2018.

[17] Jan Kara. [PATCH] ext4: Forbid journal_async_commit in data=ordered
mode. http://permalink.gmane.org/gmane.comp.file-systems.ext4/46977,
November 2014.

[18] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. Comprehensive
formal verification of an OS microkernel. ACM Trans. Comput. Syst.,
32(1), February 2014.

[19] Linux Kernel Developers. Ext4 filesystem, 2017. https://www.kernel.
org/doc/Documentation/filesystems/ext4.txt.

[20] J. McLean. A general theory of composition for trace sets closed under
selective interleaving functions. In Proceedings of 1994 IEEE Computer
Society Symposium on Research in Security and Privacy, pages 79–93,
1994.

[21] John Mclean. Proving noninterference and functional correctness using
traces. Journal of Computer Security, 1:37–58, 1992.

[22] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Tim-
othy Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein.
sel4: From general purpose to a proof of information flow enforcement.
In 2013 IEEE Symposium on Security and Privacy, pages 415–429,
2013.

[23] Andrew Myers and Barbara Liskov. A decentralized model for in-
formation flow control. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles (SOSP), pages 129–147, Saint-Malo,
France, October 1997.

[24] Andrew C. Myers and Barbara Liskov. Protecting privacy using the
decentralized label model. ACM Transactions on Computer Systems,
9(4):410–442, October 2000.

[25] Anna Philippou, Insup Lee, and Oleg Sokolsky. Weak bisimulation
for probabilistic systems. In International Conference on Concurrency
Theory, 2000.

[26] Andrei Popescu, Johannes Hölzl, and Tobias Nipkow. Proving con-
current noninterference. In Chris Hawblitzel and Dale Miller, editors,
Certified Programs and Proofs, pages 109–125, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[27] A.W. Roscoe. CSP and determinism in security modelling. In Proceed-
ings 1995 IEEE Symposium on Security and Privacy, pages 114–127,
1995.

[28] J. M. Rushby. Proof of separability a verification technique for a
class of security kernels. In Mariangiola Dezani-Ciancaglini and Ugo
Montanari, editors, International Symposium on Programming, pages
352–367, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg.

[29] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for
probabilistic processes. In Nordic Journal of Computing, 1994.

[30] Cong Sun, Ning Xi, and Jianfeng Ma. Enforcing generalized refinement-
based noninterference for secure interface composition. In 2017 IEEE
41st Annual Computer Software and Applications Conference (COMP-
SAC), volume 1, pages 586–595, 2017.

[31] Joseph Tassarotti and Robert Harper. A separation logic for concurrent
randomized programs. Proc. ACM Program. Lang., 3(POPL), jan 2019.

[32] Stephen C. Tweedie. Journaling the Linux ext2fs filesystem. In
Proceedings of the 4th Annual LinuxExpo, Durham, NC, May 1998.

[33] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite
state programs. 26th Annual Symposium on Foundations of Computer
Science (sfcs 1985), pages 327–338, 1985.

[34] David von Oheimb. Information flow control revisited: Noninfluence
= noninterference + nonleakage. In Pierangela Samarati, Peter Ryan,
Dieter Gollmann, and Refik Molva, editors, Computer Security – ES-
ORICS 2004, pages 225–243, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

[35] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama,
Cormac Flanagan, and Stephen Chong. Precise, dynamic information
flow for database-backed applications. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 631–647, Santa Barbara, CA, June 2016.

[36] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language
for automatically enforcing privacy policies. In Proceedings of the 39th
ACM Symposium on Principles of Programming Languages (POPL),
Philadelphia, PA, January 2012.

[37] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek.
Improving application security with data flow assertions. In Proceedings
of the 22nd ACM Symposium on Operating Systems Principles (SOSP),
pages 291–304, Big Sky, MT, October 2009.

APPENDIX

A. Proof of Theorem III.1

Before proving our theorem, we will prove a helper lemma
where the existence of a compatible invariant distribution
implies a symmetry in Matching-execs.

Lemma A.1. Let 𝑆 be an oraclized system.
∀ 𝑢 𝑝1 𝑝2 𝑒𝑞𝑣.

(∃ 𝑋,
𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑆,𝑋) ∧
𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡(𝑋,𝑢, 𝑝1, 𝑝2, 𝑒𝑞𝑣))→
Matching-execs(𝑢, 𝑝1, 𝑝2, 𝑒𝑞𝑣)→
Matching-execs(𝑢, 𝑝2, 𝑝1, 𝑒𝑞𝑣)

Proof. Pick an arbitrary oracle 𝑜, states 𝑠1, 𝑠2 and 𝑠′2,
and a result 𝑟2 such that 𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠2, 𝑝2, 𝑠

′
2, 𝑟2) and

𝑒𝑞𝑣(𝑢, 𝑠2, 𝑠1) holds. Using these two facts, we will show that
∃ 𝑠′1. 𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠1, 𝑝1, 𝑠

′
1, 𝑟2).

By compatibility of 𝑋 , we know that
𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠2, 𝑝2, 𝑠

′
2, 𝑟) implies 𝑋(𝑢,𝑠2,𝑝2)(𝑜) > 0. By

invariance of 𝑋 and symmetry of 𝑒𝑞𝑣, 𝑋(𝑢,𝑠2,𝑝2)(𝑜) > 0
implies 𝑋(𝑢,𝑠1,𝑝1)(𝑜) > 0. By compatibility, 𝑋(𝑢,𝑠1,𝑝1)(𝑜) > 0
implies that there exists 𝑠′1 and 𝑟1 such that
𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠1, 𝑝1, 𝑠

′
1, 𝑟1). By Matching-execs, we know

that there exists 𝑠′′2 such that 𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠2, 𝑝2, 𝑠
′′
2 , 𝑟1). By

relative determinism, we know that 𝑟1 = 𝑟2. Therefore,
∃ 𝑠′1. 𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠1, 𝑝1, 𝑠

′
1, 𝑟2) holds.

Proof of Theorem III.1

Proof. (→) : Pick an arbitrary result 𝑟. By definition, we know
that 𝑋R

(𝑢,𝑠1,𝑝1)
(𝑟) is equal to∑︁

𝑜∈{𝑜′ | ∃ 𝑠′1, 𝑒𝑥𝑒𝑐(𝑜′,𝑢,𝑠1,𝑝1,𝑠′1,𝑟)}

𝑋(𝑢,𝑠1,𝑝1)(𝑜)

.
By Matching-execs and Lemma A.1, we can conclude

that set
{𝑜′ | ∃ 𝑠′, 𝑒𝑥𝑒𝑐(𝑜′, 𝑢, 𝑠1, 𝑝1, 𝑠

′, 𝑟)}

is equal to the set

{𝑜′ | ∃ 𝑠′, 𝑒𝑥𝑒𝑐(𝑜′, 𝑢, 𝑠2, 𝑝2, 𝑠
′, 𝑟)}

.
Since 𝑋 is invariant for 𝑝1 and 𝑝2 under 𝑒𝑞𝑣, we know that

𝑋(𝑢,𝑠1,𝑝1)(𝑜) is equal to 𝑋(𝑢,𝑠2,𝑝2)(𝑜) for each oracle 𝑜. If we
rewrite these two equalities in our definition we obtain∑︁

𝑜∈{𝑜′ | ∃ 𝑠′, 𝑒𝑥𝑒𝑐(𝑜′,𝑢,𝑠2,𝑝2,𝑠′,𝑟)}

𝑋(𝑢,𝑠2,𝑝2)(𝑜)

http://permalink.gmane.org/gmane.comp.file-systems.ext4/46977
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt

which is equal to 𝑋R
(𝑢,𝑠2,𝑝2)

(𝑟).

(←) : We will show this direction by proving its con-
trapositive. Assume that there exists a compatible invariant
distribution 𝑋 , two states 𝑠1 and 𝑠2 such that 𝑒𝑞𝑣(𝑢, 𝑠1, 𝑠2)
and a result 𝑟 such that 𝑋R

(𝑢,𝑠1,𝑝1)
(𝑟) ̸= 𝑋R

(𝑢,𝑠2,𝑝2)
(𝑟).

Since 𝑋 is compatible and invariant, this is only possi-
ble if, w.l.o.g. due to Lemma A.1, there exists an oracle
𝑜 and state 𝑠′1 such that 𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠1, 𝑝1, 𝑠

′
1, 𝑟) holds but

𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠2, 𝑝2, 𝑠
′
2, 𝑟) does not hold for any 𝑠′2. There-

fore Matching-execs(𝑢, 𝑝1, 𝑝2, 𝑒𝑞𝑣) does not hold for
𝑒𝑥𝑒𝑐(𝑜, 𝑢, 𝑠1, 𝑝1, 𝑠

′
1, 𝑟).

B. Example Core

Definition Cache_Core :=
{
token := Continue | Crash ;
state := address -> option block;
operation := Read a | Write a b | Flush ;
exec := . . . ;
exec_deterministic_wrt_token := . . .

}.

Fig. 20: An example core for an in-memory cache.

This cache has three operations: Read, Write, and Flush.
Its state is a partial function from addresses to blocks to model
possible cache misses. Its tokens are simple: Continue for
successful execution and Crash for crashing on that operation.
Execution semantics and the proof of determinism are omitted
for brevity.

C. Necessity of Extra Conditions

The following simple example shows why such conditions
are necessary:

Definition read a :=
mv <- transaction_read a;
if mv = Some v then
Ret v

else
disk_read a

Above is a standard read implementation to get the latest
value for an address when there is an active transaction in
the system. Proving noninterference of this function requires
showing that there exist two executions from related states
with the same oracle. Since having the same oracle dictates
that programs follow the same execution paths, two related
states must contain the same addresses in their transactions,
although corresponding data could differ.

Since the transactional-disk abstraction hides the existence
of a separate transaction list, an equivalence relation between
two abstract states cannot capture this requirement. In this
instance, the equivalence relation for implementation needs to
be supplemented to make it finer-grained.

This particular example and some other more complicated
variants are also present in log functions.

Fig. 22: A sequence of events that leads to confidential data
leakage.

D. Our encryption model

encrypt: key -> block -> block.
decrypt: key -> block -> block.

encrypt_decrypt:
forall k v,
decrypt k (encrypt k v) = v.

decrypt_encrypt:
forall k ev,
encrypt k (decrypt k ev) = ev.

Fig. 21: Encryption model.

E. Example Leakage from an Unencrypted Log

In the example depicted in Figure 22, there are two logs
with the length of one block. Both logs are initially empty, but
there are leftover blocks 𝑏1 and 𝑏2 from a previously applied
transaction. Now, a user commits a new transaction with 𝑏1 as
its content. Then, both logs crash after the data and the header
are written but before the disk is synced. In both cases, the
new header persists on the disk, but the data doesn’t. After
reboot, the recovery procedure of the first system will keep
the latest transaction since the hash of the log and the hash
in the header match. However, the second system will discard
the transaction because the hashes won’t match. Now, the user
who committed the last transaction can infer the contents of the
previous transaction based on the system’s state after recovery
by looking if his write is on the disk.

We use encryption to fix the above problem. Encryption
protects two levels: (1) it makes collision between a block
that is already on the disk and the block that is written on it
extremely unlikely, and (2) even in the case of it happening,
it prevents the user from inferring the contents of the previous
transaction. Case 1 is because it is extremely unlikely to
produce the same ciphertext from two encrypted blocks with
two different random keys. Case 2 is ensured by using a fresh
key for each transaction since having the same ciphertext
will not reveal any information about the plaintexts if two
different keys are used. Figure 23 shows how encryption fixes
the problem.

The initial setting in the encrypted example is similar
to the unencrypted version, except the leftover blocks are
encrypted with keys 𝑘1 and 𝑘2. Same as before, a user
commits a new transaction with 𝑏1. Before writing 𝑏1 to the
log, it gets encrypted with a freshly generated key 𝑘. The
crucial observation is that, if 𝑘 is different than 𝑘1 and 𝑘2,
then 𝐸(𝑘, 𝑏1) is different than 𝐸(𝑘1, 𝑏1) and 𝐸(𝑘2, 𝑏2) with
high probability. This difference implies that their hashes are
different with high probability as well. Since the new hash
differs from the hashes of leftover blocks, there is no after-
reboot state where one transaction is kept, but the other is
rolled back. Therefore, all possible after-recovery states are
equivalent.

F. ConFs Base Layer Operations

Disk Cache Auth
read: addr -> block read: addr -> option block auth: user -> bool
write: addr -> block -> unit write: addr -> block -> unit
sync: unit flush: unit
Crypto List
hash: hash -> block -> hash get: list (addr * block)
generate key: key put: (addr * block) -> unit
encrypt: key -> block -> block delete: unit
decrypt: key -> block -> block

Fig. 24: Operations in the base layer.

Fig. 23: Encryption fixes the leakage.

	Introduction
	Probabilistic leakage
	Threat Model
	Contributions

	Preliminaries
	Relatively Deterministic Noninfluence
	Probability preservation
	Relatively Deterministic Noninfluence

	ConFrm
	System Structures
	Cores
	Layers

	Abstraction and Metatheory
	Abstraction Structures
	Metatheory
	Proper Initialization

	ConFs File System
	Design
	Specifiying Security
	Transactional Disk Layer Security
	Logged Disk and Base Layer Security

	Proving Security
	Extraction and Trusted Computing Base
	Evaluation

	Limitations and Future Work
	Limitations
	Specification Limitations
	Implementation Limitations

	Future Work

	Related Work
	Conclusion
	References
	Appendix
	Proof of Theorem III.1
	Example Core
	Necessity of Extra Conditions
	Our encryption model
	Example Leakage from an Unencrypted Log
	ConFs Base Layer Operations

