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One of the biggest implementation challenges in security-critical network protocols is nested state machines.

In practice today, state machines are either implemented manually at a low level, risking bugs easily missed

in audits; or are written using higher-level abstractions like threads, depending on runtime systems that

may sacrifice performance or compatibility with the ABIs of important platforms (e.g., resource-constrained

IoT systems). We present a compiler-based technique allowing the best of both worlds, coding protocols

in a natural high-level form, using freer monads to represent nested coroutines, which are then compiled

automatically to lower-level code with explicit state. In fact, our compiler is implemented as a tactic in the Coq

proof assistant, structuring compilation as search for an equivalence proof for source and target programs.

As such, it is straightforwardly (and soundly) extensible with new hints, for instance regarding new data

structures that may be used for efficient lookup of coroutines. As a case study, we implemented a core of

TLS sufficient for use with popular Web browsers, and our experiments show that the extracted Haskell code

achieves reasonable performance.
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1 INTRODUCTION

Many popular implementations of security-critical network protocols such as TLS are prone
to łstate-machine vulnerabilitiesž [Beurdouche et al. 2015; de Ruiter and Poll 2015; Yadav and
Sadhukhan 2019] that occur due to human error in translating the desired interaction flow into a
state type and state-transition function. This section will review the key programming task during
which these errors occur and lead to our proposed alternative: a compiler that translates code with
I/O operations into a self-contained state type and a step function that accepts inputs and returns
outputs. We were surprised to discover that ideas with the flavor of algebraic effects [Plotkin and
Pretnar 2008], specifically with programs in the style of freer monads [Kiselyov and Ishii 2015] (also
associated lately with the terminology łinteraction treesž [Xia et al. 2020]), facilitate a pleasant new
source syntax with elegant theory of correct compilation. We prove (using the Coq proof assistant)
that our translation preserves the behavior of the program and use it to write a short and elegant
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Can send | ◦ ◦ ◦

app data | Send Finished message

after here −→ | Now use " a p p l i c a t i o n " keys to encrypt sent data

| Now use " handshake " keys to decrypt received data

+−−−−−−−−−+−−−−−−−−+

No auth | | Requested client auth earlier
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| Recv empty | | Receive Certificate message

| Certificate | WAIT_CV

| v | Receive CertVerify message

+−→ WAIT_FINISHED ←−−+

| Receive Finished message

v Now use " a p p l i c a t i o n " keys to decrypt received data

CONNECTED

Fig. 1. TLS 1.3 server-state-transition diagram. Simplified, based on a similar diagram in RFC 8446, Appendix

A. State labels (all caps) have no meaning; other text describes actions from the server perspective.

TLS implementation. The main new technical challenge is handling of nested coroutines (to our
knowledge, freer monads had not previously been applied to implement any kind of concurrency)
and their proved compilation to nested state machines. However, we found that careful definition
of the source language led the compilation details to fall out rather directly and pleasingly.

Direct-style protocol implementation. The IETF RFC specifying TLS 1.3, the latest version of the
protocol underlying cryptographically secure Web browsing and more, includes a diagram like Fig.
1. It appears reasonably straightforward to translate it into the following pseudocode:

SendFinished ( ) ; KeysAppHandshake ( )

if RecvCertificate ( ) :

RecvCertificateVerify ( )

else :

FailIfCertificateRequired ( )

RecvFinished ( ) ; KeysAppApp ( )

The previous pseudocode takes advantage of familiar conveniences of łdirect-stylež programming,
where we ask a compiler to handle representing control state with call stacks, continuations, or
whatever else. There is no explicit programmer effort to keep track of łwhere we arež in the code.
However, conventional implementation strategies for concurrent and nested direct-style code
(interpreters, compilers, runtime systems) are difficult to support as C libraries that can be linked
with unrelated C libraries ś it does not scale to allow each library to introduce a new concurrency
idiom and required runtime support. In practice, each network-protocol library written in C has
some high-priority use case whose compatibility and performance constraints are believed to
require use of łidiomaticž C code where protocol control state is explicit. However, that sort of
explicit control management is precisely where state-machine bugs can arise.

State-machine challenges. For instance, NSS, Mozilla’s cryptographic library, includes the code
in Fig. 2 as part of its handling of TLS handshaking. The argument ss holds connection-specific
state. Note how the switch statement on the left is dispatching based, in some sense, on łwhere the
program counter isž in the more natural, direct-style version of this code. The more convoluted
control flow of explicit state machines makes it harder to keep track of what is happening in the
protocol. We must take care to consult the proper fields of persistent state and update them and
others based on new protocol messages. Understanding the code on the right in Fig. 2 is suddenly
far from obvious: while the fields consulted for conditional branches and written based on these
decisions seem still to correspond to łwhere in the protocolž the server is, only one of them matches
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HandlePostHelloHandshakeMsg ( Socket∗ss , u8buf∗b ) {

/∗ TODO ( REDACTED ) : Would it be better to

check all the states here ? ∗/

switch ( ss→ssl3 . hs . msg_type ) {

// [ many other cases omitted ]

case ssl_hs_finished :

return ServerHandleFinished ( ss , b ) ;

default :

FATAL_ERROR ( ss , . . . , unexpected_message ) ;

return SECFailure ;

ServerHandleFinished ( Socket ∗ss , u8buf ∗b ) {

if ( ss→ssl3 . hs . ws != wait_finished ) {

return SECFailure ;

}

ss→ssl3 . hs . endOfFlight = PR_TRUE ;

ss→ handshake = NULL ;

ss→ssl3 . hs . ws = idle_handshake ;

// [ cryptographic computation omitted ]

if ( ss→sec . authType != ssl_auth_psk ) {

SendNewSessionTicket ( ss , NULL , 0 ) ;

Fig. 2. Excerpts from NSS 3.59 server state machine code. Comments with // are ours, and /∗ .. ∗/ are not.

match parse_handshake b with Ok handshake→ (match cs, handshake with

| AwaitClientCert(d,f,c,s,l), Cert(x) → answer_client_cert hs x d f c s b l

| AwaitClientCertVerify(d,f,c,s,l), CertVerify(x)→ answer_client_cert_verify hs x d f c s b l

| AwaitClientFinished(f,c,s,l), Finished(x) → answer_client_finished hs x f c s buf log

| (* ... *) | _, h → fail(‘Fatal(‘UnexpectedHandshake h)))

Fig. 3. OCaml-TLS code for handling Finished message or alternatives, simplified and shortened under the

same assumptions as NSS code earlier. 20 lines in the original.

a label from Fig. 1. The only reliable way to review this kind of code is to trace all reads and writes
of each state variable exhaustively, mentally reconstructing a state diagram akin to Fig. 1 with
many fewer branches than in the implementation. This exercise is time-consuming and error-prone,
as evidenced by the severe bugs we recount in section 1.1.

The same complexity inherent to explicit nested state machines appears in the clean-slate OCaml
implementation of TLS titled łNot-quite-so-broken TLSž [Kaloper-Meršinjak et al. 2015]: just
compare Fig. 3 to our pseudocode sketch and then Fig. 2. While the OCaml TLS code is shorter
and easier to read than the NSS code, we believe that this improvement is due to notational
changes (primarily variant types) and omission of obscure functionality, making it orthogonal to
the challenges we are discussing here.

Nested state machines. The challenge so far is similar to classic challenges of compiling direct-
style code, but real-world network protocols are distinguished by the use of nested state machines.
Consider the much more mundane task of reading a specified number of bytes from a stream:
every time a chunk of bytes arrives, NSS appends it to the previously received buffer and checks
whether the specified threshold has been reached (Fig. 11, pushed to the end of the paper). If yes,
the code for handling incoming messages (and eventually calling code in Fig. 2) is invoked. The call
stack handling the last byte of a message crosses all abstraction levels (substatemachines) of the
TLS stack, again illustrating the difference of control flow between NSS (and other widely used
implementations of TLS or similar protocols) and the way the same protocols are described in the
standards or rigged up in toy/reference implementations (such as our pseudocode sketch above).
For a server willing to communicate with multiple clients at once, it is natural to consider at least
three levels of nesting of communicating state machines: top-level server, per-client message-level
logic, per-client bytestream chunker.

We propose thinking of the łblockingž and łwakeupž code paths that appear between protocol-
level actions as an inlined userland implementation of cooperative multithreading, such that NSS’s
reads and writes of ss correspond to saving and restoring the state of a lightweight thread. The
same could have been written using a couple of threads per connection, each of which would have
straight-line control flow through actions at a single abstraction layer. However, the style with
explicit state machines has three important benefits: it is deterministic, it does not depend on a
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particular implementation of concurrency, and it is believed to achieve better performance. We will
focus on the first two.

Implementing network-protocol concurrency. The implementation of TLS in the standard library of
the Go programming language expects the user to create multiple Go threads to handle simultane-
ous connections, which allows the library to use blocking I/O for receiving and sending messages,
removing the need to reify the state between interactions and allowing for significantly shorter
code. OCaml-TLS provides a similar interface using the LWT library to wrap the implementation
that uses hand-reified state. As a result, a typical application would experience arbitrarily compli-
cated interleavings between the handling of its multiple connections, complicating analysis and
troubleshooting of potential issues. Further, both LWT and Go rely on intricate dynamic user-space
implementations of multithreading which an application using the library would need to adopt
and the deployment platform would need to support. We are not aware of any production code
that uses a userspace multithreading implementation for some but not all I/O inside a process, or
that uses two libraries with different implementations of multithreading, whereas NSS is one of
536 libraries in Firefox that use POSIX-style nonblocking I/O and C-style single-stack function
calls1. Finally, libraries with hand-reified state can be used on embedded devices for which no
general-purpose multithreading implementation is available. One could also use operating-system
threads to the same effect, but this choice is rare because most libraries seek portability across
operating systems and have some use cases for which the overhead of creating and switching
operating-system threads is prohibitive.

Our contribution. We propose a programming style and a compiler to generate code with reified
state machines (in the style that is written by-hand for implementations that are widely used today)
from source code that uses blocking I/O and allows for successive steps in each layer of the protocol
to be written in straightline code. The source language is realized as a Coq library for structuring
these computations, with the ability to include arbitrary code in Coq’s Gallina language in the steps
between explicit state-machine operations. We encode interthread communication in the style of
freer monads, as elements of an inductive datatype that sequences stateful operations explicitly.
Our implementation can be seen as an example of an approach to compiling monadic programs
with coroutines to explicit state machines. The compiler is written in Coq’s Ltac tactic language,
and it generates proofs of semantics preservation, according to a natural relation between monadic
programs and state machines. In fact, compilation is structured as a search for a proof of łthere
exists a related state-machine program.ž

The step taken in this paper is just the first toward trustworthy compilation of natural protocol
definitions to efficient and portable code. Wewill show how to compile natural higher-order, modular

descriptions into less-natural first-order, flat descriptions of state machines, and we will do it with
generation of Coq proofs per-compilation. The resulting functional programs may very well achieve
superior performance to the originals on certain language implementations, but our longer-term
goal is to pick up with trustworthy compilation of first-order functional programs to C and related
languages. In that way, we can maximize control over performance-relevant behavior, and we can
generate idiomatic code free of dependencies on garbage collectors, thread libraries, and the like.
For now, though, our experiments do depend on standard functional-language implementations.
Starting the project, it was not at all obvious to us that there was a close connection between

freer monads and nested state machines in multithreaded code. We eventually arrived at what we
hope is a pleasingly simple formulation, of original programs and their certifying compilation to
state machines. It allows use of arbitrary container data structures to keep track of nested state

1On Debian Linux on x86_64, including vendored code in third_party
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machines, via type classes. Before moving on to specifics, we will review some of the evidence that
a new programming style is sorely needed.

1.1 Past High-Impact Bugs Motivating This Work

Perhaps the best-known TLS state-machine vulnerability is that OpenSSL 1.01g and earlier2 ac-
cepted a ChangeCipherSpec (CCS) message before the connection master secret was established and
generated session keys without any entropy. A network attacker intercepting a connection between
vulnerable implementations could decrypt and modify the traffic by injecting one CCS message in
each direction, deterministically generating the same keys and hijacking the connection from there
on. Operationally, a buggy execution interprets a Boolean state variable new_cipher as łis it valid
to change to a new cipher now?ž, but that variable is written as łis a new cipher type known?ž,
with the crucial difference being whether the key is known [Langley 2014].

The history of the bug suggests it was a conceptual issue, not a fat-finger error. TLS client code in
all public versions of OpenSSL dating back to 1998 is affected. Similar issues related to mishandling
of early CCS messages had been patched in 2004 and 2009 before the famous one was discovered in
2014. The discoverer of the vulnerability also highlights language in the SSLv3 specification that
could have led to misunderstanding of the requirements for handling CCS [Kikuchi 2014], but since
encryption without a key is glaringly useless, we prefer to look for the root cause in code structure
that obscured this possibility.
The following systematic investigation uncovered numerous bugs by automatically tampering

with the sequence of messages [Beurdouche et al. 2015]; the authors caution that the search was far
from complete due to the amount of effort required to tell serious bugs apart from harmless state-
machine imprecision. Arguably the most broadly severe finding was that almost all tested TLS client
code allowed an unexpected ServerKeyExchange message to replace a properly negotiated public
key with a weaker alternative also offered by the server. Due to legacy support for intentionally
weak łexportž ciphers from before 2000, this allowed for impersonation of many web servers at
the cost of 512-bit factoring. Affected implementations included OpenSSL, BoringSSL (Chrome),
SecureTransport (Safari), SChannel (Internet Explorer), LibReSSL, Mono, and Java. Again, an
implementation with straightforward control flow could not exhibit this behavior: an incoming
message of an unexpected type would be handled naturally as an error.

1.2 Formal-Methods Context

We decided not just to design a language (extension) and compiler to automate this kind of error-
prone programming. We also want to craft the language and tooling for eventual connection with
end-to-end machine-checked proof of cryptographic systems.
Formal methods and cryptography have long been connected fruitfully. There is a natural di-

vision of labor across subcommunities. For instance, one might verify cryptographic security
of a protocol like TLS using a tool like CryptoVerif [Blanchet 2006] while relying on number-
crunching cryptographic primitives implemented and proved in the F∗ language as in the Ever-
Crypt library [Protzenko et al. 2020]. It is tempting to try to fit all relevant proofs within a single
framework, as with a proof assistant like Coq. Indeed, alternatives for the ingredients already exist,
e.g. for security verification, CertiCrypt [Barthe et al. 2009] and the Foundational Cryptography
Framework [Petcher and Morrisett 2015]; and for functional-correctness verification, Fiat Cryptog-
raphy [Erbsen et al. 2019]. The team behind the Verified Software Toolchain (VST), a Coq library for
verifying C programs, has even done the integration for two important primitives [Beringer et al.

2CVE-2014-0224, https://www.openssl.org/news/secadv/20140605.txt
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2015; Ye et al. 2017], connecting to verified C compiler CompCert [Leroy 2009] to push guarantees
down to assembly.

However, an important gap in this work has been natural specification or coding of protocols. It
is not enough to treat a cryptographic security condition as the łpublic interfacež of a protocol.
Implementations need to interoperate with each other, so they must agree on all protocol details.
Past cryptographic work with formal methods has also implemented nested state machines directly,
with the accompanying opportunities for bugs. Proof of security properties is, of course, valuable
and effective, but proving two implementations secure on their own does not imply that they will
interoperate securely (or at all!). Two teams implementing the same protocol from an informal
description may translate it into code bases that are subtly insecure when used together, even
if each individually is proven against the same security property. It seems we have a case truly
demanding that complex protocol descriptions be auditable by humans.

Thus, we have framed our work in terms of a useful building block for end-to-end crypto proof:
certifying compilation of natural higher-level code to nested state machines. As a result, we were
able to write our executable Coq version of a sufficient TLS subset to interact with real browsers,
finding only two bugs through testing rather than type-checking and manual inspection (and one
bug was in a library dependency we used for crypto primitives, which we hope eventually to replace
with a verified alternative). We did not prove our version against a security property, though our
source notation is designed to be more congenial to that purpose than alternatives.

Our work fits in the tradition of program derivation through mechanized proof, where a program
is found by constructively proving its existence against a spec, using tactic scripts. For instance,
the Fiat project has demonstrated such derivation in a common framework, for the examples of
relational-database-style querying [Delaware et al. 2015] and binary-format parsing [Delaware
et al. 2019]. Our new compiler can be viewed as adding another domain, coroutine management in
network protocols, to that repertoire. We also only consider features relevant to how engineers in
industry write down protocols for easymanual translation tomany languages, thus not complicating
the story with features like higher-order state, general recursion, or exceptions, which often create
headaches for semantics designers.
As in the work with VST, our eventual goal is to generate proven C code and connect with

verified compilers, though we did not implement that translation yet, stopping instead at functional
code that can be extracted to Haskell. As a result, we do not yet realize our performance goals,
though we come surprisingly close to a prior Haskell implementation at low concurrency levels
(our current tooling does not take advantage of multicore execution). Taking inspiration from Fiat,
we hope to use tactic-based program derivation to produce C code equivalent to ours, perhaps
adopting their technique [Pit-Claudel et al. 2020] literally.

1.3 Outline of This Paper

Having set the stage for the problem we solve, we switch, in the next section, to illustrating an
alternative programming style (based on coroutines) and how it can be compiled to maintain
state machines explicitly. Afterward, we introduce our languages and compilation in detail, also
considering how the latter can generate machine-checked (Coq) proofs of behavior preservation.
Then we turn to our case study implementing TLS 1.3 as required to serve Web requests from
popular browsers. We discuss the code, its performance, and our experience debugging it, before
wrapping up with related and future work.

The contributions we mean to highlight are:

• We identify the important problem of translating higher-level, coroutine-based protocol
implementations into explicit nested state machines.
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• We present a simple convention on top of freer monads that serves as a convenient embedded
source language for protocols, within a general-purpose functional language.
• We present an effective proof-generating compilation method, including a multiphase way of
handling nested coroutines and a type-class-based approach to handling different container
data structures.
• We evaluate a prototype tool on a large enough subset of TLS 1.3 to interoperate with all
popular browsers.

The code is available under an open-source license at:

https://github.com/mit-plv/certifying-derivation-of-state-machines-from-coroutines

2 BLOCKING I/O, COROUTINES, AND STATE MACHINES

Let us now consider what it might be like to program these protocol implementations more directly,
while relying on a compiler to produce traditional implementations without library dependencies.
We start with simplified syntax for functional programming, before moving to Coq specifics later.
For now, we rely on reader intuitions about the notations before we explain their formal desugarings
in the next section.
To get a sense for our compilation strategy, it is illustrative to begin with single-threaded

code. Here is our first example program, which reads two inputs (e.g., from a terminal) and then
perhaps prints a derived value, before returning. It is a useful starting intuition to imagine we are
programming in the style of Haskell’s IO monad.

Definition get_put :=

w1 ← input;

w2 ← input;

if w1 == "" then

return "done"

else

print (w1+w2);

return w2

It is now well-known how to implement such direct-style code in terms of lower-level primitives
in continuation-passing style; see, for instance, Reynolds [1972]. It will be instructive to review the
outcome of such a process, before we move on to the new subtleties of our work. Our compilation
strategy produces the following alternative code without implicit blocking for input, where we
omit the definition of an algebraic datatype being used to represent state (otherwise known as
defunctionalized continuations). We have a step function that, given a state and a result from a
prior system call (primitive I/O operation), returns a new state and an optional next system call.

Definition get_put' (st : state) (syscall_result : string) : state * option syscall :=

match st with

| Init ⇒ (AfterInput1 syscall_result, Some Input)

| AfterInput1 w1 ⇒ (AfterInput2 w1 syscall_result, Some Input)

| Afterinput2 w1 w2 ⇒

if w1 == "" then

(Terminate "done", None)

else

(AfterPrint w2, Some (Print (w1 + w2)))

| AfterPrint w2 ⇒ (Terminate w2, None)

end

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 24. Publication date: January 2022.
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Each constructor of the state (continuation) type receives free variables as arguments. The function
get_put' itself is a kind of automaton step function. Note how it handles a state constructor
per effectful line of source code, returning values built with the constructors Input or Print to
request next system calls. Those calls’ results flow back in through the syscall_result argument
in subsequent steps. We simplify these examples by allowing ourselves to skip handling Terminate

states, which signify that no more steps are needed.

2.1 Coroutines

Now let us introduce the twist vs. past work: multithreading, which is actually presented with
coroutines in our source language. Adopting Python’s coroutines terminology in functional code,
we end up with examples like the following.

Definition ex_coro :=

s0 ← yield "";

s1 ← yield s0;

yield (s0 + s1)

Definition parent :=

let c := ex_coro in

send c "";

r1 ← send c "Hello, ";

print r1; (* Output: Hello, *)

r2 ← send c "world!";

print r2 (* Output: Hello, world! *)

Note how control is ping-ponging back-and-forth between parent code and its child coroutine,
where the argument of a parent send call becomes the result of a pending child yield, and where,
symmetrically, the argument of a child yield becomes the result of a parent send. The compiled
state-machine version explains it all in terms of conventional functional programming. First, here
is how we compile the child coroutine, just like for our last example but presuming that Yield is
the only available syscall.

Definition ex_coro' (st : child_state) (syscall_result : string)

: state * option syscall :=

match st with

| Init ⇒ (AfterYield1, Some (Yield ""))

| AfterYield1 ⇒ (AfterYield2 syscall_result, Some (Yield syscall_result))

| AfterYield2 s0 ⇒ (Terminate, Some (Yield (s0 + syscall_result)))

end

For the parent, before transforming it into a state machine, we transform it into an intermediate
form that creates the state machine of ex_coro and calls its step function instead of ex_coro itself:

Definition parent_inter :=

let c := (Init, ex_coro') in

r1 ← step c "Hello, ";

print r1; (* Output: Hello, *)

r2 ← step c "world!";

print r2 (* Output: Hello, world! *)

Then, the state machine for parent_inter is obtained in the same way. That is, we need not invent
new compilation techniques for handling coroutines, once we inline state machines in the code of
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Certifying Derivation of State Machines from Coroutines 24:9

their parents. We maintain a small veil of mystery until the next section, in terms of how we make
some of these coroutine notations work in a purely functional setting.

2.2 Coroutines in Containers

Our compiler also handles parents with container data structures storing coroutines, as in the
following example.

Definition parent2 :=

let l := map (fun _ ⇒ ex_coro) (numeric_range 5) in

l ← mapM (fun c ⇒ send c "") l;

l ← foldlM (fun _ l ⇒

n ← input;

let n := as_int(n) in

if 0 <= n < 5 then

with_list_elementM l n (fun c ⇒

s ← input;

send c s)

else

return l) l (numeric_range 3);

return "done"

This example makes good use of higher-order functions for monadic code. For instance, mapM is
used to run a side-effecting computation on each element of a list. We start by initializing a list l of
five child coroutines, and then we use mapM to send each coroutine an initial message. Then we use
foldlM to run through integers 0, 1, and 2 (the elements of numeric_range 3), in each case reading
a numeric input and using it to choose a coroutine in l that should be passed another fresh input.
It is important that the coroutines maintain their local state throughout these interactions.

We are playing a bit fast and loose with the plumbing of coroutine state above; we very shortly
reveal the details, which do require small modifications to this example. In general, realistic protocol
implementations may nest coroutines like these to arbitrary depth, and they may use different
container structures to support efficient lookup of the coroutine implicated in a particular step.
The compiled program for this example is obtained as in the prior example: we first transform

this parent code to store explicit state machines instead of coroutines, and we then compile the
transformed parent into a state machine itself. Imagine that process proceeding recursively, for
examples with deeper nesting.
Taking a step back, what we have accomplished with this style is good modularity between

aspects of a communication protocol (e.g., the code of parents vs. children in these last two examples),
which communicate via messages internal to the protocol implementation. Each aspect can be
audited in terms of its own vocabulary of incoming requests and outgoing responses. Unfortunately,
standard implementations of coroutines add significant performance overhead, with dynamic
allocation of coroutine objects, nested inside each other’s closures. Furthermore, the very need
to identify and allocate closures implicitly forces us toward a łmanaged languagež that may be
difficult to bring up on a resource-constrained embedded system, or even as part of a new library
added to a program written in a language with a different runtime system. The outputs of our
compiler are łmore first-orderž and easier to compile directly to, say, C code (which we hope to do,
in a proof-producing way, in future work). Further, we generate Coq proofs of correct compilation,
in a sense taking a step toward certifying compilation for features familiar from Python and other
languages.
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3 COMPILATION STRATEGY

Our compiler produces a state machine from an effectful program and proves the equivalence
between the input and output programs. From this point forward in the paper, we more rigorously
present the actual code representation and other Coq-level details in our prototype library.

3.1 Source Programs: Freer Monads

To represent effectful programs in our system, we use the following variant of the structure called
a freer monad [Kiselyov and Ishii 2015].

Inductive t {eff : Set} (args rets : eff → Set) (A : Set) :=

| Eff : forall (e : eff), args e →

(rets e → t args rets A) → t args rets A

| Return : A → t args rets A.

The type eff is the type of primitive effectful operations (and curly braces ask for it to be inferred at
use sites), and functions args and rets respectively assign argument and return types to operations.
For example, consider the following:

Inductive effect := getStr | putStr.

Definition args_effect (e : effect) :=

match e with

| getStr ⇒ unit

| putStr ⇒ string

end.

Definition rets_effect (e : effect) :=

match e with

| getStr ⇒ string

| putStr ⇒ unit

end.

Then we introduce convenient notations, following the convention of writing e.g. c(x) as a metavari-
able standing for a term where variable x can occur free, so that we can write c(e) for substitution
of term e for x. Also note that tt is the one value of type unit.

x ← getStr; c(x) ≡ Eff getStr tt (fun x ⇒ c(x))

putStr x; c ≡ Eff putStr x (fun _ ⇒ c)

Now we can write effectful programs in an imperative style. Coroutines are represented as
programs inhabiting the t type family, with yields as their effects. So, the type of effects is

Inductive yield_eff := yield.

The argument and return types of yield will vary across use cases, as they indicate which sorts
of data are passed between parent and child coroutines.
Our focus in the rest of the paper will be on correct compilation of these programs to a lower-

level form. Of course, it is also valuable to establish correctness and security properties of the
source code. As that source language is more or less interaction trees, and as there has already
been substantial work on functional verification of interaction trees [Koh et al. 2019; Xia et al.
2020; Zhang et al. 2021], we have high hopes that follow-on work can connect such proofs to our
certifying compilation.
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3.2 Target Programs: State Machines

Let us consider an example (Fig. 4) of how such an effectful program can be compiled to a state
machine. Recall that our state machines are just pure Coq (Gallina) programs paired with state types
and initial states. As a result, there is no need to delineate what the łtarget languagež is. Instead,
think of arbitrary pure functions of type state → syscall_response → state * option syscall

as in the examples of section 2. Our implementation actually uses dependent types to model the
varying argument and return types of different effects, but the core ideas can be understood without
appeal to dependent types.
get_put_state is the type of states of the generated state machine. It has five states (some taking

arguments) that are constructed by𝑞0,𝑞1,𝑞2 𝑥 ,𝑞3 𝑥 , and𝑞4 𝑥 ; where 𝑥 in each state is a tuple of saved
original-program-variable values needed to proceed from that state. The function get_put_step is
another component of the state machine. It takes a state as its first argument and the value returned
by the previous effect as the third argument. The second argument is expected to be the previous
effect performed, which is needed to make the step function well-typed. If the given first argument
is the initial state, then get_put_step does not use the remaining arguments. It returns Done 𝑟 if
the program is finished outputting the value 𝑟 and returns GoNext(𝑠, 𝑜) otherwise. Variable 𝑠 is the
next state to visit, and 𝑜 is Some(𝑒, 𝑎) if the effect operation 𝑒 with argument 𝑎 is expected to be
performed. Variable 𝑜 is None if no more effects will be performed (i.e., execution is complete).

To run this state machine, we extract the step function to another language and write a loop to
drive I/O. An example of a Haskell implementation of the loop is given in Fig. 5. It relies on a few
łunsafež type casts to work around the expressivity gaps between the type systems of Haskell and
Coq, though one can imagine extending our Coq code derivation to produce (proved) lower-level
code where these concerns no longer exist.

Here we pause to emphasize how lightweight this encoding is, as a layer on top of Coq’s functional
language Gallina. We are adding effects in a very similar style to how I/O was added to Haskell
via monads [Peyton Jones and Wadler 1993]. The crucial difference is that we materialize explicit
abstract syntax trees of effectful programs in our t type family, making it easy to deconstruct such
values both in Coq semantics and proofs and in interpreters like the one in Fig. 5. As when Haskell
was extended with monadic I/O, all familiar pure constructs of the language remain usable, usually
requiring no special effort by our compiler to preserve. The compiler is designed so that, if a source
program is higher-order only in its calls to constructors of the t type family, then the compiled
state-machine version is first-order, in the sense of using no higher-order functions.

3.3 Compilation, Informally

We shall see how we obtain a type of states and a step function from a source program. First, we
focus on programs that interleave I/O actions with computation, postponing to the next subsection
a modularizing of code across coroutines. Recall that our encoding of stateful programs is very
lightweight and relies on built-in pure-Gallina features for the plumbing between effects. As a
result, there is no more detailed syntax-tree type beyond the inductive definition of t shown earlier
in this section. However, implicit in the compiler is a limited grammar of łstatementž constructs, or
syntactic forms used to build values inhabiting t, while we impose no restrictions on łexpressionž
constructs, for building e.g. the parameters passed to system calls.

Here is a grammar in familiar notation, meant to convey that idea. Most important to remember is
that the nonterminal 𝑣 encompasses all terms of Coq’s functional language Gallina. The nonterminal
𝑝 of programs includes cases for the constructors of t, plus a handful of control-flow features that
we found useful to support, each of which needs its own case in our compiler. Note that, while the
inductive definition of t includes no constructors for special control flow, the use of an argument
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Source :

get_put =

𝑤1 ← getStr;

𝑤2 ← getStr;

if 𝑤1 = ”” then

Return None

else

putStr (𝑤1 ++𝑤2);

Return (Some𝑤2)

Compiled :

get_put_state = 𝑞0 | 𝑞1 | 𝑞2 string | 𝑞3 (string × string) | 𝑞4 (option string)

get_put_step 𝑠 𝑒 𝑎 =





GoNext(𝑞1, Some(getStr, ())), if 𝑠 = 𝑞0

GoNext(𝑞2 𝑎, Some(getStr, ())), if 𝑠 = 𝑞1, 𝑒 = getStr

GoNext(𝑞4 None,None), if 𝑠 = 𝑞2 𝑤1, 𝑤1 = ””, 𝑒 = getStr

GoNext(𝑞3 (𝑤1, 𝑎), Some(putStr,𝑤1 ++ 𝑎)), if 𝑠 = 𝑞2 𝑤1, 𝑤1 ≠ ””, 𝑒 = getStr

GoNext(𝑞4 (Some(𝑤2)),None), if 𝑠 = 𝑞3 (𝑤1,𝑤2), 𝑒 = putStr

Done r, if 𝑠 = 𝑞4 𝑟

Done None, otherwise

Fig. 4. An effectful source program and its compiled version

loop : : Get_put_state → Effect → Any → IO ( Maybe String )

loop st0 e r =

case get_put_step st0 e r of

Done v → return v

GoNext ( st , Nothing ) → loop st dummyEffect dummyArg

GoNext ( st , Just ( ExistT e ' a ) ) →

case e ' of

GetStr → do

str ← getLine

loop st GetStr ( unsafeCoerce str )

PutStr → do

putStrLn ( unsafeCoerce a )

loop st PutStr ( unsafeCoerce ( ) )

where dummyEffect = GetStr

dummyArg = unsafeCoerce ( )

Fig. 5. Haskell program to run the state machine get_put_step
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of type rets e → t args rets A naturally allows use of native Gallina features to deconstruct
system-call return values in rets e. (For a gentler introduction to the consequences of this encoding
style, see a recent functional pearl by one of us [Chlipala 2021].)

Identifier 𝑖

Program (without effects) 𝑣

Effect 𝑒

Effectful program 𝑝 ::= Return 𝑣

| 𝑖 ← 𝑒 𝑣 ;𝑝 (𝑖)

| let 𝑖 := 𝑣 in 𝑝 (𝑖)

| if 𝑣 then 𝑝 else 𝑝

| (fix 𝑖1 𝑖2 𝑖3 :=

if 𝑖2 = 0 then 𝑝 (𝑖3) else 𝑝 (𝑖2, 𝑖3, 𝑖1 (𝑖2 − 1))) 𝑖2 𝑖3

We can easily extend to support pattern matching for an arbitrary algebraic datatype, but our
current compiler only supports a few selected algebraic datatypes (currently lists, options, and
variants). Here we include recursive-function definition specialized to the natural numbers with a
fix keyword. Our implementation also supports recursion on lists.

We present the compilation approach first in a relatively informal way, circling back in the next
section to fill in the gaps. Fig. 6 shows an implementation in some least-common-denominator
purely functional language. Function C0 compiles an effectful program (inhabiting type family t)
to a type of states and a pure step function. It relies mostly on helper function C′0 , which takes as
an additional argument a typing context Γ, mapping free variables of the effectful program to their
types (which will not change during compilation).
The outputs of compilation are accumulated in two mutable lists state_type and step_cases,

which respectively build up the constructors of the algebraic data type for states and the pattern-
matching cases of the step function. An entry in the former gives a constructor name and its
argument types; while an entry in the latter gives a state-type constructor with variable binders for
its arguments, an effect constructor with a variable binder for its parameter, and a body expression
to evaluate under all those binders. Compilation kicks off by allocating a fresh name 𝑞0 for the
initial state constructor.
The C′0 cases for Return and Eff are responsible for generating step-function expressions using

Done and GoNext directly. The latter generates a fresh state name and makes a recursive call to
compile the code coming after the indicated effect. Crucially, the same state name is used both to
extend the pattern-matching cases and to generate a reference to the same state in the arguments
to GoNext.

The control-flow cases for let and if just make recursive calls inside the bodies of the expressions,
while handling of fix is more involved. For termination of the algorithm, we memoize compilation
results in a mutable variable recursive_call_cache. The idea is to compile each of the two cases
within the fix under appropriately extended environments Γ, with the fix itself substituted for the
function name in the latter. When we do eventually hit another recursive call, it will (almost; see
below) hit in the cache and avoid any more deep traversal.

The code of Fig. 6 is cutting corners in a few dimensions that would already be problematic for
writing an executable compiler, let alone one amenable to mechanized proof.

• We deal with the usual bureaucracy of manipulating terms with variable binders, including
substitution and fresh-name generation, which are not so trivial to formalize.
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C0 (𝑝) =

𝑞0 ← gensym;
state_type← ref [𝑞0];
step_cases← ref [];
recursive_call_cache← ref [];
let rec C′0 (Γ, 𝑝) = case 𝑝 of

| Return(𝑣) ⇒ return (Done 𝑣)

| Eff(𝑒, 𝑎, 𝑘) ⇒

𝑞 ← gensym;
append state_type (𝑞(Γ));
𝑥 ← gensym;
𝑝 ′← C′0 (Γ + 𝑥 : args(𝑒), 𝑘 (𝑥));
append step_cases (𝑞(Γ), 𝑒 (𝑥), 𝑝 ′);
return (GoNext (𝑞(vars(Γ)), (𝑒, 𝑎)))

| (let 𝑥 : 𝜏 = 𝑒 in 𝑘 (𝑥)) ⇒

𝑝 ′← C′0 (Γ + 𝑥 : 𝜏, 𝑘 (𝑥));
return (let 𝑥 : 𝜏 = 𝑒 in 𝑝 ′(𝑥))

| (if 𝑏 then 𝑝1 else 𝑝2) ⇒

𝑝 ′1 ← C
′
0 (Γ, 𝑝1);

𝑝 ′2 ← C
′
0 (Γ, 𝑝2);

return (if 𝑏 then 𝑝 ′1 else 𝑝
′
2)

| (fix 𝑓 𝑛 (𝑥 : 𝜏) := if 𝑛 = 0 then 𝑝1 (𝑥) else 𝑝2 (𝑛, 𝑥, 𝑓 (𝑛 − 1))) 𝑎 𝑏 ⇒
cached← lookup recursive_call_cache 𝑝;
case cached of

| Some(𝑣) ⇒ return 𝑣

| None⇒

𝑝 ′1 ← C
′
0 (Γ + 𝑥 : 𝜏, 𝑝1 (𝑥));

𝑝 ′2 ← C
′
0 (Γ + 𝑛 : N + 𝑥 : 𝜏,

𝑝2 (𝑛, 𝑥, (fix 𝑓 𝑛 𝑥 := if 𝑛 = 0 then 𝑝1 (𝑥) else 𝑝2 (𝑛, 𝑥, 𝑓 (𝑛 − 1)))));
let 𝑟 = (if 𝑎 = 0 then 𝑝 ′1 (𝑏) else 𝑝

′
2 (𝑎 − 1, 𝑏)) in

append recursive_call_cache (𝑝, 𝑟 );
return 𝑟 in

𝑝 ′← C′0 ( [], 𝑝);
append step_cases (𝑞0, _, 𝑝

′);
𝑇 ← read state_type;
𝑆 ← read step_cases;
return (𝑇, 𝑆)

Fig. 6. Informal version of core compiler

• We play fast-and-loose with syntax of the metalanguage vs. the object language, overloading
e.g. let for compile-time and quoted run-time versions.
• The handling of recursive fix functions seems to beg the question, actually leading to an
infinite loop at compile time. It could probably be made to work out, though, if the cache
associated recursive functions with mutable references that are filled in as we compile.
• The code is rather imperative, which tends to create headaches for mechanized proofs,
compared to more purely functional implementations.
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Since we want a Coq proof of correct compilation on each run of this algorithm, it is natural
to expect that Coq’s tactic language Ltac will be involved somehow. However, it also turns out
that Ltac’s features provide for elegant solutions to the rough edges above. Tactic languages are
designed for recursive analysis and construction of logical terms. Management of variables and
environments is built into the proof engine, and there is integrated quoting of terms as needed,
connected smoothly with type checking. Finally, the same feature addresses our worries about fix
compilation and excessive use of imperative features: unification variables, which are selectively
filled in during proof search. We simply fill in recursive_call_cache with fresh unification variables
before proceeding to compile fix bodies, and all three imperatively growing lists become unification
variables in Ltac.

Now for the details, after we lay the foundations for how we state compilation as a proof goal
compatible with Ltac.

3.4 Compilation, Formally

To state compilation-correctness theorems, we define an equivalence between an effectful program
and a state machine. We write equiv step 𝑞0 𝑝 if an effectful program 𝑝 and a pair of step function
step and initial state 𝑞0 are equivalent, and it is defined by the following inference rules, which also
define a further relation ≃ connecting states for target and source programs. Here, in equations
between function calls and specific shapes of results, we use underscores to require that the function
result is independent of those argument values.

step 𝑞0 _ _ = GoNext (𝑠, 𝑜) (step, 𝑠, 𝑜) ≃ 𝑝

equiv step 𝑞0 𝑝

This top-level relation begins by assuming the state machine’s initial state is a kind of dummy
state that ignores its next input, returning the same pair of a new state and next effect regardless.
Then the main task of equivalence checking is pushed off to relation ≃. Note that the lefthand
operand to ≃ characterizes the state machine’s condition with a step function, state, and intended
next effect (𝑜). Also note that these rules are defined inductively, not coinductively, requiring that
every execution terminate, even if executions can run arbitrarily long depending on input values.

step 𝑠 _ _ = Done 𝑣

(step, 𝑠,None) ≃ Return 𝑣

∀𝑟, 𝑠 ′, 𝑜 ′. step 𝑠 𝑒 𝑟 = GoNext (𝑠 ′, 𝑜 ′) → (step, 𝑠 ′, 𝑜 ′) ≃ 𝑝 ′(𝑟 )

(step, 𝑠, Some (𝑒, 𝑎)) ≃ (𝑖 ← 𝑒 𝑎; 𝑝 ′(𝑖))

These rules are essentially a simplification of the classic technique of bisimulation for our setting.
In fact, we proved equivalence3 with the more standard definition of bisimulation, after expressing
our source and target semantics in labeled-transition-system style. We show that the two versions
of a program evolve in lockstep, regardless of how the environment responds to effect requests.
If the low-level step function indicates execution is done regardless of the next effect response,
then the high-level program had better be done with the same return value. If the low-level and
high-level programs agree on an effect to run next, then for any state transition indicated by the
low-level step function for some possible effect response (𝑟 ), the relation is preserved thereafter.

Note that this relation does not need rules for the other language constructs we explained so far,
because they are encoded in shallow-embedding style, using native Coq constructs, the possibility
for which is a significant advantage of the monadic style. We also point out that, like standard
bisimulation, this relation enforces consideration of all possible effect responses, even the bizarre
corner-case responses that make the most trouble for authors of protocol implementations. Also,
all concurrency behavior of the state machine is inherited literally from the source program; there
are no new concerns of fairness, etc.

3In our implementation, see theorem equiv_is_bisimulate in file src/ClConv.v.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 24. Publication date: January 2022.



24:16 Mirai Ikebuchi, Andres Erbsen, and Adam Chlipala

Our system automatically proves equivalence between a source program and its compiled version.
Moreover, the proof is constructed as we compile a program. That is, we state compilation as the
process of proving that there exists a state-machine program related to the source program by ≃.
As we carry out the proof, we fill in more and more of the structure of the state-machine program.

If the source program is 𝑖 ← 𝑒 𝑎;𝑝 (𝑖), then the inductive definition of ≃ determines what the step
function should be at the state for 𝑖 ← 𝑒 𝑎, and it matches the form of the step function described
in derive_core that will be explained later in this subsection. If the program is if 𝑏 then 𝑝1 else 𝑝2,
we apply the following lemma.

Lemma 1. If (step, 𝑠1, 𝑜1) ≃ 𝑝1 and (step, 𝑠2, 𝑜2) ≃ 𝑝2, then (step, 𝑠, 𝑜) ≃ 𝑝 holds where

𝑠 = if 𝑏 then 𝑠1 else 𝑠2,

𝑝 = if 𝑏 then 𝑝1 else 𝑝2,

𝑜 = if 𝑏 then 𝑜1 else 𝑜2.

We have similar lemmas for let and fix, and an entire proof is a sequence of applications of these
lemmas and rules of ≃.
Now we are ready to present the Ltac realization of compilation procedure C0 from Fig. 6. Key

complications from that figure, principally quoting of syntax trees andmanagement of fresh variable
names and environments, are built into the Coq proof engine and need not be dealt with explicitly
anymore. The three imperative lists that we built up by appending are replaced by unification
variables. Probably least intuitively, rather than returning target programs, the compiler fills them
into unification variables passed as arguments. They will be written as ?𝑠 for the state part of a
target program and ?𝑜 for the next-side-effect part. This commitment to unification variables turns
out to solve our challenge with compilation of recursive functions.

A type of states and a step function are determined in the following procedure. First, let the type
of states be 𝑞0 | ?𝑋 , and let 𝑞0 be the initial state. The notation 𝑞0 | ?𝑋 means that the available
states include 𝑞0 (with no arguments) plus a currently unknown sequence of additional states ?𝑋 .
Then, we partially define a step function step as step 𝑞0 _ _ = GoNext(?𝑠, ?𝑜) for new unification
variables ?𝑠, ?𝑜 . By the end of our procedure, step will be fully defined, filling in one state’s case at
a time, adding new cases as the compiler discovers new states.

Next, let prog be the input program and run the procedure derive_core below, which we imple-
ment in Ltac.
derive_core prog ?𝑠 ?𝑜 =

• Case prog = (𝑟 ← 𝑒 𝑎; 𝑝 (𝑟 )): If the type of states is of the form 𝑞0 | · · · | 𝑞𝑛𝑥 | ?𝑋 , unify ?𝑜
with Some(𝑒, 𝑎) and ?𝑠 with 𝑞𝑛+1 fv, where fv is the (possibly nested) tuple of free variables
in prog. (By this process, ?𝑋 is unified with 𝑞𝑛+1 𝑇 | ?𝑌 for the type 𝑇 of fv, with ?𝑌 a fresh
unification variable.) Then, let step ?𝑠 𝑒 𝑟 = GoNext(?𝑠 ′, ?𝑜 ′) for new unification variables
?𝑠 ′ and ?𝑜 ′, then run derive_core 𝑝 (𝑟 ) ?𝑠 ′ ?𝑜 ′ recursively, in a context with 𝑟 introduced as a
new local variable.
• Case prog = let 𝑥 := 𝑦 in 𝑝 (𝑥): Unify ?𝑠 with let 𝑥 := 𝑦 in ?𝑠 ′ and ?𝑜 with let 𝑥 := 𝑦 in ?𝑜 ′

for new unification variables ?𝑠 ′ and ?𝑜 ′. Run derive_core 𝑝 (𝑥) ?𝑠 ′ ?𝑜 ′, in a context with 𝑥

introduced as a new local variable.
• Case prog = if 𝑏 then 𝑝1 else 𝑝2 for some Boolean 𝑏: Unify ?𝑠 with if 𝑏 then ?𝑠1 else ?𝑠2 and
?𝑜 with if 𝑏 then ?𝑜1 else ?𝑜2 for new unification variables ?𝑠1, ?𝑠2, ?𝑜1, ?𝑜2. Make recursive
calls to derive_core 𝑝1 ?𝑠1 ?𝑜1 and derive_core 𝑝2 ?𝑠2 ?𝑜2.
• Case prog = (fix 𝑓 𝑛 𝑥 := if 𝑛 = 0 then 𝑝1 (𝑥) else 𝑝2 (𝑛, 𝑥, 𝑓 (𝑛 − 1))) 𝑛 𝑥 for some
𝑥 and a natural number 𝑛: If derive_core prog ?𝑠 ′ ?𝑜 ′ was run for some ?𝑠 ′, ?𝑜 ′ before,
unify ?𝑠 with ?𝑠 ′ and ?𝑜 with ?𝑜 ′. Otherwise, unify ?𝑠 with if 𝑛 = 0 then ?𝑠1 else ?𝑠2 and
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?𝑜 with if 𝑛 = 0 then ?𝑜1 else ?𝑜2 for new unification variables ?𝑠1, ?𝑠2, ?𝑜1, ?𝑜2 and run
derive_core 𝑝1 (𝑥) ?𝑠1 ?𝑜1, derive_core 𝑝2 (𝑛, 𝑥, (fix 𝑓 𝑛 𝑥 := if 𝑛 = 0 then 𝑝1 (𝑥) else 𝑝2 (𝑛, 𝑥, 𝑓 (𝑛−
1))) (𝑛 − 1) 𝑥) ?𝑠2 ?𝑜2, in a context with 𝑛 and 𝑥 introduced as new local variables.
• Case prog = Return 𝑣 : Unify ?𝑜 with None. Insert (?𝑠, 𝑣) in a database db.

If derive_core finishes with the type of states of the form 𝑞0 | · · · | 𝑞𝑛 𝑥 | ?𝑋 , for each (?𝑠, 𝑣) in the
database db, unify ?𝑠 with 𝑞𝑛+1 𝑣 and let step ?𝑠 _ _ = Done 𝑣 . Finally, for any pair of 𝑠 and 𝑒 such
that step 𝑠 𝑒 has not been defined yet, let step 𝑠 𝑒 _ = Done 𝑣0 for some 𝑣0 to represent failure.

Procedure derive_core can easily be extended to the case that prog is a pattern-matching expres-
sion for an arbitrary algebraic type in a similar way with if-expressions. However, as mentioned
earlier, our compiler does not uniformly support pattern-matching expressions for all algebraic
types, because of difficulty in Coq of replacing v1, ..., vm in the term

match x with

| c1 a11 ... a1n ⇒ v1

...

| cm am1 ... amk ⇒ vm

end

with unification variables.

3.5 Coroutines

In this subsection, we consider programs with coroutines, finally revealing how we desugar corou-
tine constructs into standard functional code. Fig. 7 shows a coroutine and a parent. let_coro 𝑐 :=

ex_coro 𝑠0 =
𝑠1 ← yield 𝑠0;
_← yield (𝑠0 ++ 𝑠1);
Return tt

example =

let_coro 𝑐 := ex_coro in
𝑟1 ← resume 𝑐 ”Hello, ”;

putStr 𝑟1; (∗Output : Hello, ∗)

𝑟2 ← resume 𝑐 ”world!”;

putStr 𝑟2; (∗Output : Hello,world!∗)

Return tt

example′ =

let_coro 𝑐 := ex_coro in
match 𝑐 ”Hello, ” with

| Eff yield 𝑎 𝑞 ⇒

(fun 𝑟1 𝑐 ⇒

putStr 𝑟1;

match 𝑐 ”world!” with

| Eff yield 𝑎 𝑞 ⇒

(fun 𝑟2 𝑐 ⇒

putStr 𝑟2;

Return tt) 𝑎 𝑞

| _⇒ Return tt

end) 𝑎 𝑞

| _⇒ Return tt

end

Fig. 7. A coroutine (ex_coro), a parent (example), and the parent without resume notation (example′)

. . . in . . . is equivalent to let 𝑐 := . . . in . . . , and the resume syntax desugars as follows:

𝑟 ← resume 𝑐 𝑎; 𝑝 (𝑐, 𝑟 ) ≡

match 𝑐 𝑎 with

| Eff yield 𝑏 𝑞 ⇒

(fun 𝑟 𝑐 ⇒ 𝑝 (𝑐, 𝑟 )) 𝑏 𝑞

| Return _⇒ Return 𝑣0
end
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where 𝑣0 is a value of the parent’s return type that represents failure. Note that the identifier 𝑐
is rebound in the fun-expression. Note also that the continuation 𝑞 of the coroutine is explicitly
captured and passed off as the new value of 𝑐 . Therefore, in the example, even though we use the
same identifier 𝑐 for two resumes, these 𝑐’s refer to different terms. The second refers to

fun 𝑠1 ⇒ (_← yield (”Hello, ” ++ 𝑠1);

Return tt)

Overall compilation proceeds as a bottom-up traversal through the tree of coroutines. Leaf
coroutines can be compiled in the way explained in the last subsection. To compile each parent
coroutine, we need a further procedure. Since resume in a parent is a pattern-matching on an
effectful program, we first change each resume into a case analysis on the output of the state
machine obtained from the coroutine. Concretely, we transform example from Fig. 7 into the
intermediate form shown in Fig. 8. Here, init_coro and step_coro are the initial state and the step
function of ex_coro. An algorithm for this transformation (again implemented in Ltac to generate
not just target code but proof of its equivalence to source code) works as follows.
to_state prog =

• Case prog = let_coro 𝑐 := coro in 𝑝 (𝑐):
Return let 𝑐 := coro_init in to_state 𝑝 (𝑐)
• Case prog = 𝑟 ← resume 𝑐 𝑎;𝑝 (𝑐, 𝑟 ): Return

match step_coro 𝑐 yield 𝑎 with

| GoNext(𝑐, Some (_, 𝑟 )) ⇒ to_state (𝑝 (𝑐, 𝑟 ))
| _⇒ Return 𝑣0
end

• Case prog = if 𝑏 then 𝑝1 else 𝑝2:
Return if 𝑏 then to_state 𝑝1 else to_state 𝑝2
• Case prog = (fix 𝑓 𝑛 𝑥 := 𝑝 (𝑓 , 𝑛, 𝑥)) 𝑛 𝑥 :
Return (fix 𝑓 𝑛 𝑥 := to_state (𝑝 (𝑓 , 𝑛, 𝑥))) 𝑛 𝑥

• Case prog = Return 𝑣 : Return Return 𝑣

For the case prog = 𝑟 ← resume 𝑐;𝑝 , we need to associate the right step function step_coro to
the coroutine variable 𝑐 , as there may be multiple different kinds of coroutines in the program,

let 𝑐 := init_coro in
match step_coro 𝑐 ”Hello, ” with
| GoNext(𝑠, Some (_, 𝑟1)) ⇒
putStr 𝑟1;

match step_coro 𝑠 ”world!” with
| GoNext(_, Some (_, 𝑟2)) ⇒
putStr 𝑟2;

Return tt

| _⇒ Return tt

end

| _⇒ Return tt

end

Fig. 8. Intermediate form of the parent example
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each originating from one explicit code body and then propagated across chains of yields. In our
implementation, we put step_coro into the type of 𝑐 as a dummy argument:

Definition coro_type A B C step :=

A → t yield_eff (fun _ ⇒ A) (fun _ ⇒ B) C.

where A, B, C are types. Then, the step function is obtained by type inference. If the compiler
needs to know the step function of a coroutine variable 𝑐 , it infers the type of 𝑐 , which is expected
to be of the form coro_type A B C step, so then it recognizes step as the step function. Different
coroutine variables in the source program are effectively grouped together union-find-style, as an
implicit consequence of type inference, finding those clusters associated with the same pieces of
coroutine source code. The choice of step function for a cluster is seeded for coroutine variables
that refer to coroutine code directly, rather than using resume.
The proof of equality between a parent before and after transformation mostly appeals to the

following lemma:

Lemma 2. If a coroutine 𝑐 , a step function step, and a state 𝑠 satisfy equiv step 𝑠 (𝑐 𝑟 ) for any
choice of 𝑟 , then 𝑟 ← resume 𝑐 𝑎; 𝑝 (𝑟, 𝑐) is equal to

match step 𝑐 yield 𝑎 with

| GoNext(𝑐, Some (_, 𝑟 )) ⇒ 𝑝 (𝑟, 𝑐)

| _⇒ Return 𝑣0
end.

3.6 Coroutines Inside Data Structures

However, if the parent uses a container data structure holding child coroutines (e.g., a map from
file descriptor to coroutine for that connected client), we need more steps. For example, suppose
that a parent has the subterm

match nth_error 𝑙 𝑛 with

| Some 𝑐 ⇒ 𝑟 ← resume 𝑐 𝑎; 𝑝
| None⇒ 𝑞

end

where 𝑙 is a list of child coroutines, and each coroutine in 𝑙 has the same step function. nth_error 𝑙 𝑛
returns Some c if the 𝑛th element of 𝑙 is 𝑐 and None if 𝑛 is greater than or equal to the length of
𝑙 . After the transformation, 𝑙 will be a list 𝑙 ′ of states corresponding to the coroutines. To apply
Lemma 2, we must have the condition equiv step (𝑐 𝑟 ) 𝑠 for the 𝑛th element 𝑐 of 𝑙 , the 𝑛th element
𝑠 of 𝑙 ′, and any 𝑟 . Our proof strategy is to maintain the invariant that, whenever an input program
to our compiler produces a list of coroutines, the compiled program generates a list of states related
to the original list (and indeed we make sure that Coq’s hint databases are configured to allow that
proof to be found automatically when needed later), so that we can apply Lemma 2 as required. If
we handle various data structures rather than just lists, we need to generalize this type of condition.
For that purpose, we use a type class that is defined as follows, for 𝐹 a container type family,
parameterized on the type of data value stored within.

Class HasGenForall2 𝐹 :=
{GenForall2 : forall 𝐴1 𝐴2,

(𝐴1 → 𝐴2 → bool) → 𝐹 𝐴1 → 𝐹 𝐴2 → bool}

For lists, GenForall2 𝑝 𝑙1 𝑙2 is defined as the proposition ł𝑝 𝑎1 𝑎2 holds for any 𝑛, the 𝑛th element
𝑎1 of 𝑙1, and the 𝑛th element 𝑎2 of 𝑙2.ž Also, we have proven lemmas for operations on some data
structures. For example, we have the next lemma.
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Lemma 3. For any state 𝑠0 and coroutine 𝑐0, we have equiv step 𝑠0 𝑐0 if each of the following three
conditions are satisfied:

• GenForall2 (equiv_coro step) 𝑙1 𝑙2
• nth_error 𝑙1 𝑛 = Some 𝑠0
• nth_error 𝑙2 𝑛 = Some 𝑐0

where 𝑙1 is a list of states, 𝑙2 is a list of coroutines, and 𝑛 is a natural number.

Using this lemma, we teach our compiler how to handle nth_error lookups in lists of coroutines.
When our system proves equivalence between source and compiled code, it automatically attempts
to apply each preproven lemma about containers holding coroutines, discharging lemmas’ side
conditions. Recall again that we perform compilation as a kind of side effect of proof search, so this
process of finding applicable lemmas also guides selection of code, making the lemma database a
kind of extensible database of compilation hints, as well.

4 TLS IMPLEMENTATION

We evaluated our Coq library by using it to derive a state-machine implementation for TLS, the
protocol behind secure Web browsing, implementing just a large enough subset of TLS that we can
test with standard Web browsers. We relied on an existing Haskell library4 for most of the pure
parts of this subset, e.g. particular cryptographic ciphers and interchange formats. As our compiler
does not need to modify pure code, having only the type signatures of these functions in Coq is
enough, and the Haskell implementations are linked in during Haskell compilation, after the code
produced by our compiler is extracted from Coq.
Nevertheless, our implementation includes everything needed for use in a conventional web

server. Concretely, it generates session tickets and supports session resumption, but it refuses
0RTT and client authentication as allowed by the specification. The conservative selection of
cryptographic algorithms currently supported (X25519, chacha20, poly1305) is not enough to claim
full TLS1.3 support as per the RFC, but it is sufficient to interoperate with recent versions of
all major browsers. To safely achieve acceptable performance using the remaining algorithms,
the software would need to delegate cryptographic computations to platform-specific dedicated
hardware and low-level implementations. This practical hurdle is orthogonal to the network-
protocol-implementation challenges we tackle in this work.

4.1 Structure of the Implementation

Our TLS server implementation has two coroutines for each connection, and a parent (node 1 in
Fig. 9) accepts new connections and spawns and resumes coroutines for them. One of the two
coroutines for a connection handles parsing, decrypting, and encrypting of data (node 2 in Fig.
9). The other implements the TLS handshake protocol and yields primitive operations such as
receiving a specific type of message (node 3 in Fig. 9). Coroutine 2 is the parent of coroutine 3.
For example, if coroutine 3 yields RecvClientHello, coroutine 2 attempts to receive data from the
peer, parse it as the requested message type, and resume coroutine 3 with the result of parsing. If
some bytes are remaining at the end of parsing a client_hello message, they are stored in a buffer
and will be consumed if coroutine 3 asks to receive another message. Also, if coroutine 3 yields
SetSecret (hash, cipher, secret, false), coroutine 2 will decrypt later messages with the hash
algorithm hash, the cipher suite cipher, and the secret key secret. If the last argument of SetSecret
is true, coroutine 2 will encrypt messages to send instead.
Coroutine 3 yields the following effectful operations.

4https://github.com/vincenthz/hs-tls
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handshake & transmitting app data

Fig. 9. Overview of our TLS implementation

• RecvClientHello

• RecvFinished

• RecvCCS

• RecvAppData

• SendPacket packet

• GetRandomBytes n

• SetSecret (hash, cipher, secret, b)

• GetCurrentTime

• Close: close this connection.
• GroupGetPubShared g: given a group g, generate a pair of a public key and a shared key.
• MakeCertVerify (pub, priv, hashSig, tran): given a public key pub, private key priv,
hash and signature algorithm hashSig, and transcript hash tran, generate a certificate verify.
• SetPSK (sessID, sessInfo)

• SessionResume sessID

Here is the key control flow of coroutine 3 that implements the last steps of Fig. 1, with some pure
computations omitted.

finEncoded ← SendPacket ([HFinished fin]);

sfSentTime ← GetCurrentTime;

_ ← SetSecret (usedHash, cipher, ..., false);

_ ← SetSecret (usedHash, cipher, ..., true);

fin ← RecvFinished;

cfRecvTime ← GetCurrentTime;

let resumptionMasterSecret := ... in

_ ← SetPSK ...;

_ ← SendPacket [HNewSessionTicket ...];

Concurrency between different sessions is handled by coroutine 1, which also coordinates access
to shared state such as the session cache (m). The parent interacts with the environment using
standard socket operations performed by coroutine 2 along with accepting new connections. Each
network-I/O operation specifies the OS-level socket as one of the arguments, and coroutine 1 is
responsible for correlating this with TLS sessions: it keeps a map from OS sockets to coroutines
(coros) and associates operations it passes through with socket identifiers. It is an invariant that
every coroutine stored in the session map is waiting for network input; coroutine 1 performs local
actions in an inner loop without reinserting and looking up the relevant session again and again:

outer m coros =

event ← yield ();
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match event with

| Accept ⇒ ...

| Receive (sa,r) ⇒

let coro := find sa coros in

inner r m sa coro

end

inner r m sa coro =

let ef := resume coro r in

match ef with

| SetPSK sid sess ⇒

let m' := insert sid sess m in

inner () m' sa coro

| SessionResume sid ⇒

let (sess, m') := remove sid m in

inner (FromSessionResume sess) m' sa coro

| _ ⇒

yield (wrap sa ef);

let coros' := replace sa coro coros in

outer m coros'

end

This example also illustrates the (small) extent to which writing an inherently stateful server is
complicated by the use of a pure source language. From the perspective of the connection-specific
coroutines, accessing shared state is an explicit effect ś syntactically indistinguishable from e.g.,
generating a random number. The interleaving of operations by different child coroutines is decided
by the control flow of the parent coroutines, in this case eagerly executing all actions of the last
coroutine that received input until it becomes blocked. The handlers for SetPSK and SessionResume

are similar in concept to getters and setters in languages such as Java, but here the child coroutine
does not have a reference to the parent coroutine ś it just yields operations.

4.2 Code Size

We find the coroutine style to offer at least a moderate advantage in raw code size, though we think
the biggest payoff is in code complexity. Still, the former is easier to measure, so here are some
figures. Our file TLS.v with the main protocol implementation, up to and including the main loop,
runs to 1377 lines. The roughly comparable files in ocaml-tls5 total 3379 lines. That library does
implement more versions and features, but our analysis excludes files dedicated to them, so feature
complexity should differ by less than 2x. Further, we classify 445 lines of our code as declarations,
workarounds, and boilerplate within reach of Haskell’s deriving, whereas ocaml-tls’s code lacks
these.

4.3 Bug Finding and Fixing

We have tested our implementation manually and by fuzzing. The errors occurring during testing
were divided into twomain cases: (1) a peer failed to decrypt messages from our implementation, and
(2) our implementation did not abort the handshake when a peer sent some type of illegal message.
Case (1) is more difficult to debug, since there are many different ways to encrypt incorrectly. For
our particular bug, the problem was that our implementation did not handle sequence numbers6

5reader.ml, engine.ml, config.ml, handshake_common.ml, handshake_server13.ml, core.ml, and state.ml
6https://tools.ietf.org/html/rfc8446#section-5.3
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and computed the transcript hash including change_cipher_spec, which should not actually be
included7. The latter required a small change, and the former was resolved by adding one more
state field in the loop of coroutine 2 so that it can count messages received or sent. Case (2) was
easily fixed by adding case analyses to detect illegal parameters in the peer’s messages, except
that one bug was caused by the hs−tls function we used for decryption8. We see this hs-tls
issue as a result of trying to compensate for other state-machine imprecision in the decryption
function: the code was looking at the message header to see whether it should be decrypted or not,
passing through plaintext messages, whereas in actuality the TLS handshake dictates that the next
message must be authenticated and decrypted. We believe that if we had restricted reuse of pure
code from hs-tls to single-purpose functional units (cryptography or serialization, not both) we
would have not made the same mistake because our code structure is driven by protocol tasks such
as RecvFinished.

4.4 Performance

We show the result of benchmarking our code against OpenSSL (with Nginx9 1.19.4) and the Haskell
library we reused pure functions from (with Warp10). We use wrk11 as a benchmarking tool and
compared our server with Nginx and a simple combination of Warp and hs−tls shown below:

header = [ ( " Content−Type " , " t e x t / p l a i n " ) ,

( " Content−Length " , " 6 " ) ]

app _ respond = respond $ respondLBS status200 header " He l l o ! "

let tls = tlsSettings " c e r t . pem " " key . pem " in

runTLS tls ( setPort 4433 defaultSettings ) app

We exercised each server with the following commands.

wrk -t1 -c1 -d30s https://localhost:4433

wrk -t1 -c40 -d30s https://localhost:4433

This means that 1 and 40 HTTP connections are established using 1 thread with duration 30 seconds.
The results are in Fig. 10.

First, let us consider the results with one client thread. In both latency and throughput, our
derived implementation comes within 50% of the performance of either of the more established
alternatives. We conjecture that the gap comes mostly from inefficient use of data structures, e.g.
for simplicity our compiler represents state not in one algebraic datatype but rather with nested
sum types. Also, our longer-term goal is to extend our code-derivation process in Coq to produce
C syntax trees rather than native functional programs, allowing us to remove more overheads
thanks to fine-grained control over data representation. Still, it seems we do have a practical
implementation of server-side TLS for security-critical applications.

Next, we consider the results with 40 client threads. We see this experiment as more of a worst-
case preview driving fruitful future work, since our implementation does not take advantage
of multiple cores, while our competitors do. Such a benchmark is also useful as a stress test of
concurrency logic in our code, and we do exhibit functionally correct behavior under this load.
Unsurprisingly, the other implementations with their multicore execution perform several times
better than we do, though again it seems we are within the window where an especially paranoid
user might prefer our proved server under moderate load.

7https://tools.ietf.org/html/rfc8446#section-4.4.1
8https://github.com/vincenthz/hs-tls/issues/438. Maintainers have classified this issue as łbugž, łsecurityž, and łmoderatež.
9https://www.nginx.com/
10https://hackage.haskell.org/package/warp
11https://github.com/wg/wrk
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Fig. 10. Performance-experiment results

Not shown in the figure is compile time, which is a significant hassle with our current implemen-
tation. Though the algorithm sketched earlier is simple enough to pose no performance challenges
in a freestanding implementation, we ran into bottlenecks with Coq’s proof engine. Our compiler
makes heavy use of unification variables (evars), which were not implemented with large-scale
automated use in mind. To give some intuition for why general-purpose evars are not trivial to
implement in a performant manner, consider that taking a proof step in a goal that contains some
evars requires the previous context of each evar to be expressed in terms of the new context ś even
if the overall context of the goal did not change, the evars may appear under different binders than
before. This inherent challenge is further compounded by non-performance-conscious engineering
choices such as allowing evars to remain in the proof engine even when an instantiation is known
and representing evar context substitutions as immutable arrays. As a consequence, even straight-
forward tactic-programming patterns are surprisingly slow. For example, a proof that introduces
𝑛 variables from the goal (which is just another evar) into the proof-engine context takes 𝑂 (𝑛3)
time.12 Our compiler is bound by the same underlying inefficiencies: it takes hours and tens of
gigabytes of memory to compile our full TLS example (or, more accurately, to compile its proof),
but we are not discouraged, because (1) our implementation can be seen more as a proof of an
algorithm, inspiring future freestanding implementations, and (2) we hope for future performance
improvements to Coq’s proof engine, useful not just for this application.

5 RELATED WORK

5.1 TLS State Machines

Our case study was inspired by the TLS implementation in the standard library of the Go pro-
gramming language. The Go language runtime provides a blocking I/O interface using an efficient

12https://github.com/coq/coq/issues/8244
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user-space implementation of multithreading on top of event-based I/O facilities provided by the
operating system. This approach allows for intuitive control flow in TLS code and high performance
even with many concurrent connections, but it creates an obstacle for embedding of Go code in
larger (non-Go) applications or microcontroller systems.
Widely deployed TLS implementations rely on handwritten explicit state machines. The pro-

gramming errors associated with this approach have been identified as the root cause of numerous
severe security issues and studied in several papers: Beurdouche et al. [2015] identify łstate machine
bugs and several critical security vulnerabilitiesž due to łincorrect compositions of individually
correct state machinesž using systematic testing. de Ruiter and Poll [2015] report that łnew security
flaws were found (in GnuTLS, the Java Secure Socket Extension, and OpenSSL)ž using protocol
state fuzzing. This kind of issue can be discovered even without access to the source code, as
demonstrated on Windows SChannel [Yadav and Sadhukhan 2019].
We discussed this state of affairs with David Benjamin, maintainer of BoringSSL and frequent

contributor of OpenSSL and Go TLS. What we heard confirmed that implementers are also worried
about these issues. Further, the current best practice to avoid them (applied in BoringSSL) is to make
sure control flow of state-transition functions is driven primarily by the state-machine state and
only when necessary by network input. We believe the branches on the state correspond directly
to our own reification of inter-input control flow into a variant type of possible suspension points
during coroutine compilation.

5.2 Fully Compile-Time Coroutine Implementations

There has been considerable exploration of compile-time implementation of coroutines in the
context of Rust, Scala, and C++, but we are not aware of any widely deployed code base using
these features. The Rust async/await feature is the most mature of the three and was recently
enabled in the stable release of the compiler. The main differences from our implementation are
that (1) the mechanism is primarily used for wakeup only (I/O is handled through side effects
instead of yield/resume arguments), and (2) saving and restoring of mutable and destructor-carrying
local variables significantly complicates the implementation [Mandry 2019]. The implementation
of coroutines through Scala metaprogramming does not seem to have gained adoption, but the
corresponding paper [Prokopec and Liu 2018] comprehensively describes what we believe are the
same challenges that Rust faced earlier (with slightly different design choices for nested coroutines).
The C++ standard has not yet converged on a single proposal for coroutine implementation or
semantics, but the Coroutines TS [Nishanov 2018] proposal that is currently implemented most
widely differs from Rust’s (and ours) further in that coroutine compilation is performed after most
compiler optimizations as opposed to in the frontend [Smith et al. 2019].

There is a wide variety of platform-specific or otherwise limited implementations of coroutines
relying on an unmodified compiler for an existing language, usually C. Even though these implemen-
tations target the same applications and systems as we hope our work will eventually be used on,
the key distinguisher from our work is prioritization of portability and compatibility with existing
codebases ś the code our approach produces does not rely on any platform-specific features a
handwritten state machine would not need. Example techniques include using longjmp or assembly
code to change the stack pointer, using the POSIX signal stack to store stacks of coroutines, and
leaving storage of local variables up to the programmer and using Duff’s device for control flow.
We recommend the paper describing the Gnu Portable Threads library [Engelschall 2000] for a
comparison of implementation strategies along with the more recent systematic review [Belson
et al. 2019] for its discussion of how application context and requirements seem to have formed
these approaches.
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5.3 Runtime-Implemented Coroutines

Coroutines and similar control-flow constructs are much more commonly implemented using
dedicated features of the language runtime. As the maintainers of an application would be unable
or unwilling to add a runtime system to their program to use a TLS library, these options are
less attractive for our use case. However, these implementations have played an important role
in popularization of these facilities. For example, the earliest-dated occurrence we found for
the catchphrase łcoroutines are to state machines what recursion is to stacksž is in a 2009 blog
post [Bendersky 2009] explaining how Python generators (lacking delegation at the time) could
be used elegantly to implement a simple wire protocol, contrasting it with a handwritten state
machine. The resemblance to our usage and work on algebraic effects is striking. Shortly thereafter
(2011), C# 2.0 introduced async/await syntax and type-distinguished coroutines we are now used
to. Similar features are now being added to Java, Scala, JavaScript, etc. See James and Sabry [2011]
for an earnest review of mainstream languages’ adoption of łsmallž coroutine-like features.

5.4 Coroutines, Continuations, and Algebraic Effects

First-class coroutines correspond closely to one-shot continuations (call1cc and similarly re-
stricted algebraic effects [Kawahara and Kameyama 2020; Moura and Ierusalimschy 2009]). Further,
coroutines whose state can be duplicated correspond to general continuations (callcc) [Prokopec
and Liu 2018] and presumably general algebraic effects. The above equivalences are originally stated
for stackful and delimited coroutines and continuations, but unfortunately without presenting
a precise definition of these qualifiers. We will briefly revisit the key constructions behind the
equivalences, restate the requirements, and discuss how this applies to our system.
Whether a coroutine is stackful seems to be used to refer to multiple related but nonidentical

notions.

(1) Same stack: In common use, coroutines are considered stackful iff the activation records
of functions and coroutines are stored in the same stack. This criterion is applied to repre-
sentation of coroutines when they are suspended, i.e. sharing a stack during execution is
not sufficient. For example, the cppreference.com entry on coroutines13 describes the C++
implementation as follows: łCoroutines are stackless: they suspend execution by returning
to the caller and the data that is required to resume execution is stored separately from the
stack.ž

(2) Delegation forced, all functions are coroutines: Moura and Ierusalimschy [2009] reject
Python’s yield operator as an implementation of coroutines on the basis of the follow-
ing behavior: given a coroutine calling a function calling a coroutine, the inner coroutine
yielding would transfer control to the intermediate function, not further out. This choice is
essential for the unconditional statement of the equivalence between coroutines and continu-
ations in an untyped setting, as call1cc can act from inside any function, whereas Python
uses different constructs for calling a function and delegating to a coroutine.

(3) Delegation supported, coroutines may be distinguished from functions: Prokopec and Liu
[2018] accept Python’s yield as an implementation of coroutines while referencing the
yield from operator for one coroutine delegating to another, even though yield from is
just syntactic sugar for calling yield in a loop. The implementation of coroutines contributed
in the work itself is in a typed setting where coroutines are distinguished from functions.
We interpret the extended claim of equivalence between copyable coroutines and multi-
shot continuations as applying to the coroutine-typed fragment of the language and find it
satisfying enough.

13https://en.cppreference.com/w/cpp/language/coroutines
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Our compile-time implementation of coroutines is stackless in the first sense (we do not use the
function call stack for representing suspended coroutines), stackless in the second sense (coroutines
and functions have disjoint types), but stackful in the last sense (our TLS implementation includes
examples of one coroutine delegating to another). As our compiler represents suspended coroutine
state using a simple nonfunction type in a purely functional language, our coroutines are trivially
copyable.

We believe all implementations discussed here are delimited, even though the delimiter is often
implicit. For example, in Python for loops act as delimiters to yield. In our language, resume acts
as an implicit delimiter, and delegation is a derived notion similarly to Python’s yield from. A
truly undelimited system (e.g. Cilk) would be unable directly to simulate the handle operator of
algebraic effects, as every yield hands control to the runtime system, not user code.
The usage of coroutines in our TLS library resembles the pattern of algebraic effects with

handlers in that a value a coroutine yields requests some action to be performed, and the response
sent back to the coroutine is the result of that action. However, the (handwritten) code encoding
these requests as coroutines is substantially different from outputs of the generic translation of
effect-handler code into coroutines presented by Kawahara and Kameyama [2020]. In particular,
we seem to have somehow avoided having to introduce a continuation-carrying Rehandle effect
wrapper when yielding unhandled effects further out from an effect handler. While we believe
our compiler would work on the coroutine code generated by their systematic translation, we are
concerned that a handler translating Rehandle (Printf ..) k into more fine-grained effects
(putchar) would be compiled into a state machine whose state type includes the continuation
k, thus complicating further efficient compilation. It would be interesting to investigate whether
the encoding of algebraic effects as coroutines used in our case study can be generalized into a
systematic translation that does not introduce explicit continuations.

6 FUTURE WORK

While we believe that the compilation algorithm presented in this paper does everything necessary
to convert coroutines to state machines, there are several optimizations that we expect would
greatly benefit the code thus generated (as well as similar handwritten code). We will sketch a
couple that we believe would be the most impactful.

Switching-Optimized Variant Layout. The memory layout of the cases of the variant type repre-
senting a coroutine state should be chosen to minimize data movement when switching from one
case of the variant to another. In C code for TLS, the state variant is (partially or fully) flattened
into a struct, preferably reusing the same field for semantically related values of two variant cases.
Minimizing state-record size is important to support more concurrent connections using a fixed
amount of RAM or to enable use of TLS on memory-constrained devices. To achieve the same
benefit automatically, the code would need to be analyzed for frequency of switches between each
pair of variant cases; an implementation specialized to coroutines could also just remember the
successor cases for each case of the variant during state-machine generation. Then a small integer
linear program could be solved for each type, where the variables are the offsets of fields in each
case, the constraints enforce nonoverlap of fields that appear in the same case, and the objective is
to minimize a linear combination of state size and data-movement cost estimated based on recorded
transitions and the size of each field. This is especially important if large structures (e.g., state
of subcoroutines) are stored inline in the struct (without pointer indirection) as is common in
hand-optimized network programming.

Memory-Management-Oriented Compilation. Further, inlining fields that are themselves records
(as opposed to keeping pointers to them) can reduce the number of cache misses, improving
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GatherData ( Socket ∗ss , Gather ∗gs , int flags ) { / / [ 152 lines ]

while ( gs→ remainder ) {

nb = nonblocking_receive ( ss , bp , gs→ remainder , flags ) ;

if ( ! nb ) {

return 0 ;

/ / [ caller should call GatherData again when more bytes are available ]

}

if ( gs→ remainder −= nb > 0 ) {

continue ;

}

/∗ have received entire record header , or entire record . ∗/

switch ( gs→ state ) {

case GS_HEADER :

/ / [ remainder length parsing and potential SendAlert omitted ]

case GS_DATA :

return 1 ; }

}

}

GatherCompleteHandshake ( Socket ∗ss , int flags ) { / / [ 175 lines ]

do {

rv = GatherData ( ss , &ss→gs , flags ) ;

if ( rv ≤ 0 ) {

return rv ;

}

rv = HandleRecord ( ss , &ss→ gs ) ;

} while ( ! ss→ ssl3 . hs . ws == idle_handshake | | rv != SECSuccess ) ;

return rv ; }

Fig. 11. NSS code for GatherData

performance onworkloadswithmany connections. Finally, it is also desirable to eliminate redundant
memory allocation and deallocation operations; some libraries take this to the extreme and can be
used without even implementing malloc and free. The Glasgow Haskell Compiler performs some
struct unboxing based on simple heuristics, but in our experience it is significantly behind the level
of optimization commonly found in network-protocol implementations written in C. Compiling
functional code into imperative code that mutates values in-place is challenging, even in the case of
immutable data and nonrecursive functions. We direct the reader to Reinking et al. [2021]; Ullrich
and de Moura [2020] for a literature review and an implementation.

Handler Inlining. Our TLS library uses coroutine yield and resume as algebraic effects and
handlers to give coroutines access to program state stored outside the coroutines. For example,
the handshake coroutine interacts with the connection-resumption database and record-layer
buffering and encryption state. This means that our coroutines frequently yield just to be resumed
immediately after accessing or binding a local variable in another coroutine, and that the generated
state-transition functions return just to be called againwith new inputs.We expect these indirections
could be eliminated by an optimization that moves code that according to constant propagation
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always follows a function into that function (passing in a pointer to relevant data if necessary),
when combined with standard tail-call optimization and applied recursively.

7 CONCLUSION

Writing network-protocol code directly in nested-state-machine style has challenged developers
and led to several high-profile security vulnerabilities. Higher-level implementations with threads
have been easier to debug but also harder to integrate with vanilla C code, due to assumptions about
runtime systems.We demonstrated achieving the best of bothworlds while addingmechanized proof
of correct compilation. We noted how freer monads provide an effective setting for encoding nested
coroutines within a purely functional language, and we prototyped a proof-generating compiler
from such programs to flat state machines. Though our implementation has run afoul of some
performance-scaling challenges in Coq, it was sufficient to generate a correct TLS implementation
whose performance is comparable to an idiomatic Haskell alternative’s, at least at low concurrency
levels. We plan to close that performance gap by extending proof-generating derivation to C code.
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