A Certified Type-Preserving Compiler from Lambda Calculus to Assembly Language

An experiment with variable binding, denotational semantics, and logical relations in Coq

Adam Chlipala
University of California, Berkeley
Certifying compilation:
Source and target programs are observationally equivalent.

Certified compiler:
For any valid input, the compiler produces an observationally equivalent output.

Transformations:
CPS conversion, closure conversion, explicit heap allocation, register allocation, ...
Type-Preserving Compilation

• Preserve static type information in some prefix of the compilation process.

• Taken all the way, you end up with typed assembly language, proof-carrying code, etc..

• More modestly, implement nearly tag-free garbage collection.
 – Replace tag bits, boxing, etc., with static tables mapping registers to types.
 – Used in the MLton SML compiler.
What's tricky?

- Nested variable scopes
- Relational reasoning
- Proof management and automation

This is what the **POPLmark Challenge** is all about!
Design Decision #1: Dependently-Typed ASTs

Use dependent types to make the compiler type-preserving by construction!

Type Preservation Theorem. If the input program has type T, then the output program has type $C(T)$.

Semantics Preservation Theorem. If the input program has meaning M, then the output program has meaning $C(M)$.
Design Decision #2: Denotational Semantics

Denotational Semantics Version:
1. Compile the input program to CIC.
2. Compile the output program to CIC.
3. The two results must be equal.

Semantics Preservation Theorem.
If the input program has meaning M, then the output program has meaning $C(M)$.
Secret Weapons

Programming with dependent types is hard!

The trickiest bits deal with "administrative" operations that adjust variable bindings... but these are still routine and hardly language-specific!

Writing formal proofs is hard!

The combination of **dependent types** and **denotational semantics** enables some very effective **decision procedures** to be coded in Coq's **Ltac language**.

"Put the rooster to work!"
Rest of the Talk...

- Summary of compilation
- Dependently-typed ASTs
- Denotational semantics in Coq
- Writing compiler passes
 - …including generic programming of helper functions
- Proving semantics preservation
Source and Target Languages

Source language: **simply-typed lambda calculus**

\[\tau ::= N \mid \tau \rightarrow \tau \]
\[e ::= n \mid x \mid e \ e \mid \lambda x : \tau, e \]

Target language: **idealized assembly language**

\[o ::= r \mid n \mid \text{new}(R, R) \mid \text{read}(r, n) \]
\[i ::= r := o; i \mid \text{jump} \ r \]
\[p ::= (l, i) \]
Compiler Stages

\[\lambda x, f x \]

CPS conversion

\[k_{top}(\lambda x, \lambda k, f x k) \]

Closure conversion

\[
\text{let } F = \lambda e, \lambda x, \lambda k, e.1 x k \text{ in } k_{top}(\langle F, [f] \rangle) \]

Explicit heap allocation

\[
\text{let } F = \lambda e, \lambda x, \lambda k, e.1.1 e.1.2 x k \text{ in } \text{let } r1 = [f] \text{ in let } r2 = [F, r1] \text{ in } k_{top}(r2) \]

Flattening

\[
F: r4 := r1.1; r1 := r4.2; r4 := r4.1; \textbf{jump } r4 \\
main: r3 := r1.1; r1 := r1.2; \\
\text{r2 := new } [f]; r2 := \text{new } [F, r2]; \textbf{jump } r3
\]
Correctness Proof

- Compiler and proof implemented entirely within **Coq 8.0**

- Axioms:
 - Functional extensionality:
 \[\forall f, g, (\forall x, f(x) = g(x)) \Rightarrow f = g \]
 - Uniqueness of equality proofs:
 \[\forall \tau, \forall x, y : \tau, \forall P1, P2 : x = y, P1 = P2 \]

- The compiler is *almost* runnable as part of a proof.
Denotational Semantics of the Source Language

\[[\tau] : \text{types} \rightarrow \text{sets} \]
\[[N] = \mathbb{N} \]
\[[\tau_1 \rightarrow \tau_2] = [\tau_1] \rightarrow [\tau_2] \]

\[[\Gamma] : \text{contexts} \rightarrow \text{sets} \]
\[[\cdot] = \text{unit} \]
\[[\Gamma, x : \tau] = [\Gamma] \times [\tau] \]

\[[e] : [\Gamma \vdash e : \tau] \rightarrow [\Gamma] \rightarrow [\tau] \]
\[[n]_\sigma = \overline{n} \]
\[[x]_\sigma = \sigma(x) \]
\[[e_1 \ e_2]_\sigma = [e_1]_\sigma [e_2]_\sigma \]
\[[\lambda x : \tau, e]_\sigma = \lambda x : [\tau], [e](\sigma, x) \]
For Types...

Inductive ty : Set :=
 | Nat : ty
 | Arrow : ty -> ty -> ty.

Fixpoint tyDenote (t : ty) : Set :=
 match t with
 | Nat => nat
 | Arrow t1 t2 => tyDenote t1 -> tyDenote t2
 end.
Representing Terms

Nominal syntax

\textbf{Inductive} \texttt{term} : \texttt{Set} :=

| Const : nat -> term |
| Var : name -> term |
| Lam : name -> term -> term |
Representing Terms

De Bruijn syntax

Inductive \(\text{term} : \text{Set} := \)**

\[
\begin{align*}
| & \text{Const} : \text{nat} \to \text{term} \\
| & \text{Var} : \text{nat} \to \text{term} \\
| & \text{Lam} : \text{term} \to \text{term} \\
| & \text{App} : \text{term} \to \text{term} \to \text{term}.
\end{align*}
\]
Representing Terms

Dependent de Bruijn syntax

Inductive term : nat -> Set :=
| Const : forall n, nat -> term n
| Var : forall n x, x < n -> term n
| Lam : forall n, term (S n) -> term n
| App : forall n, term n -> term n -> term n.
Representing Terms

Dependent de Bruijn syntax with typing

Inductive `term : list ty -> ty -> Set :=`

| Const : forall `G : nat -> term G Nat` |
| Var : forall `G t : var G t -> term G t` |
| Lam : forall `G dom ran : term (dom :: G) ran -> term G (Arrow dom ran)` |
| App : forall `G dom ran : term G (Arrow dom ran) -> term G dom -> term G ran` |
Term Denotations

Fixpoint termDenote \((G : \text{list ty}) \ (t : \text{ty}) \ (e : \text{term G t}) \) \{struct e\} : subst tyDenote \(G \rightarrow\) tyDenote \(t := \)

match \(e \ \text{in} \ (\text{term} \ G \ t) \)

return (subst tyDenote \(G \rightarrow\) tyDenote \(t \)) **with**

1. Const _ _ \(n \rightarrow \text{fun} _ \rightarrow n \)
2. Var _ _ \(x \rightarrow \text{fun} s \rightarrow \text{varDenote} \ x \ s \)
3. Lam _ _ \(e' \rightarrow \text{fun} s \rightarrow \text{fun} x \rightarrow \text{termDenote} \ e' \ (\text{SCons} \ x \ s) \)
4. App _ _ _ \(e1 \ e2 \rightarrow \text{fun} s \rightarrow \) (termDenote \(e1 \ s \)) (termDenote \(e2 \ s \))

end.
Definition of “Values” for Free Operational

\[n \text{ value} \]

\[\lambda x : \tau, \ e \text{ value} \]

Syntactic characterization used throughout definitions and proofs

Inherit any “canonical forms” properties of the underlying Coq types.

“A natural number is either zero or a successor of another natural number.”

Caveat: We don't get the same kind of property for functions!

\[
\begin{align*}
[\tau] : \text{types} & \rightarrow \text{sets} \\
[N] &= \mathbb{N} \\
[\tau_1 \rightarrow \tau_2] &= [\tau_1] \rightarrow [\tau_2]
\end{align*}
\]
No Substitution Function!

Operational

\[
\begin{align*}
n[x := e] &= n \\
x[x := e] &= e \\
y[x := e] &= y \\
(e_1 e_2)[x := e] &= e_1[x := e] e_2[x := e] \\
(\lambda x : \tau, e')[x := e] &= \lambda x : \tau, e' \\
(\lambda y : \tau, e')[x := e] &= \lambda y : \tau, e'[x := e]
\end{align*}
\]

Customized syntactic substitution function written for each object language

\[
(\lambda x : \tau, e_1) e_2 \rightarrow e_1[x := e_2]
\]

Reduction rules defined using substitution

Denotational

\[
\begin{align*}
[n]\sigma &= \overline{n} \\
[x]\sigma &= \sigma(x) \\
[e_1 e_2]\sigma &= [e_1]\sigma [e_2]\sigma \\
[\lambda x : \tau, e]\sigma &= \lambda x : [\tau], [e](\sigma, x)
\end{align*}
\]

\[
[(\lambda x : \mathbb{N}, x) 1]() = [\lambda x : \mathbb{N}, x]() [1]() \\
= (\lambda x : \mathbb{N}, x) 1 \\
= 1
\]

Coq's operational semantics provides the substitution operation for us!
Free Metatheorems

Operational

For each object language, give customized, syntactic proofs of properties like:

- Type safety – preservation
- Type safety – progress
- Confluence
- Strong normalization
- ...

Denotational

Meta-theorems proved once and for all about CIC

The majority of programming language theory mechanization experiments only look at proving these sorts of theorems!
Free Theorems

Theorem 1 For any n, $\llbracket (\lambda x : \mathbb{N}, x) \ n \rrbracket () = n$.

Proof. By \textit{reflexivity of equality}.

Coq's proof checker identifies as \textbf{equivalent} terms that reduce to each other! This means that both \textbf{compilation of terms into CIC} and \textbf{evaluation of the results} are “zero cost” operations.
But Wait!

Doesn't that only work for languages that are:

- Strongly normalizing
- Purely functional
- Deterministic
- Single-threaded
- ...etc...

(In other words, a lot like Coq)
Monads to the Rescue!

- Summary rebuttal: Take a cue from Haskell.
- Use **object language agnostic** "embedded languages" to allow expression of "effectful" computations
- Keep using Coq's definitional equality to handle reasoning about pure sublanguages, and even some of the mechanics of impure pieces.
Non-Strongly-Normalizing Languages

For closed, first-order programs with basic block structure (e.g., structured assembly)

A total denotation function that executes a basic block, determining the next program counter and memory state.

A function runs basic blocks repeatedly to build a lazy list describing an execution trace. (no “non-computational” definitions required)
Co-inductive Traces

\[T ::= n \mid \bot \mid \star, T \]

By keeping only these summaries of program executions, we enable effective equality reasoning.

Example: Garbage collection safety
Equality of traces is a good way to characterize the appropriate effect on programs from rearranging the heap and root pointers to a new, isomorphic configuration.
Example Compilation Phase: CPS Transform

Recall that terms are represented as typing derivations.

We need a syntactic helper function equivalent to a weakening lemma.
Dependently-Typed Syntactic Helper Functions?

• Could just write this function from scratch for each new language.
 – Probably using tactic-based proof search
 – The brave (and patient) write the CIC term directly.
 • My recipe for writing generic substitution functions involves three auxiliary recursive functions!

• Much nicer to automate these details using generic programming!
 – Write each function once, not once per object language.
What Do We Need?

1. The helper function itself

\[
\text{weaken} : \text{forall} \ (G : \text{list ty}) \ (t : \text{ty}), \ \text{term} \ G \ t \to \text{forall} \ (t' : \text{ty}), \ \text{term} \ (t' :: G) \ t
\]

2. Lemmas about the function

For any term \(e\), properly-typed substitution \(\sigma\), and properly-typed value \(\nu\):

\[
\left[\text{weaken}(e)\right](\sigma, \nu) = \left[e\right]_\sigma
\]

Can prove this generically for any compositional denotation function! For example, for simply-typed lambda calculus, there must exist \(f_{\text{var}}\), \(f_{\text{app}}\), and \(f_{\text{lam}}\) such that:

\[
\left[x\right]_\sigma = f_{\text{var}}(\sigma(x))
\]

\[
\left[e_1 \ e_2\right]_\sigma = f_{\text{app}}(\left[e_1\right]_\sigma, \left[e_2\right]_\sigma)
\]

\[
\left[\lambda x : \tau, \ e\right]_\sigma = f_{\text{lam}}(\lambda x : \left[\tau\right], \left[e\right](\sigma, x))
\]
Reflection-Based Generic Programming

Language Definition
(Coq inductive type)

Coq plug-in
(outside the logic)

Reflected Language Definition
(term of CIC)

Denotation Function

Coq plug-in

Reflected Denotation Function

Generic proof

Specific function
(type-compatible with original language definition)

Generic function

Specific proof
What to Prove?

Overall correctness theorem: The compilation of a program of type \(\mathbb{N} \) runs to the same result as the original program does.

What do we prove about individual phases?

Prove that input/output pairs are in an appropriate *logical relation*. E.g., for the CPS transform:

\[
\begin{align*}
 n_1 \simeq_{\mathbb{N}} n_2 &= n_1 = n_2 \\
 f_1 \simeq_{\tau_1 \rightarrow \tau_2} f_2 &= \forall x_1 : [\tau_1]^S, \forall x_2 : [\tau_1]^L, x_1 \simeq_{\tau_1} x_2 \\
 &\quad \rightarrow \exists v : [\tau_2]^L, \forall k : [\tau_2]^L \rightarrow \mathbb{N}, \\
 f_1 x_1 \simeq_{\tau_2} v
\end{align*}
\]

This function space contains many functions not representable in our object languages!
Easy first step: Use introduction rules for forall's and implications at the start of the goal.
In the Trenches

Now we're blocked at the tricky point for automated provers: proving existential facts and applying universal facts.

Key observation: The quantified variables have very specific dependent types.

We can use greedy quantifier instantiation!

Now we're blocked at the tricky point for automated provers: proving existential facts and applying universal facts.
In the Trenches

\[H_1 : \forall \sigma^S, \forall \sigma^L, \sigma^S \preceq_\Gamma \sigma^L \rightarrow \exists v : [\tau_1 \rightarrow \tau_2]^L, \]

\[\forall k : [\tau_1 \rightarrow \tau_2]^L \rightarrow \mathbb{N}, [[e_1]]^L \sigma^L k = k v \land [e_1]^S \sigma^S \simeq_{\tau_1 \rightarrow \tau_2} v \]

\[H_2 : \forall \sigma^S, \forall \sigma^L, \sigma^S \preceq_\Gamma \sigma^L \rightarrow \exists v : [\tau_1]^L, \]

\[\forall k : [\tau_1]^L \rightarrow \mathbb{N}, [[e_2]]^L \sigma^L k = k v \land [e_2]^S \sigma^S \simeq_{\tau_1} v \]

\[\sigma^S : \ldots \]

\[\sigma^L : \ldots \]

\[H_3 : \sigma^S \preceq_\Gamma \sigma^L \]

\[\exists v : [\tau_2]^L, \]

\[\forall k : [\tau_2]^L \rightarrow \mathbb{N}, [[e_1 \ e_2]]^L \sigma^L k = k v \land [e_1 \ e_2]^S \sigma^S \simeq_{\tau_2} v \]
In the Trenches

\[H_1 : \exists v : \left[\tau_1 \rightarrow \tau_2 \right]^L, \]
\[\forall k : \left[\tau_1 \rightarrow \tau_2 \right]^L \rightarrow \mathbb{N}, \left[\left[e_1 \right] \right]^L \sigma^L k = k v \land \left[e_1 \right]^S \sigma^S \simeq_{\tau_1 \rightarrow \tau_2} v \]
\[H_2 : \forall \sigma^S, \forall \sigma^L, \sigma^S \simeq_{\Gamma} \sigma^L \rightarrow \exists v : \left[\tau_1 \right]^L, \]
\[\forall k : \left[\tau_1 \right]^L \rightarrow \mathbb{N}, \left[\left[e_2 \right] \right]^L \sigma^L k = k v \land \left[e_2 \right]^S \sigma^S \simeq_{\tau_1} v \]
\[\sigma^S : \ldots \]
\[\sigma^L : \ldots \]
\[H_3 : \sigma^S \simeq_{\Gamma} \sigma^L \]
\[\exists v : \left[\tau_2 \right]^L, \]
\[\forall k : \left[\tau_2 \right]^L \rightarrow \mathbb{N}, \left[\left[e_1 \ e_2 \right] \right]^L \sigma^L k = k v \land \left[e_1 \ e_2 \right]^S \sigma^S \simeq_{\tau_2} v \]

Existential hypotheses are easy to eliminate.
In the Trenches

We can't make further progress with this hypothesis, since no term of the type given for k exists in the proof state.
We can simplify the conclusion by applying rewrite rules (like those we generated automatically) until no more apply.
In the Trenches

$$v_1 : [\tau_1 \rightarrow \tau_2]^L$$

$$H_1 : \forall k : [\tau_1 \rightarrow \tau_2]^L \rightarrow \mathbb{N}, \llbracket e_1 \rrbracket^L \sigma^L k = k v_1 \land \llbracket e_1 \rrbracket^S \sigma^S \simeq_{\tau_1 \rightarrow \tau_2} v_1$$

$$v_2 : [\tau_1]^L$$

$$H_2 : \forall k : [\tau_1]^L \rightarrow \mathbb{N}, \llbracket e_2 \rrbracket^L \sigma^L k = k v_2 \land \llbracket e_2 \rrbracket^S \sigma^S \simeq_{\tau_1} v_2$$

$$\sigma^S : \ldots$$

$$\sigma^L : \ldots$$

$$H_3 : \sigma^S \simeq_\Gamma \sigma^L$$

$$\exists v : [\tau_2]^L,$$

$$\forall k : [\tau_2]^L \rightarrow \mathbb{N}, \llbracket e_1 \rrbracket^L \sigma^L(\lambda x : [\tau_1 \rightarrow \tau_2]^L, \ldots) \geq \ldots \land \ldots$$

Now the conclusion has a subterm with the right type to instantiate a hypothesis!
In the Trenches

We can use H_1 to rewrite the goal.
In the Trenches

\[v_1 : [\tau_1 \rightarrow \tau_2]^L \]
\[H_1 : [[e_1]]^L \sigma^L (\lambda x : [\tau_1 \rightarrow \tau_2]^L, ...) = (\lambda x : [\tau_1 \rightarrow \tau_2]^L, ...) v_1 \wedge \ldots \]
\[v_2 : [\tau_1]^L \]
\[H_2 : \forall k : [\tau_1]^L \rightarrow \mathbb{N}, [[e_2]]^L \sigma^L k = k \cdot v_2 \wedge [e_2]^S \sigma^S \simeq_{\tau_1} v_2 \]
\[\sigma^S : \ldots \]
\[\sigma^L : \ldots \]
\[H_3 : \sigma^S \simeq_{\Gamma} \sigma^L \]
\[\exists v : [\tau_2]^L, \forall k : [\tau_2]^L \rightarrow \mathbb{N}, (\lambda x : [\tau_1 \rightarrow \tau_2]^L, ...) v_1 = \ldots \wedge \ldots \]
And That's That!

- This strategy does almost all of the proving for the CPS transformation correctness proof!
 - About 20 lines of proof script total.

- Basic approach:
 - Figure out the right syntactic rewrite lemmas, prove them, and add them as hints.
 - State the induction principle to use.
 - Call a generic tactic from a library.
A Recipe for Certified Compilers

1. Define object languages with dependently-typed ASTs.
2. Give object languages denotational semantics.
3. Use generic programming to build basic support functions and lemmas.
4. Write compiler phases as dependently-typed Coq functions.
5. Express phase correctness with logical relations.
6. Prove correctness theorems using a generic decision procedure relying heavily on greedy quantifier instantiation.
Design Decisions

• Why dependently-typed ASTs?
 – Avoid well-formedness side conditions
 – Easy to construct denotational semantics defined only over well-typed terms
 – Makes greedy quantifier instantiation realistic

• Why denotational semantics?
 – Concise to define
 – Known to work well with code transformation
 – Many reasoning steps come for free via Coq's definitional equality
Conclusion

- Yet another bag of suggestions on how to formalize programming languages and their metatheories and tools!
- Would be interesting to see other approaches to formalizing this kind of compilation.

Acknowledgements

Thanks to my advisor George Necula.

This work was funded by a US National Defense fellowship and the US National Science Foundation.