
1

A Certified Type-
Preserving Compiler

from Lambda Calculus
to Assembly
Language

Adam Chlipala
University of California, Berkeley

An experiment with variable binding, denotational
semantics, and logical relations in Coq

2

The Big Picture

Intermediate
Program I

Source
Program

Target
Program

Intermediate
Program n

....

Certifying compilation:
Source and target programs are

observationally equivalent.

Compiler

Source
Program

Certified compiler:
For any valid input, the compiler

produces an observationally equivalent
output.

Simply-typed
lambda calculus

Idealized assembly
language with
abstract, type-

directed garbage
collectorTransformations: CPS

conversion, closure
conversion, explicit heap

allocation, register
allocation, ...

Implemented in Coq

Theorem proved
in Coq

3

Type-Preserving Compilation

● Preserve static type information in
some prefix of the compilation process.

● Taken all the way, you end up with typed
assembly language, proof-carrying
code, etc..

● More modestly, implement nearly tag-
free garbage collection.
– Replace tag bits, boxing, etc., with static

tables mapping registers to types.
– Used in the MLton SML compiler.

4

What's tricky?

● Nested variable scopes

● Relational reasoning

● Proof management and automation

This is what the POPLmark
Challenge is all about!

5

Design Decision #1:
Dependently-Typed ASTs

Compiler

Input
Program

Output
Program

Type Preservation Theorem.
If the input program has type T, then the output program has type C(T).

Semantics Preservation Theorem.
If the input program has meaning M, then the output program has meaning C(M).

Use dependent types to make the compiler type-
preserving by construction!

Typing Derivation Typing Derivation

6

Design Decision #2:
Denotational Semantics

Compiler

Input
Program

Output
Program

Semantics Preservation Theorem.
If the input program has meaning M, then the output program has meaning C(M).

Operational Semantics Version:
If the input program multi-steps to result v, then the output program

multi-steps to result v.

Denotational Semantics Version:
1. Compile the input program to CIC.

2. Compile the output program to CIC.
3. The two results must be equal.

7

Secret Weapons
Programming with dependent types is hard!

Generic
programming

system

Object
language

description

Syntactic
support

functions
+ generic

proofs of their
correctness

The trickiest bits deal with “administrative”
operations that adjust variable bindings...

but these are still routine and hardly
language-specific!

Writing formal proofs is hard!

“Put the rooster to work!”

The combination of dependent types and
denotational semantics enables some very
effective decision procedures to be coded in

Coq's Ltac language.

8

Rest of the Talk...

● Summary of compilation
● Dependently-typed ASTs
● Denotational semantics in Coq
● Writing compiler passes

– ...including generic programming of helper
functions

● Proving semantics preservation

9

o ::= r | n | new(R, R) | read(r, n)

i ::= r := o; i | jump r

p ::= (I, i)

Source and Target Languages

Source language: simply-typed lambda calculus

¿ ::= N | ¿ ! ¿

e ::= n | x | e e | ¸x : ¿, e

Target language: idealized assembly language

10

Compiler Stages
¸x, f x

Closure conversion

 let F = ¸e, ¸x, ¸k, e.1 x k in k
top

(hF, [f]i)
Explicit heap allocation

 let F = ¸e, ¸x, ¸k, e.1.1 e.1.2 x k in
let r1 = [f] in let r2 = [F, r1] in k

top
(r2)

Flattening

 F: r4 := r1.1; r1 := r4.2; r4 := r4.1; jump r4
main: r3 := r1.1; r1 := r1.2;

r2 := new [f]; r2 := new [F, r2]; jump r3

CPS conversion

k
top

(¸x, ¸k, f x k)

11

Correctness Proof

● Compiler and proof implemented entirely
within Coq 8.0

● Axioms:
– Functional extensionality:

● 8f, g, (8x, f(x) = g(x))) f = g

– Uniqueness of equality proofs:

● 8¿, 8x, y : ¿, 8P1, P2 : x = y, P1 = P2

● The compiler is almost runnable as part of
a proof.

12

Denotational Semantics of the
Source Language

13

For Types...

Inductive ty : Set :=
 | Nat : ty
 | Arrow : ty ­> ty ­> ty.

Fixpoint tyDenote (t : ty) : Set :=
 match t with
 | Nat => nat
 | Arrow t1 t2 => tyDenote t1 ­> tyDenote t2
 end.

14

Representing Terms

Inductive term : Set :=
 | Const : nat ­> term
 | Var : name ­> term
 | Lam : name ­> term ­> term
 | App : term ­> term ­> term.

Nominal syntax

15

Representing Terms

Inductive term : Set :=
 | Const : nat ­> term
 | Var : nat ­> term
 | Lam : term ­> term
 | App : term ­> term ­> term.

De Bruijn syntax

16

Representing Terms

Inductive term : nat ­> Set :=
 | Const : forall n, nat ­> term n
 | Var : forall n x, x < n ­> term n
 | Lam : forall n, term (S n) ­> term n
 | App : forall n, term n ­> term n ­> term n.

Dependent de Bruijn syntax

17

Representing Terms

Inductive term : list ty ­> ty ­> Set :=
 | Const : forall G, nat ­> term G Nat
 | Var : forall G t, var G t ­> term G t
 | Lam : forall G dom ran, term (dom :: G) ran

­> term G (Arrow dom ran)
 | App : forall G dom ran,

term G (Arrow dom ran)
­> term G dom
­> term G ran.

Dependent de Bruijn syntax with typing

18

Term Denotations

Fixpoint termDenote (G : list ty) (t : ty) (e : term G t) {struct e}
 : subst tyDenote G ­> tyDenote t :=
 match e in (term G t)
 return (subst tyDenote G ­> tyDenote t) with
 | Const _ n => fun _ => n
 | Var _ _ x => fun s => varDenote x s
 | Lam _ _ _ e' => fun s =>
 fun x => termDenote e' (SCons x s)
 | App _ _ _ e1 e2 => fun s =>
 (termDenote e1 s) (termDenote e2 s)
 end.

19

Definition of “Values” for Free
Operational Denotational

n value

¸x : ¿, e value

Syntactic
characterization used
throughout definitions

and proofs

Inherit any “canonical
forms” properties of
the underlying Coq

types.
“A natural number is either zero or a
successor of another natural number.”

Caveat: We don't get the
same kind of property for
functions!

20

 No Substitution Function!
Operational Denotational

Customized syntactic
substitution function written
for each object language

(¸x : ¿, e
1
) e

2
 ! e

1
[x := e

2
]

Reduction rules defined using
substitution

Coq's operational semantics
provides the substitution
operation for us!

21

Free Metatheorems
Operational Denotational

For each object language, give
customized, syntactic proofs
of properties like:

● Type safety – preservation
● Type safety – progress
● Confluence
● Strong normalization
● ...

Object
Language

Object
Language

Meta-theorems
proved once and
for all about CICThe majority of programming language

theory mechanization experiments only
look at proving these sorts of theorems!

22

Free Theorems

Proof. By reflexivity of equality.

Coq's proof checker identifies as equivalent
terms that reduce to each other!

This means that both compilation of terms into
CIC and evaluation of the results are “zero

cost” operations.

23

But Wait!

Doesn't that only work for languages that
are:
● Strongly normalizing
● Purely functional
● Deterministic
● Single-threaded
● ...etc...

(In other words, a lot like Coq)

24

Monads to the Rescue!

● Summary rebuttal: Take a cue from
Haskell.

● Use object language agnostic
“embedded languages” to allow
expression of “effectful” computations

● Keep using Coq's definitional equality to
handle reasoning about pure
sublanguages, and even some of the
mechanics of impure pieces.

25

Non-Strongly-Normalizing
Languages

For closed, first-order programs with basic block
structure (e.g., structured assembly)

(pc
0
, mem

0
) (pc

1
, mem

1
)

Basic block
denotation

function

A total denotation function that
executes a basic block,

determining the next program
counter and memory state.

(pc
1
, mem

1
) (pc

2
, mem

2
)

(pc
2
, mem

2
) (pc

3
, mem

3
)

(pc
1
, mem

1
)

(pc
2
, mem

2
)

(pc
3
, mem

3
)

Potentially
-infinite

trace

A function runs basic blocks
repeatedly to build a lazy list
describing an execution trace.

(no “non-computational”
definitions required)

26

Co-inductive Traces

T ::= n | ? | ✰, T

Termination with a natural
number answerRun-time failureTake one more step of

computation.

By keeping only these summaries of program executions, we
enable effective equality reasoning.

Example: Garbage collection safety
Equality of traces is a good way to characterize the appropriate
effect on programs from rearranging the heap and root pointers to
a new, isomorphic configuration.

27

Example Compilation Phase:
CPS Transform

Translation works in
some context ¡...

but used in context
¡, u : ¿

1
 ! ¿

2
!

Recall that terms are represented as typing derivations.

We need a syntactic helper function equivalent to a
weakening lemma.

Type
error!

28

Dependently-Typed Syntactic
Helper Functions?

● Could just write this function from scratch
for each new language.
– Probably using tactic-based proof search
– The brave (and patient) write the CIC term

directly.
● My recipe for writing generic substitution functions

involves three auxiliary recursive functions!

● Much nicer to automate these details
using generic programming!
– Write each function once, not once per

object language.

29

What Do We Need?

weaken : forall (G : list ty) (t : ty), term G t
­> forall (t' : ty), term (t' :: G) t

1. The helper function itself

2. Lemmas about the function
For any term e, properly-typed substitution ¾, and
properly-typed value v:

Can prove this generically for any compositional denotation function!
For example, for simply-typed lambda calculus, there must exist f

var
,

f
app

, and f
lam

 such that:

30

Reflection-Based Generic
Programming

Language
Definition

(Coq
inductive

type)

Reflected
Language
Definition

(term of CIC)

Coq plug-in
(outside the logic)

Generic
functionSpecific

function

(type-compatible
with original

language
definition)

Denotation
Function

Reflected
Denotation
Function

Coq plug-in

Generic
proof

Specific
proof

31

What to Prove?
Overall correctness theorem: The compilation of a
program of type N runs to the same result as the
original program does.

What do we prove about individual phases?

Prove that input/output pairs are in an appropriate
logical relation. E.g., for the CPS transform:

This function space contains many
functions not representable in our

object languages!

32

In the Trenches

Easy first step: Use introduction rules for forall's and implications at
the start of the goal.

33

In the Trenches

Now we're blocked at the tricky point for automated provers:
proving existential facts and applying universal facts.

Key observation: The quantified
variables have very specific

dependent types.

We can use greedy quantifier
instantiation!

34

In the Trenches

35

In the Trenches

Existential hypotheses are easy to eliminate.

36

In the Trenches

We can't make further progress with this hypothesis, since no term
of the type given for k exists in the proof state.

37

In the Trenches

We can simplify the conclusion by applying rewrite rules (like those
we generated automatically) until no more apply.

38

In the Trenches

Now the conclusion has a subterm with the right type to instantiate
a hypothesis!

39

In the Trenches

We can use H
1
 to rewrite the goal.

40

In the Trenches

41

And That's That!

● This strategy does almost all of the
proving for the CPS transformation
correctness proof!
– About 20 lines of proof script total.

● Basic approach:
– Figure out the right syntactic rewrite lemmas,

prove them, and add them as hints.
– State the induction principle to use.
– Call a generic tactic from a library.

42

A Recipe for Certified Compilers

1.Define object languages with dependently-typed
ASTs.

2.Give object languages denotational semantics.

3.Use generic programming to build basic support
functions and lemmas.

4.Write compiler phases as dependently-typed Coq
functions.

5.Express phase correctness with logical relations.

6.Prove correctness theorems using a generic
decision procedure relying heavily on greedy
quantifier instantiation.

43

Design Decisions

● Why dependently-typed ASTs?
– Avoid well-formedness side conditions
– Easy to construct denotational semantics

defined only over well-typed terms
– Makes greedy quantifier instantiation realistic

● Why denotational semantics?
– Concise to define
– Known to work well with code transformation
– Many reasoning steps come for free via Coq's

definitional equality

44

Conclusion

● Yet another bag of suggestions on how to
formalize programming languages and
their metatheories and tools!

● Would be interesting to see other
approaches to formalizing this kind of
compilation.

Acknowledgements

Thanks to my advisor George Necula.

This work was funded by a US National Defense fellowship and
the US National Science Foundation.

