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The Big Picture

Intermediate
Program I

Source
Program

Target
Program

Intermediate
Program n

....

Certifying compilation:
Source and target programs are 

observationally equivalent.

Compiler

Source
Program

Certified compiler:
For any valid input, the compiler 

produces an observationally equivalent 
output.

Simply-typed 
lambda calculus

Idealized assembly 
language with 
abstract, type-

directed garbage 
collectorTransformations: CPS 

conversion, closure 
conversion, explicit heap 

allocation, register 
allocation, ...

Implemented in Coq

Theorem proved 
in Coq
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Type-Preserving Compilation

● Preserve static type information in 
some prefix of the compilation process.

● Taken all the way, you end up with typed 
assembly language, proof-carrying 
code, etc..

● More modestly, implement nearly tag-
free garbage collection.
– Replace tag bits, boxing, etc., with static 

tables mapping registers to types.
– Used in the MLton SML compiler.



4

What's tricky?

● Nested variable scopes

● Relational reasoning

● Proof management and automation

This is what the POPLmark 
Challenge is all about!
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Design Decision #1:
Dependently-Typed ASTs

Compiler

Input
Program

Output
Program

Type Preservation Theorem.
If the input program has type T, then the output program has type C(T).

Semantics Preservation Theorem.
If the input program has meaning M, then the output program has meaning C(M).

Use dependent types to make the compiler type-
preserving by construction!

Typing Derivation Typing Derivation
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Design Decision #2:
Denotational Semantics

Compiler

Input
Program

Output
Program

Semantics Preservation Theorem.
If the input program has meaning M, then the output program has meaning C(M).

Operational Semantics Version:
If the input program multi-steps to result v, then the output program 

multi-steps to result v.

Denotational Semantics Version:
1. Compile the input program to CIC.

2. Compile the output program to CIC.
3. The two results must be equal.
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Secret Weapons
Programming with dependent types is hard!

Generic
programming

system

Object 
language 

description

Syntactic 
support 

functions
+ generic 

proofs of their 
correctness

The trickiest bits deal with “administrative” 
operations that adjust variable bindings...

but these are still routine and hardly 
language-specific!

Writing formal proofs is hard!

“Put the rooster to work!”

The combination of dependent types and 
denotational semantics enables some very 
effective decision procedures to be coded in 

Coq's Ltac language.
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Rest of the Talk...

● Summary of compilation
● Dependently-typed ASTs
● Denotational semantics in Coq
● Writing compiler passes

– ...including generic programming of helper 
functions

● Proving semantics preservation
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o ::= r | n | new(R, R) | read(r, n)

i  ::= r := o; i | jump r

p ::= (I, i)

Source and Target Languages

Source language: simply-typed lambda calculus

¿ ::= N | ¿ ! ¿

e ::= n | x | e e | ¸x : ¿, e

Target language: idealized assembly language
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Compiler Stages
¸x, f x

Closure conversion

  let F = ¸e, ¸x, ¸k, e.1 x k in k
top

(hF, [f]i)
Explicit heap allocation

  let F = ¸e, ¸x, ¸k, e.1.1 e.1.2 x k in
let r1 = [f] in let r2 = [F, r1] in k

top
(r2)

Flattening

  F: r4 := r1.1; r1 := r4.2; r4 := r4.1; jump r4
main: r3 := r1.1; r1 := r1.2;

r2 := new [f]; r2 := new [F, r2]; jump r3

CPS conversion

k
top

(¸x, ¸k, f x k)
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Correctness Proof

● Compiler and proof implemented entirely 
within Coq 8.0

● Axioms:
– Functional extensionality:

● 8f, g, (8x, f(x) = g(x)) ) f = g

– Uniqueness of equality proofs:

● 8¿, 8x, y : ¿, 8P1, P2 : x = y, P1 = P2

● The compiler is almost runnable as part of 
a proof.
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Denotational Semantics of the 
Source Language
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For Types...

Inductive ty : Set :=
  | Nat : ty
  | Arrow : ty ­> ty ­> ty.

Fixpoint tyDenote (t : ty) : Set :=
  match t with
    | Nat => nat
    | Arrow t1 t2 => tyDenote t1 ­> tyDenote t2
  end.
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Representing Terms

Inductive term : Set :=
  | Const : nat ­> term
  | Var : name ­> term
  | Lam : name ­> term ­> term
  | App : term ­> term ­> term.

Nominal syntax
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Representing Terms

Inductive term : Set :=
  | Const : nat ­> term
  | Var :  nat ­> term
  | Lam :               term ­> term
  | App : term ­> term ­> term.

De Bruijn syntax
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Representing Terms

Inductive term : nat ­> Set :=
  | Const : forall n, nat ­> term n
  | Var :  forall n x, x < n ­> term n
  | Lam : forall n, term (S n) ­> term n
  | App : forall n, term n ­> term n ­> term n.

Dependent de Bruijn syntax
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Representing Terms

Inductive term : list ty ­> ty ­> Set :=
  | Const : forall G, nat ­> term G Nat
  | Var :  forall G t, var G t ­> term G t
  | Lam : forall G dom ran, term (dom :: G) ran

­> term G (Arrow dom ran)
  | App : forall G dom ran,

term G (Arrow dom ran)
­> term G dom
­> term G ran.

Dependent de Bruijn syntax with typing
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Term Denotations

Fixpoint termDenote (G : list ty) (t : ty) (e : term G t) {struct e}
  : subst tyDenote G ­> tyDenote t :=
  match e in (term G t)
           return (subst tyDenote G ­> tyDenote t) with
    | Const _ n => fun _ => n
    | Var _ _ x => fun s => varDenote x s
    | Lam _ _ _ e' => fun s =>
      fun x => termDenote e' (SCons x s)
    | App _ _ _ e1 e2 => fun s =>
      (termDenote e1 s) (termDenote e2 s)
  end.
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Definition of “Values” for Free
Operational Denotational

n value

¸x : ¿, e value

Syntactic 
characterization used 
throughout definitions 

and proofs

Inherit any “canonical 
forms” properties of 
the underlying Coq 

types.
“A natural number is either zero or a 
successor of another natural number.”

Caveat: We don't get the 
same kind of property for 
functions!
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 No Substitution Function!
Operational Denotational

Customized syntactic 
substitution function written 
for each object language

(¸x : ¿, e
1
) e

2
 ! e

1
[x := e

2
]

Reduction rules defined using 
substitution

Coq's operational semantics 
provides the substitution 
operation for us!
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Free Metatheorems
Operational Denotational

For each object language, give 
customized, syntactic proofs 
of properties like:

● Type safety – preservation
● Type safety – progress
● Confluence
● Strong normalization
● ...

Object
Language

Object
Language

Meta-theorems 
proved once and 
for all about CICThe majority of programming language 

theory mechanization experiments only 
look at proving these sorts of theorems!
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Free Theorems

Proof. By reflexivity of equality. 

Coq's proof checker identifies as equivalent 
terms that reduce to each other!

This means that both compilation of terms into 
CIC and evaluation of the results are “zero 

cost” operations.
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But Wait!

Doesn't that only work for languages that 
are:
● Strongly normalizing
● Purely functional
● Deterministic
● Single-threaded
● ...etc...

(In other words, a lot like Coq)
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Monads to the Rescue!

● Summary rebuttal: Take a cue from 
Haskell.

● Use object language agnostic 
“embedded languages” to allow 
expression of “effectful” computations

● Keep using Coq's definitional equality to 
handle reasoning about pure 
sublanguages, and even some of the 
mechanics of impure pieces.
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Non-Strongly-Normalizing 
Languages

For closed, first-order programs with basic block 
structure (e.g., structured assembly)

(pc
0
, mem

0
) (pc

1
, mem

1
)

Basic block
denotation

function

A total denotation function that 
executes a basic block, 

determining the next program 
counter and memory state.

(pc
1
, mem

1
) (pc

2
, mem

2
)

(pc
2
, mem

2
) (pc

3
, mem

3
)

(pc
1
, mem

1
)

(pc
2
, mem

2
)

(pc
3
, mem

3
)

Potentially
-infinite 

trace

A function runs basic blocks 
repeatedly to build a lazy list 
describing an execution trace.

(no “non-computational” 
definitions required)



26

Co-inductive Traces

T ::= n | ? | ✰, T

Termination with a natural 
number answerRun-time failureTake one more step of 

computation.

By keeping only these summaries of program executions, we 
enable effective equality reasoning.

Example: Garbage collection safety
Equality of traces is a good way to characterize the appropriate 
effect on programs from rearranging the heap and root pointers to 
a new, isomorphic configuration.
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Example Compilation Phase: 
CPS Transform

Translation works in 
some context ¡...

but used in context
¡, u : ¿

1
 ! ¿

2
!

Recall that terms are represented as typing derivations.

We need a syntactic helper function equivalent to a
weakening lemma.

Type 
error!
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Dependently-Typed Syntactic 
Helper Functions?

● Could just write this function from scratch 
for each new language.
– Probably using tactic-based proof search
– The brave (and patient) write the CIC term 

directly.
● My recipe for writing generic substitution functions 

involves three auxiliary recursive functions!

● Much nicer to automate these details 
using generic programming!
– Write each function once, not once per 

object language.
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What Do We Need?

weaken : forall (G : list ty) (t : ty), term G t 
­> forall (t' : ty), term (t' :: G) t

1. The helper function itself

2. Lemmas about the function
For any term e, properly-typed substitution ¾, and 
properly-typed value v:

Can prove this generically for any compositional denotation function!
For example, for simply-typed lambda calculus, there must exist f

var
, 

f
app

, and f
lam

 such that:
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Reflection-Based Generic 
Programming

Language 
Definition

(Coq 
inductive 

type)

Reflected 
Language 
Definition

(term of CIC)

Coq plug-in
(outside the logic)

Generic 
functionSpecific 

function

(type-compatible 
with original 

language 
definition)

Denotation 
Function

Reflected 
Denotation 
Function

Coq plug-in

Generic 
proof

Specific 
proof
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What to Prove?
Overall correctness theorem: The compilation of a 
program of type N runs to the same result as the 
original program does.

What do we prove about individual phases?

Prove that input/output pairs are in an appropriate 
logical relation.  E.g., for the CPS transform:

This function space contains many 
functions not representable in our 

object languages!
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In the Trenches

Easy first step: Use introduction rules for forall's and implications at 
the start of the goal.
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In the Trenches

Now we're blocked at the tricky point for automated provers: 
proving existential facts and applying universal facts.

Key observation: The quantified 
variables have very specific 

dependent types.

We can use greedy quantifier 
instantiation!
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In the Trenches
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In the Trenches

Existential hypotheses are easy to eliminate.
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In the Trenches

We can't make further progress with this hypothesis, since no term 
of the type given for k exists in the proof state.
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In the Trenches

We can simplify the conclusion by applying rewrite rules (like those 
we generated automatically) until no more apply.
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In the Trenches

Now the conclusion has a subterm with the right type to instantiate 
a hypothesis!
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In the Trenches

We can use H
1
 to rewrite the goal.
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In the Trenches
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And That's That!

● This strategy does almost all of the 
proving for the CPS transformation 
correctness proof!
– About 20 lines of proof script total.

● Basic approach:
– Figure out the right syntactic rewrite lemmas, 

prove them, and add them as hints.
– State the induction principle to use.
– Call a generic tactic from a library.
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A Recipe for Certified Compilers

1.Define object languages with dependently-typed 
ASTs.

2.Give object languages denotational semantics.

3.Use generic programming to build basic support 
functions and lemmas.

4.Write compiler phases as dependently-typed Coq 
functions.

5.Express phase correctness with logical relations.

6.Prove correctness theorems using a generic 
decision procedure relying heavily on greedy 
quantifier instantiation.
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Design Decisions

● Why dependently-typed ASTs?
– Avoid well-formedness side conditions
– Easy to construct denotational semantics 

defined only over well-typed terms
– Makes greedy quantifier instantiation realistic

● Why denotational semantics?
– Concise to define
– Known to work well with code transformation
– Many reasoning steps come for free via Coq's 

definitional equality
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Conclusion

● Yet another bag of suggestions on how to 
formalize programming languages and 
their metatheories and tools!

● Would be interesting to see other 
approaches to formalizing this kind of 
compilation.
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