
Extensible Extraction of Efficient Imperative
Programs with Foreign Functions, Manually

Managed Memory, and Proofs

Clément Pit-Claudel1[0000−0002−1900−3901], Peng Wang2, Benjamin Delaware3,
Jason Gross1[0000−0002−9427−4891], and Adam Chlipala1

1 MIT CSAIL, Cambridge, MA 02139, USA
{cpitcla,jgross,adamc}@csail.mit.edu
2 Google, Mountain View, CA 94043, USA

wangpeng@google.com
3 Purdue University, West Lafayette, IN 47907, USA

bendy@purdue.edu

Abstract. We present an original approach to sound program extraction
in a proof assistant, using syntax-driven automation to derive correct-
by-construction imperative programs from nondeterministic functional
source code. Our approach does not require committing to a single
inflexible compilation strategy and instead makes it straightforward to
create domain-specific code translators. In addition to a small set of
core definitions, our framework is a large, user-extensible collection of
compilation rules each phrased to handle specific language constructs,
code patterns, or data manipulations. By mixing and matching these
pieces of logic, users can easily tailor extraction to their own domains
and programs, getting maximum performance and ensuring correctness
of the resulting assembly code.
Using this approach, we complete the first proof-generating pipeline that
goes automatically from high-level specifications to assembly code. In
our main case study, the original specifications are phrased to resemble
SQL-style queries, while the final assembly code does manual memory
management, calls out to foreign data structures and functions, and is
suitable to deploy on resource-constrained platforms. The pipeline runs
entirely within the Coq proof assistant, leading to final, linked assembly
code with overall full-functional-correctness proofs in separation logic.

1 Introduction

The general area of correct-by-construction code generation is venerable, going
back at least to Dijkstra’s work in the 1960s [5]. Oftentimes, solutions offer a strict
subset of the desiderata of generality, automation, and performance of synthesized
code. This paper presents the final piece of a pipeline that sits at the sweet spot
of all three, enabling semiautomatic refinement of high-level specifications into
efficient low-level code in a proof-generating manner. Our initial specification
language is the rich, higher-order logic of Coq, and we support a high degree of

N. Peltier and V. Sofronie-Stokkermans (Eds.): IJCAR 2020, LNAI 12167, pp.
1–19, 2020. The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-51054-1_7

https://doi.org/10.1007/978-3-030-51054-1_7

2 C. Pit-Claudel et al.

automation through domain-specific refinement strategies, which in turn enable
targeted optimization strategies for extracting efficient low-level code. In order
to take advantage of these opportunities, we have built an extensible compilation
framework that can be updated to handle new compilation strategies without
sacrificing soundness. Our pipeline is foundational : it produces a fully linked
assembly program represented as a Coq term with a proof that it meets the
original high-level specification.

Bedrock IL
ADT Implementations

Refinement

Nondeterministic
Functional Programs

Cito

Binary Code Generation

AMD64 Binary

Bedrock IL

Verified Compilation

Fiat Specifications
in Nondeterministic Gallina

Bedrock Specifications
in Separation Logic

Verified Compilation

Proof-Producing
Synthesis

Facade

Proof &
Program
Linking

Coq
Proof

Source
 Language

Translation
Mechanism

Imports / Exports
Dependency

Implements

High-Level
Specifications

Ex
te

rn
al

 L
ib

ra
rie

s

Fig. 1: The full pipeline, with this work’s
contributions in blue. Stick figures indi-
cate user-supplied components.

Our complete toolchain uses Fiat [4]
to refine high-level specifications of ab-
stract data types (ADTs) into nondeter-
ministic functional programs depend-
ing on external data structures (ex-
pressed in a shallowly embedded Gal-
lina DSL), then soundly extracts these
programs to an imperative intermedi-
ate language (Facade) using a novel
proof-generating extraction procedure.
The resulting programs are then trans-
lated into the Cito [29] language by a
newly written compiler, backed by a
nontrivial soundness argument bridg-
ing two styles of operational seman-
tics. A traditional verified compiler pro-
duces efficient Bedrock assembly [3]
from the Cito level, which we soundly
link against hand-verified implementa-
tions of the required data structures.

Beyond exploring a new technique for sound extraction of shallowly embedded
DSLs (EDSLs), this work bridges the last remaining gap (extraction) to present
the first mechanically certified automatic translation pipeline from declarative
specifications to efficient assembly programs, as shown in Fig. 1.

In the original Fiat system, specifications were highly nondeterministic pro-
grams, and final implementations were fully deterministic programs obtained by
repeatedly refining the specification, eventually committing to a single possible
result. As a consequence, the generated code committed to a particular determin-
istic (and pure) implementation of external ADTs and functions that it relied on,
reducing flexibility, optimization opportunities, and overall performance. Addi-
tionally, the final step in previous work using Fiat was to extract this code directly
to OCaml, using Coq’s popular but unverified extraction mechanism. Unfortu-
nately, this meant that correctness of the compiled executable depended not only
on the correctness of Coq’s kernel but also on that of the extraction mechanism
and of the OCaml compiler and runtime system. These two dependencies signifi-
cantly decreased the confidence that users can place in programs synthesized by
Fiat, and more generally in all programs extracted from Gallina code.

Extensible Extraction of Efficient Imperative Programs 3

Our work overcomes these issues via a novel approach to extraction that is
both extensible and correct and produces efficient, stateful low-level code from
nondeterministic functional sources. The process runs within Coq, produces
assembly code instead of OCaml code, and supports linking with handwritten or
separately compiled verified assembly code.

Instead of refining specifications down to a fully deterministic Gallina program,
as the original Fiat system did, we allow Fiat’s final output to incorporate
nondeterminism. These choices are resolved at a later stage by interpreting the
nondeterminism as a postcondition specification in Hoare logic and linking against
assembly code proven to meet that specification. Nondeterminism at runtime,
which is not normally present in Gallina programs, is essential to support code
derivation with flexible use of efficient low-level data structures. For example, if
we represent a database with a type of binary trees that does not enjoy canonical
representations, the same data may admit multiple concrete representations, each
corresponding to a different ordering of results for an operation enumerating all
database records.

Unlike certified compilers like CompCert [13] or CakeML [9], we do not
implement our translator in the proof assistant’s logic and prove it sound once
and for all. Instead, we use proof-generating extraction: we phrase the translation
problem in a novel sequent-calculus-style formulation that allows us to apply all of
Coq’s usual scriptable proof automation. The primary reason is that we want to
make our compiler extensible by not committing to a specific compilation strategy:
in our system, programmers can teach the compiler about new verified low-
level data structures and code-generation strategies by introducing new lemmas
explaining how to map a Gallina term to a particular imperative program4. Our
automation then builds a (deeply embedded) syntax tree by repeatedly applying
lemmas until the nondeterministic functional program is fully compiled. The
many advantages of this approach (extensibility, ease of development, flexibility,
performance, and ease of verification) do come at a cost, however: compilation is
slower, care is needed to make the compiler robust to small variations in input
syntax, and the extensible nature of the compiler makes it hard to characterize
the supported source language precisely.

To summarize the benefits of our approach:

– It is lightweight: it does not require reifying the entirety of Gallina into a
deeply embedded language before compiling. Instead, we use Coq’s tactic
language to drive compilation.

– It is extensible: each part of the compilation logic is expressed as a derivation
rule, proved as an arbitrarily complex Coq theorem. Users can assemble a
customized compiler by supplying their own compilation lemmas to extend
the source language or improve the generated code.

4 In fact, nondeterministic choices cannot be compiled systematically, as they can
represent arbitrary complexity. Additionally, a proof-producing approach lets us
elegantly bypass the issue of self-reference, since our original programs are shallowly
embedded.

4 C. Pit-Claudel et al.

– It is well-suited to compiling EDSLs: we support nondeterminism in input
programs (standard extraction requires deterministic code).

– It allows us to link against axiomatically specified foreign functions and data
structures, implemented and verified separately.

– It compiles to a relatively bare language with explicit memory management.

To demonstrate the applicability of this approach, section 6 presents a set of
microbenchmarks of Fiat programs manipulating variables, conditions, and nested
lists of machine words, as well as a more realistic example of SQL-like programs
similar to those of the original Fiat paper. These benchmarks start from high-level
specifications of database queries and pass automatically through our pipeline to
closed assembly programs, complete with full-functional-correctness specifications
and proofs in separation logic. Source code and compilation instructions for the
framework and benchmarks are available online at https://github.com/mit-plv/
fiat/tree/ijcar2020.

2 A brief outline of our approach

We begin with an example of the pipeline in action. Below are an SQL-style
query finding all titles by an author and a Fiat-generated implementation (right):

SELECT title FROM Books
WHERE Books.by = $author

rows← IndexedByAuthor.bfind $books $author;
ret (map (λ row⇒ row.Title) rows)

The generated code relies on a Fiat module IndexedByAuthor, which is not
an executable implementation of the required functionality; rather, it specifies
certain methods nondeterministically, implying that bfind returns the expected
rows in some undetermined order. The order may even be different for every call,
as might arise, for instance, with data structures like splay trees that adjust their
layout even during logically read-only operations.

Such nondeterministic programs are the starting point for our new refinement
phases. The ultimate output of the pipeline is a library of assembly code in the
Bedrock framework [3], obtained by extracting to a new language, Facade, built
as a layer on top of the Cito C-like language [29], and then compiling to Bedrock.

rows = BTree.find($books, $author);
out = StringList.new();
While (not TupleList.empty?(rows))

row = TupleList.pop!(rows);
title = Tuple.get(row, 0);
StringList.push!(out, title);

EndWhile;
TupleList.delete!(rows);
StringList.reverse!(out);

The output for our running example
might look like the code on the right.
Note that this code works directly with
pointers to heap-allocated mutable ob-
jects, handling all memory management
by itself, including for intermediate val-
ues. The general IndexedByAuthor in-
terface has been replaced with calls to
a concrete module BTree providing binary search trees of tuples, and the call
to map became an imperative loop. We implement and verify BTree in Bedrock
assembly, and then we link code and proofs to obtain a binary and an end-to-end
theorem guaranteeing full functional correctness of assembly libraries, for code
generated automatically from high-level specifications.

https://github.com/mit-plv/fiat/tree/ijcar2020
https://github.com/mit-plv/fiat/tree/ijcar2020

Extensible Extraction of Efficient Imperative Programs 5

The heart of our contribution is spanning the gap from nondeterministic
functional programs (written in Gallina) to imperative low-level programs (writ-
ten in Facade) using an extensible, proof-generating framework. We phrase this
derivation problem as one of finding a proof of a Hoare triple, where the pre-
condition and postcondition are known, but the Facade program itself must be
derived during the proof. The central goal from our running example looks as
follows, where ?1 stands for the overall Facade program that we seek, and where
we unfold IndexedByAuthor.bfind (subsection 4.3 defines these triples precisely).

J"books" 7→ ret $books K ::

J"author" 7→ ret $author K
?1

∅

s
"out" 7→ r← shuffle($books ∩ {b|b.by = $author});

ret (map (λ row⇒ row.Title) r)

{

The actual implementation of ?1 is found by applying lemmas to decompose this
goal into smaller, similar goals representing subexpressions of the final program.
These lemmas form a tree of deduction steps, produced automatically by a syntax-
directed compilation script written in Coq’s Ltac tactic language. Crucially, the
derivation implemented by this script can include any adequately phrased lemma,
allowing new implementation strategies. Composed with the automation that
comes before and after this stage, we have a fully automated, proof-generating
pipeline from specifications to libraries of assembly code.

3 An example of proof-producing extraction

We begin by illustrating the compilation process on the example Fiat program
from section 2. We synthesize a Facade program p according to the following
specification5, which we summarize as args

p

∅
J"out" 7→ pK :: args :

– p, when started in an initial state containing the arguments $author and
$books , must be safe (it must not violate function preconditions, access
undefined variables, leak memory, etc.).

– p, when started in a proper initial state, must reach (if it terminates) a state
where the variable "out" has one of the values allowed by the nondeterministic
program p shown above.

Replacing p with our example, we need to find a program p such that

J"books" 7→ ret $books K ::

J"author" 7→ ret $author K
p

∅

s
"out" 7→ rows← shuffle($books ∩ . . .);

ret (map (λ row⇒ row.Title) rows)

{
::

J"books" 7→ ret $books K :: J"author" 7→ ret $author K

We use our first compilation lemma (with a few examples shown in Fig. 2) to
connect the semantics of Fiat’s bind operation (the ← operator of monads [27])
to the meaning of , which yields the following synthesis goal:

J"books" 7→ ret $books K ::
J"author" 7→ ret $author K

p

∅

J"tmp" 7→ shuffle($books ∩ {b | b.by = $author }) as r K ::
J"out" 7→ ret (map (λ r ⇒ r.Title) r)K ::
J"books" 7→ ret $books K :: J"author" 7→ ret $author K

5 In the following, underlined variables such as comp are Fiat computations, and
italicized variables such as r are Gallina variables.

6 C. Pit-Claudel et al.
∀ v 0. v 0 ∈ v =⇒ t v 0

p

[k 7→ v 0] :: ext
t’ v 0

Jk 7→ v as v 0K :: t v 0
p

ext
Jk 7→ v as v 0K :: t’ v 0

(a) The Chomp rule: to synthesize a program whose
pre- and postconditions share the same prefix Jk
7→ vK, it is enough to synthesize a program that
works for any constant values permitted by the
Fiat computation v.

st
p

ext
J_ 7→ comp as x K ::
Jk 7→ f x K :: st’

st
p

ext

s
k 7→ x ← comp

f x

{
:: st’

(b) The Bind rule: dependencies
between consecutive bindings in
Fiat states accurately model the
semantics of Fiat’s bind opera-
tion.

Jls 7→ ret `K :: t
pinit

ext
Jout 7→ ret a 0K :: Jls 7→ ret `K :: t

∀ h a `. Jhd 7→ ret h K :: Jout 7→ aK :: t
pbody

[ls 7→ `] :: ext
Jout 7→ f a h K :: t

Jls 7→ ret `K :: t
LOOP(pinit, pbody, ls)

ext
Jout 7→ foldL f (ret a 0) `K :: t

FoldL

(c) The FoldL rule, connecting a fold of f on ` with an initial value a 0 and the
imperative computation of the same value using destructive iteration on a mutable list.

pinit ;
end = List.empty?(ls);
While (not end)

hd = List.pop!(ls); pbody ; end = List.empty?(ls);
EndWhile;
List.delete!(ls);

(d) The Facade LOOP(pinit, pbody, ls) macro.

Fig. 2: A few rules of our synthesizing compiler.

In this step, we have broken down the assignment to "out" of a Fiat-level bind
(rows← . . .; . . .) into the assignment of two variables: "tmp" to the intermediate
list of authors, and "out" to the final result. The :: operator separates entries
in a list of bindings of Facade variables to nondeterministic Fiat terms. The
ordering of the individual bindings matters: the Fiat term that we assign to
"out" depends on the particular value chosen for "tmp", bound locally as r .

We then break down the search for p into the search for two smaller programs:
the first (p1) starts in the initial state (abbreviated to args) and is only concerned
with the assignment to "tmp"; the second (p2) starts in a state where "tmp" is
already assigned and uses that value to construct the final result.

args
p1
∅

J"tmp" 7→ shuffle($books ∩ . . .) as r K :: args

J"tmp" 7→ shuffle($books ∩ . . .) as r K
:: args

p2
∅

J"tmp" 7→ shuffle($books ∩ . . .) as r K ::
J"out" 7→ ret (map (λ r ⇒ r.Title) r)K :: args

At this point, a lemma about connecting the meaning of the nondeterministic
selection of authors and the Facade-level BTree.find function tells us that tmp
= BTree.find($books, $author) is a good choice for p1 (this is the call rule
for BTree.find). We are therefore only left with p2 to synthesize: noticing the
common prefix of the starting and ending states, we apply a rule (called chomp

Extensible Extraction of Efficient Imperative Programs 7

in our development) allowing us to set aside the common prefix and focus on the
tail of the pre- and post-states, transforming the problem into

∀ r. r ∈ shuffle($books ∩ {b | b.by = $author }) =⇒
args

p2

["tmp" 7→ r]
J"out" 7→ ret (map (λ r ⇒ r.Title) r)K :: args

The additional mapping pictured under the arrow indicates that the
initial and final states must both map "tmp" to the same value r . In this form,
we can first rewrite map to foldL, at which point the synthesis goal matches the
conclusion of the foldL rule shown in Fig. 2c: given a program pinit to initialize the
accumulator and a program pbody to implement the body of the fold, the Facade
program defined by the macro LOOP(pinit, pbody, rows) obeys the specification
above. This gives us two new synthesis goals, which we can handle recursively, in
a fashion similar to the one described above. Once these obligations have been
resolved, we arrive at the desired Facade program.

4 Proof-generating extraction of nondeterministic
functional programs: from Fiat to Facade

4.1 The Facade language

We start with a brief description of our newly designed target language, Facade.
Facade is an Algol-like untyped imperative language operating on Facade states,
which are finite maps from variable names to Facade values (either scalars, or
nonnull values of heap-allocated ADTs). Syntactically, Facade includes standard
programming constructs like assignments, conditionals, loops, function calls, and
recursion. What distinguishes the language is its operational semantics, pictured
partially in Fig. 3. First, that semantics follows that of Cito in supporting
modularity by modeling calls to externally defined functions via preconditions
and postconditions. Second, linearity is baked into Facade’s operational semantics,
which enforce that every ADT value on the heap will be referred to by exactly one
live variable (no aliasing and no leakage) to simplify reasoning about the formal
connection to functional programs: if every object has at most one referent, then
we can almost pretend that variables hold abstract values instead of pointers
to mutable objects. In practice, we have not found this requirement overly
constraining for our applications: one can automatically introduce copying when
needed, or one can require the external ADTs to provide nondestructive iteration.

The program semantics manipulates local-variable environments where ADTs
are associated with high-level models. For instance, a finite set is modeled as
a mathematical set, not as e.g. a hash table. A key parameter to the compiler
soundness theorem is a separation-logic abstraction relation, connecting the
domain of high-level ADT models to mutable memories of bytes. By picking
different relations at the appropriate point in our pipeline, we can justify linking
with different low-level implementations of high-level concepts. No part of our
automated translation from Fiat to Facade need be aware of which relation is
chosen, and the same result of that process can be reused for different later

8 C. Pit-Claudel et al.

Statement s ::=
Skip | s ;s | x= e
Ife Thens Elses EndIf
Whilee s EndWhile
x= Call l(x)

JeKst = Scalar(_) st(x) 6= ADT(_)
Ψ ` (st, x = e)⇓

[
x 7→ JeKst

]
:: st

Assign

Ψ(l) = AX(pre, post) st(x) 6= ADT(_)
pre(st(y)) |v | = |y| post(st(y)B v , r)
Ψ ` (st, x = Call l(y))⇓ [x 7→ r] :: [y 7→ v] :: st CallAx

Fig. 3: Selected syntax & operational semantics of Facade [28].

choices. This general approach to stateful encapsulation is largely inherited from
Cito, though with Facade we have made it even easier to use.

Facade’s operational semantics are defined by two predicates, Ψ ` (p, st)↓
and Ψ ` (p, st)⇓ st’, expressing respectively that the Facade program p will run
safely when started in Facade state st, and that p may reach state st’ when
started from st (this latter predicate essentially acts as a big-step semantics of
Facade). Both predicates are parameterized over a context Ψ mapping function
names to their axiomatic specifications. The semantics is nondeterministic in the
sense that there can be more than one possible st’.

Modularity is achieved through the CallAx rule, allowing a Facade program
to call a function via its specification in Ψ . A function call produces a return value
r and a list of output values v representing the result of in-place modification
of input ADT arguments y. A precondition is a predicate pre on the values
assigned to the input arguments of the callee by the map st. A postcondition
is a predicate post on these input values, output values v , and return value r .
The semantics prescribes that a function call will nondeterministically pick a list
of output values and a return value satisfying post and use them to update the
relevant variables in the caller’s postcall state (possibly deallocating them).

Linearity is achieved by a set of syntactic and semantic provisions. For instance,
variables currently holding ADT values cannot appear on the righthand sides of
assignments, to avoid aliasing. They also cannot appear on the lefthand sides of
assignments, to avoid losing their current payloads and causing memory leaks.

We have implemented a verified translation from Facade to Cito, and from
there we reuse established infrastructure to connect into the Bedrock framework
for verified assembly code. Its soundness proof has the flavor of justifying a new
type system for an existing language, since Facade’s syntax matches that of Cito
rather closely.

4.2 Fiat and Facade states

We connect Fiat’s semantics to those of Facade by introducing a notion of
Fiat states, which allow us to express pre and post-conditions in a concise
and homogeneous way, facilitating syntax-driven compilation. Each Fiat state
(denoted as st) describes a set of Facade states (denoted as st): in Facade,
machine states are unordered collections of names and values. Fiat states, on
the other hand, are ordered collections of bindings (sometimes called telescopes),
each containing a variable name and a set of permissible values for that variable.

Extensible Extraction of Efficient Imperative Programs 9

∀ k, v. st(k) = Scalar(v)→ ext (k) = Scalar(v)

∀ k, v. st(k) = ADT(v)↔ ext (k) = ADT(v)
st.∅] ext

EqvStNil

st(k) = wrap(v’) v’ ∈ v st-{k}. (st v’)] ext
st. Jk 7→ v as v K :: (st v)] ext

EqvStCons

Fig. 4: Equivalence relation on Fiat and Facade states. Because Facade does not
allow us to leak ADT values, we require that all bindings pointing to ADT values
in st be reflected in st] ext , and vice versa. For scalars, we only require that
bindings in st] ext be present in st.

For example, the telescope J"x" 7→ {x | x > 0} as x K :: J"y" 7→ ret (x, x + 1)K
describes all machine states in which "x" maps to a positive value x and "y"
maps to the pair (x, x + 1). Each variable in a Fiat state is annotated with
a function wrap describing how to inject values of its type in and out of the
concrete type used at the Facade level (e.g. a linked list may be extracted to a
vector, as in our example).

Finally, to be able to implement the aforementioned chomp rule, Fiat states
are extended with an unordered map (ext) from names to concrete values. A full
Fiat state is thus composed of a telescope st and an extra collection of bindings
ext , written st] ext . We relate Fiat states to Facade states using the ternary
predicate st. st] ext defined in Fig. 4, which ensures that the values assigned
to variables in the Facade state st are compatible with the bindings described in
the Fiat state st] ext .

4.3 Proof-generating extraction by synthesis

Armed with this predicate, we are ready for the full definition of st
p

ext
st’ :

– ∀ st. st. st] ext =⇒ (p, st)↓
For any initial Facade state st, if st is in relation with the Fiat state st
extended by ext , then it is safe to run the Facade program p from state st.

– ∀ st, st’. st. st] ext ∧ (p, st)⇓ st’ =⇒ st’. st’] ext
For all initial and final Facade states st and st’, if st is in relation with
the Fiat state st extended by ext , and if running the Facade program p
starting from st may produce the Facade state st’, then st’ is in relation
with the Fiat state st’ extended by ext .

This definition is enough to concisely and precisely phrase the three types of
lemmas required to synthesize Facade programs: properties of the relation
used to drive the proof search and provide the extraction architecture; connections
between the relation and Fiat’s semantics, used to reduce extraction of Fiat
programs to that of Gallina programs; and connections between Fiat and Facade,
such as the FoldL rule of Fig. 2c (users provide additional lemmas of the latter
kind to extend the scope of the compiler and broaden the range of source programs
that the compiler is able to handle).

10 C. Pit-Claudel et al.

With these lemmas, we can phrase certified extraction as a proof-search
problem that can be automated effectively. Starting from a Fiat computation
f x 1 . . . xn mixing Gallina code with calls to external ADTs, we generate a
specification �f� based on the predicate (which itself is defined in terms of
Facade’s operational semantics):

�f� , ∃ p. ∀ x 1 . . . xn.J"x1" 7→ ret x 1K :: . . . :: J"xn" 7→ ret xnK
p

∅
J"out" 7→ f x 1 . . . xnK (1)

From this starting point, extraction proceeds by analyzing the shapes of the pre-
and post-states to determine applicable compilation rules, which are then used to
build a Facade program progressively. This stage explains why we chose strongly
constrained representations for pre and post-states: where typical verification
tasks compute verification conditions from the program’s source, we compute
the program from carefully formulated pre- and postconditions (proper care in
designing the compilation rules and their preconditions obviates the need for
backtracking).

In practice, this syntax-driven process is implemented by a collection of
matching functions written in Ltac. These may either fail, or solve the current
goal by applying a lemma, or produce a new goal by applying a compilation
lemma of the form shown in Fig. 2. Our extraction architecture is extensible: the
main loop exposes hooks that users can rebind to call their own matching rules.
Examples of such rules are provided in section 6.1. Our focus is on extracting
efficient code from Gallina EDSLs, so the set of rules is tailored to each domain
and does not cover all possible programs (in particular, we do not have support
for arbitrary fixpoints or pattern-matching constructs; we use custom lemmas
mapping specific matches to specific code snippets or external functions). When
the compiler encounters an unsupported construct C, it stops and presents the
user with a goal of the form pre

?

ext
Jk 7→ CK :: post , indicating which piece is

missing so the user can provide the missing lemmas and tactics.
In our experience, debugging proof search and adding support for new con-

structs is relatively easy, though it does require sufficient familiarity with Coq.
Typically, our compiler would have two classes of users: library developers, who
interactively implement support for new DSLs (developing compilation tactics
requires manual labor similar to writing a domain-specific compiler); and fi-
nal users, who write programs within supported DSLs and use fully automated
compilation tactics.

5 The complete proof-generating pipeline

The components presented in the previous section form the final links in an
automated pipeline lowering high-level specifications to certified Bedrock modules,
whose correctness is guaranteed by Theorem 1.

Starting from a Fiat ADT specification ADTspec (a collection of high-level
method specifications mspec, as shown in Fig. 5a), we obtain by refinement under a
relation ≈ a Fiat ADT implementation ADTimpl (a collection of nondeterministic

Extensible Extraction of Efficient Imperative Programs 11

functional programs mimpl, as shown in Fig. 5b). Each method of this implemen-
tation is assigned an operational specification �mimpl� (equation 1), from which
we extract (using proof-producing synthesis, optionally augmented with user-
specified lemmas and tactics) a verified Facade implementation mimpl (section 4.3)
that calls into a number of external functions (Ψ , Fig. 3), as shown in Fig. 5c.

Finally, we package the resulting Facade methods into a Facade module.
This module imports Ψ (i.e. it must be linked against implementations of the
functions in Ψ) and exports axiomatic specifications straightforwardly lifted from
the original high-level specifications into Facade-style axiomatic specifications (of
the style demonstrated in the call rule of Fig. 3): for each high-level specification
methspec, we export the following (written dmethspece):
Pre , λ args⇒ ∃ rS rI xs. rS ≈ rI ∧ args = [rI] ++ xs
Post , λ args⇒ ∃ rS rI r’S r’I v xs.

rS ≈ rI ∧ (r’S, v) ∈ methspec rS xs ∧
r’S ≈ r’I ∧ args = [(rI, r’I)] ++ (zip xs xs)

Since we are working in an object-oriented style at the high level, our low-level
code follows a convention of an extra “self” argument added to each method,
written in this logical formulation as rS for spec-level “self” values and rI for
implementation-level “self” values.

A generic proof guarantees that the operational specifications �methimpl� used
to synthesize Facade code indeed refine the axiomatic specifications dmethspece
exported by our Facade module. Compiling this Facade module via our new
formally verified Facade compiler produces a correct Bedrock module, completing
Theorem 1:

Theorem 1 Starting from a valid refinement ADTimpl of a Fiat ADT specifica-
tion ADTspec with methods methimpl and methspec and a set of Facade programs
synthesized from each �methimpl�, we can build a certified Bedrock module whose
methods satisfy the axiomatic specifications dmethspece.

The final Bedrock module satisfies the original, high-level Fiat specifications. It
specifies its external dependencies Ψ , for which verified assembly implementations
must be provided as part of the final linking phase, which happens entirely
inside of Coq. After linking, we obtain a closed, executable Bedrock module,
exposing an axiomatic specification directly derived from the original, high-
level ADT specification. Our implementation links against verified hand-written
implementations of low-level indexing structures, though it would be possible to
use the output of any compiler emitting Bedrock assembly code.

6 Evaluation

6.1 Microbenchmarks

We first evaluated our pipeline by extracting a collection of twenty six Gallina
programs manipulating machine words, lists, and nested lists, with optional non-
deterministic choices. Extraction takes a few seconds for each program, ranging

12 C. Pit-Claudel et al.

from simple operations such as performing basic arithmetic, allocating data struc-
tures, calling compiler intrinsics, or sampling arbitrary numbers to more complex
operations involving sequence manipulations, like reversing, filtering, reducing
(e.g. reading in a number written as a list of digits in a given base), flattening,
and duplicating or replacing elements. All examples, and the corresponding out-
puts, are included in a literate Coq file available online. These examples illustrate
that our extraction engine supports a fluid, extensible source language, including
subsets of Gallina and many nondeterministic Fiat programs.

Definition SchedulerSpec: ADT , QueryADTRep SchedulerSchema {
Def Init: rep , empty,

Insert a new process, failing if newpid already exists.

Def Spawn (r: rep) (newpid cpu st: W32): B ,
Insert <pid:: newpid, state:: st, cpu:: cpu> into r.Procs,

Find all processes in a state st and return their PIDs.

Def Enumerate (r: rep) (st: W32): list W32 ,
pids← For p in r.Procs Where p.state = st Return p.pid; ret (r, pids),

Find a process by PID and return its CPU time.

Def GetCPUTime (r: rep) (id: W32): list W32 ,
cpu← For p in r.Procs Where p.pid = id Return p.cpu; ret (r, cpu) }.

(a) The original Fiat specification of a process scheduler. The refinement process derives
an efficient functional implementation of this specification by implementing it using
nested trees keyed on the process ID, followed by the process state.
Spawn
a← bfind r (_, $newpid, _);
if length (snd a) == 0 then

u← binsert (fst a)
[$newpid, $state, $cpu];

ret (fst u, true)
else ret (fst a, false)

Enumerate
a← bfind r ($state, _, _);
ret (fst a, revmap (Get 0) (snd a))

GetCPUTime
a← bfind r (_, $id, _);
ret (fst a, revmap (Get 2) (snd a))

(b) The output of Fiat, after refining the specifications presented in Fig. 5a. Notice the
use of bfind and binsert, two nondeterministic methods of a bag ADT. In this example,
the bag data structure that bfind depends on is expected to provide fast lookups by
state and then by ID.
Enumerate
procs = BTree.findFirst(rep, $state);
return = List[W32].new();
test = List[Tuple].empty?(procs);
While (not test)

head = List[Tuple].pop!(procs);
head’ = Tuple.get(head, 0);
Call Tuple.delete!(head, 3);
Call List[W32].push(ret, head’);
test = List[Tuple].empty?(procs)

EndWhile;
Call List[Tuple].delete!(procs);

(c) Facade output for the Enumerate
method. The low-level data structure that
we will link against is a nested tree, in-
dexed by state and then by process ID.
The call to findFirst returns a list of all pro-
cesses in a particular state. GetCPUTime
has a similar shape but is implemented us-
ing a skip-scan (or “loose index scan”) on
the first level of the nested tree (process
states), followed by a search on the second
level of the tree (process IDs).

Fig. 5: Different stages of a process-scheduler compilation example (see also the
annotated ‘ProcessScheduler.v’ file).

https://github.com/mit-plv/fiat/tree/ijcar2020/fiat/src/CertifiedExtraction/Benchmarks/MicrobenchmarksAnnotated.v
https://github.com/mit-plv/fiat/tree/ijcar2020/ProcessScheduler.v

Extensible Extraction of Efficient Imperative Programs 13

6.2 Relational queries

To evaluate our full pipeline in realistic conditions, we targeted the query-
structure ADT library of the Fiat paper [4] as well as an ADT modeling process
scheduling inspired by Hawkins et al [7]. This benchmark starts from high-level
Fiat specifications (as shown in Fig. 5a) and outputs a closed Bedrock module,
linked against a hand-verified nested-binary-tree implementation.

From Fiat specifications we derive a collection of nondeterministic Fiat pro-
grams (one per ADT method, as demonstrated in Fig. 5b), then extract each
method to Facade Fig. 5c) and compile to Bedrock. Extraction is fully automatic;
it draws from the default pool of extraction lemmas (about conditionals, con-
stants, arithmetic operations, etc.) and from bag-specific lemmas that we added
to the compiler (these manually verified call rules connect the pure bag speci-
fications used in Fiat sources to Bedrock-style specifications of mutable binary
search trees using the relation).

0 1000 2000 3000 4000 5000

Number of processes (10 active, n−10 sleeping)

10−2

10−1

100

R
un

ni
ng

tim
e

(s
ec

on
ds

)

PG/CPU
PG/CPU’
PG/Enum

SQLite/CPU
SQLite/CPU’
SQLite/Enum

Fiat/CPU
Fiat/Enum

Fig. 6: Process scheduler benchmarks.

Fig. 6 presents the re-
sults of our experimental
validation. We compare our
own verified implementation
(“Fiat”) against the corre-
sponding SQL queries exe-
cuted by SQLite 3.8.2 (using
an in-memory database) and
PostgreSQL 9.3.11 (“PG”).
For increasingly large collec-
tions of processes, we run
20,000 Enumerate queries to
locate the 10 active pro-
cesses, followed by 10,000
GetCPUTime queries for arbi-
trary process IDs. In all cases,
the data is indexed by (state,
PID) to allow for constant-
time Enumerate queries (the
number of active processes is kept constant) and logarithmic-time GetCPUTime
queries (assuming a B-tree–style index and skip-scans).

Our implementation behaves as expected: it beats SQLite and PostgreSQL
by 1.5 and 2.5 orders of magnitude respectively on GetCPUTime, and competes
honorably with SQLite (while beating PostgreSQL by one order of magnitude)
on Enumerate. Notice the red curves on the graph: without an explicit “$state
IN (0, 1)” clause, both database management systems missed the skip-scan
opportunity and exhibited asymptotically suboptimal linear-time behavior, so
we had to tweak the queries fed to PostgreSQL and SQLite to obtain good
GetCPUTime performance (in contrast, the optimizer in our system can be guided
explicitly by adding compiler hints in the form of extra tactics, without modifying
the specifications).

14 C. Pit-Claudel et al.

Of course, our implementation does much less work than a database engine;
the strength of our approach is to expose an SQL-style interface while enabling
generation of specialized data-structure-manipulation code, allowing programmers
to benefit from the conciseness and clarity of high-level specifications without
incurring the overheads of a full-fledged DBMS.

Trusted base Our derivation assumes ensemble extensionality and Axiom K. Our
trusted base comprises the Coq 8.4 checker [25] (∼10 000 lines of OCaml code),
the semantics of the Bedrock IL and the translator from it to x86 assembly
(∼1200 lines of Gallina code), an assembler, and wrappers for extracted methods
(∼50 lines of x86 assembly). We used Proof General [2] for development.

7 Related work

Closely related to our work is a project by Lammich [10] that uses Isabelle/HOL
to refine functional programs to an embedded imperative language that requires
garbage collection. This approach has been applied to various complex algorithms,
whereas our focus is on fully automatic derivation from highly regular specs. Both
approaches use some form of linearity checking to bridge the functional-imperative
gap (Lammich et al. use separation logic [20] and axiomatic semantics, while
we apply Facade’s lighter-weight approach: decidable syntactic checks applied
after-the-fact, with no explicit pointer reasoning). A recent extension [11] targets
LLVM directly. Crucially, the initial work only targets Imperative/HOL and its
extension does not support linking against separately verified libraries, while
our pipeline allows linking, inside of Coq, low-level programs against verified
libraries written in any language of the Bedrock ecosystem. Finally, we have
integrated our translation into an automated proof-generating pipeline from
relational specifications to executable assembly code — as far as we know, no
such pipeline has been presented before.

Another closely related project by Kumar et al. [17,8] focuses on extracting
terms written in a purely functional subset of HOL4’s logic into the CakeML
dialect of ML. The main differences with our pipeline are optimization opportu-
nities, extensibility, and external linking. Indeed, while the compiler to CakeML
bridges a relatively narrow gap (between two functional languages with expressive
type systems and automatic memory management), our extraction procedure
connects two very different languages, opening up many more opportunities for
optimizations (including some related to memory management). We expose these
opportunities to our users by letting them freely extend the compiler based on
their domain-specific optimization knowledge.

Recent work by Protzenko et al. [19] achieves one of our stated goals (efficient
extraction to low-level code, here from F* to C) but does not provide formal
correctness guarantees for the extracted code (the tool, KreMLin, consists of
over 15,000 lines of unverified OCaml code). Additionally, KreMLin requires
source programs to be written in a style matching that of the extracted code:
instead of extending the compiler with domain-specific representation choices
and optimizations, users must restrict their programs to the Low* subset of F*.

Extensible Extraction of Efficient Imperative Programs 15

One last related project is the compiler of the Cogent language [18]. Its
sources are very close to Facade’s (it allows for foreign calls to axiomatically
specified functions, but it does not permit iteration or recursion except through
foreign function calls), and its compiler also produces low-level code without a
garbage collector. Our projects differ in architecture and in spirit: Cogent is
closer to a traditional verified compiler, producing consecutive embeddings of a
source program (from C to a shallow embedding in Isabelle/HOL) and generating
equivalence proofs connecting each of them. Cogent uses a linear type system to
establish memory safety, while we favor extensibility over completeness, relying
on lemmas to justify the compilation of arbitrary Gallina constructs.

We draw further inspiration from a number of other efforts:

Program extraction Program extraction (a facility offered by Coq and other proof
assistants) is a popular way of producing executable binaries from verified code.
Extractors are rather complex programs, subjected to varying degrees of scrutiny:
for example, the theory behind Coq’s extraction was mechanically formalized and
verified [14], but the corresponding concrete implementation itself is unverified.
The recent development of CertiCoq [1], a verified compiler for Gallina, has
significantly improved matters over unverified extraction, but it only supports
pure Gallina programs, and it uses a fixed compilation strategy. In contrast, our
pipeline ensures that nondeterministic specifications are preserved down to the
generated Bedrock code and grants user fine control over the compilation process.

Compiler verification Our compilation strategy allows Fiat programs to depend on
separately compiled libraries. This contrasts with verified compilers like CakeML
[9] or CompCert [13]: in the latter, correctness guarantees only extend to linking
with modules written in CompCert C and compiled with the same version of the
compiler. Recent work [23] generalized these guarantees to cover cross-language
compilation, but these developments have not yet been used to perform functional
verification of low-level programs assembled from separately verified components.

An alternative approach, recently used to verify an operating-system kernel
[21], is to validate individual compiler outputs. This is particularly attractive
as an extension of existing compilers, but it generally falls short when trying
to verify complex optimizations, such as our high-level selection of algorithms
and data structures. In the same vein, verified compilers often rely on unverified
programs to solve complex problems such as register allocation, paired with
verified checkers to validate solutions. In our context, the solver is the proof-
producing extraction logic, and the verifier is Coq’s kernel: our pipeline produces
proofs that witness the correctness of the resulting Facade code.

Extensible compilation Multiple research projects let users add optimizations to
existing compilers. Some, like Racket [26], do not focus on verification. Others,
like Rhodium [12], let users phrase and verify transformations using DSLs.
Unfortunately, most of these tools are unverified and do not provide end-to-
end guarantees. One recent exception is XCert [24], which lets CompCert users

16 C. Pit-Claudel et al.

soundly describe program transformations using an EDSL. Our approach is similar
insofar as we assemble DSL compilers from collections of verified rewritings.

Program synthesis Our approach of program generation via proofs follows in
the deductive-synthesis tradition started in the 1980s [15]. We use the syntactic
structure of our specialized pre- and postconditions to drive synthesis: the idea
of strongly constraining the search space is inherited from the syntax-guided
approach pioneered in the Sketch language [22]. That family of work uses SMT
solvers where we use a proof assistant, offering more baseline automation with
less fundamental flexibility.

Formal decompilation Instead of deriving low-level code from high-level specifica-
tions, some authors have used HOL-family proof assistants to translate unverified
low-level programs (in assembly [16] or C [6]) into high-level code suitable for
verification. Decompilation is an attractive approach for existing low-level code,
or when compiler verification is impractical.

8 Conclusion

The extraction technique presented in this paper is a convenient and lightweight
approach for generating certified extracted programs, reducing the trusted base
of verified programs to little beyond a proof assistant’s kernel. We have shown our
approach to be suitable for the extraction of DSLs embedded in proof assistants,
using it to compile a series of microbenchmarks and to do end-to-end proof-
generating derivation of assembly code from SQL-style specifications. Crucially,
the latter derivations work via linking with verified implementations of assembly
code that our derivation pipeline could never produce directly. To ease this
transition, we developed Facade, a new language designed to facilitate reasoning
about memory allocation in synthesized extracted programs. In the process,
we have closed the last gap in the first automatic and mechanically certified
translation pipeline from declarative specifications to assembly-language libraries,
supporting user-guided optimizations and parameterization over abstract data
types implemented, compiled, and verified using arbitrary languages and tools.

Acknowledgments. This work has been supported in part by NSF grants CCF-
1512611 and CCF-1521584, and by DARPA under agreement number FA8750-16-
C-0007. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government.

Extensible Extraction of Efficient Imperative Programs 17

References

1. Anand, A., Appel, A., Morrisett, G., Paraskevopoulou, Z., Pollack, R., Belanger,
O.S., Sozeau, M., Weaver, M.: CertiCoq: A verified compiler for Coq. In: CoqPL’17:
The Third International Workshop on Coq for PL (Jan 2017)

2. Aspinall, D.: Proof General: A generic tool for proof development. In: International
Conference on Tools and Algorithms for Construction and Analysis of Systems,
TACAS 2000, Held as Part of the European Joint Conferences on the Theory and
Practice of Software, ETAPS 2000, Berlin, Germany, March 25 - April 2, 2000. pp.
38–42 (2000). https://doi.org/10.1007/3-540-46419-0_3

3. Chlipala, A.: The Bedrock structured programming system: Combining gener-
ative metaprogramming and Hoare logic in an extensible program verifier. In:
ACM SIGPLAN International Conference on Functional Programming, ICFP
2013, Boston, MA, USA - September 25 - 27, 2013. pp. 391–402 (2013).
https://doi.org/10.1145/2500365.2500592

4. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: Deductive synthesis of
abstract data types in a proof assistant. In: ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2015, Mumbai, India, January
15-17, 2015. pp. 689–700 (2015). https://doi.org/10.1145/2676726.2677006

5. Dijkstra, E.W.: A constructive approach to the problem of program correctness (Aug
1967), https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.PDF, circulated
privately

6. Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: Automatic verified
abstraction of C. In: International Conference on Interactive Theorem Prov-
ing, ITP 2012, Princeton, NJ, USA, August 13-15, 2012. pp. 99–115 (2012).
https://doi.org/10.1007/978-3-642-32347-8_8

7. Hawkins, P., Aiken, A., Fisher, K., Rinard, M.C., Sagiv, M.: Data representation
synthesis. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011. pp. 38–49 (2011).
https://doi.org/10.1145/1993498.1993504

8. Ho, S., Abrahamsson, O., Kumar, R., Myreen, M.O., Tan, Y.K., Norrish,
M.: Proof-producing synthesis of CakeML with I/O and local state from
monadic HOL functions. Lecture Notes in Computer Science p. 646–662 (2018).
https://doi.org/10.1007/978-3-319-94205-6_42

9. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: Cakeml: A verified implementa-
tion of ML. In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2014, San Diego, CA, USA, January 20-21, 2014. pp. 179–192
(2014). https://doi.org/10.1145/2535838.2535841

10. Lammich, P.: Refinement to Imperative/HOL. In: International Conference on
Interactive Theorem Proving, ITP 2015, Nanjing, China, August 24-27, 2015. pp.
253–269 (2015). https://doi.org/10.1007/978-3-319-22102-1_17

11. Lammich, P.: Generating verified LLVM from Isabelle/HOL. In: International Con-
ference on Interactive Theorem Proving, ITP 2019, September 9-12, 2019, Portland,
OR, USA. pp. 22:1–22:19 (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.22

12. Lerner, S., Millstein, T.D., Rice, E., Chambers, C.: Automated soundness
proofs for dataflow analyses and transformations via local rules. In: ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2005, Long Beach, California, USA, January 12-14, 2005. pp. 364–377 (2005).
https://doi.org/10.1145/1040305.1040335

https://doi.org/10.1007/3-540-46419-0_3
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1145/2676726.2677006
https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.PDF
https://doi.org/10.1007/978-3-642-32347-8_8
https://doi.org/10.1145/1993498.1993504
https://doi.org/10.1007/978-3-319-94205-6_42
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.1145/1040305.1040335

18 C. Pit-Claudel et al.

13. Leroy, X.: Formal certification of a compiler back-end or: Programming a compiler
with a proof assistant. In: ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2006, Charleston, South Carolina, USA, January
11-13, 2006. pp. 42–54 (2006). https://doi.org/10.1145/1111037.1111042

14. Letouzey, P.: A new extraction for Coq. In: International Workshop on Types for
Proofs and Programs, TYPES 2002, Berg en Dal, The Netherlands, April 24-28,
2002. pp. 200–219 (2002). https://doi.org/10.1007/3-540-39185-1_12

15. Manna, Z., Waldinger, R.J.: A deductive approach to program synthesis. ACM
Transactions on Programming Languages and Systems 2(1), 90–121 (Jan 1980).
https://doi.org/10.1145/357084.357090

16. Myreen, M.O., Gordon, M.J.C., Slind, K.: Decompilation into logic - improved. In:
Formal Methods in Computer-Aided Design, FMCAD 2012, Cambridge, UK, Octo-
ber 22-25, 2012. pp. 78–81 (2012), https://ieeexplore.ieee.org/document/6462558/

17. Myreen, M.O., Owens, S.: Proof-producing synthesis of ML from higher-order
logic. In: ACM SIGPLAN International Conference on Functional Programming,
ICFP 2012, Copenhagen, Denmark, September 9-15, 2012. pp. 115–126 (2012).
https://doi.org/10.1145/2364527.2364545

18. O’Connor, L., Rizkallah, C., Chen, Z., Amani, S., Lim, J., Nagashima, Y., Sewell,
T., Hixon, A., Keller, G., Murray, T.C., Klein, G.: COGENT: certified compilation
for a functional systems language. CoRR abs/1601.05520 (2016), https://arxiv.
org/abs/1601.05520

19. Protzenko, J., Zinzindohoué, J.K., Rastogi, A., Ramananandro, T., Wang, P.,
Béguelin, S.Z., Delignat-Lavaud, A., Hritcu, C., Bhargavan, K., Fournet, C., Swamy,
N.: Verified low-level programming embedded in F*. Proceedings of the ACM on Pro-
gramming Languages 1(ICFP), 17:1–17:29 (2017). https://doi.org/10.1145/3110261

20. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
IEEE Symposium on Logic in Computer Science, LICS 2002, 22-25 July 2002, Copen-
hagen, Denmark. pp. 55–74 (2002). https://doi.org/10.1109/LICS.2002.1029817

21. Sewell, T.A.L., Myreen, M.O., Klein, G.: Translation validation for a verified OS
kernel. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2013, Seattle, WA, USA, June 16-19, 2013. pp. 471–482
(2013). https://doi.org/10.1145/2491956.2462183

22. Solar-Lezama, A.: The sketching approach to program synthesis. In: Asian Sympo-
sium on Programming Languages and Systems, APLAS 2009, Seoul, Korea, De-
cember 14-16, 2009. pp. 4–13 (2009). https://doi.org/10.1007/978-3-642-10672-9_3

23. Stewart, G., Beringer, L., Cuellar, S., Appel, A.W.: Compositional CompCert.
In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, Mumbai, India, January 15-17, 2015. pp. 275–287 (2015).
https://doi.org/10.1145/2676726.2676985

24. Tatlock, Z., Lerner, S.: Bringing extensibility to verified compilers. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010. pp. 111–121 (2010).
https://doi.org/10.1145/1806596.1806611

25. The Coq Development Team: The Coq Proof Assistant Reference Manual (2012),
https://coq.inria.fr, version 8.4

26. Tobin-Hochstadt, S., St-Amour, V., Culpepper, R., Flatt, M., Felleisen, M.: Lan-
guages as libraries. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011. pp.
132–141 (2011). https://doi.org/10.1145/1993498.1993514

27. Wadler, P.: Comprehending monads. Mathematical Structures in Computer Science
2(4), 461–493 (1992). https://doi.org/10.1017/S0960129500001560

https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1145/357084.357090
https://ieeexplore.ieee.org/document/6462558/
https://doi.org/10.1145/2364527.2364545
https://arxiv.org/abs/1601.05520
https://arxiv.org/abs/1601.05520
https://doi.org/10.1145/3110261
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1145/2676726.2676985
https://doi.org/10.1145/1806596.1806611
https://coq.inria.fr
https://doi.org/10.1145/1993498.1993514
https://doi.org/10.1017/S0960129500001560

Extensible Extraction of Efficient Imperative Programs 19

28. Wang, P.: The Facade language. Tech. rep., MIT CSAIL (2016), https://people.
csail.mit.edu/wangpeng/facade-tr.pdf

29. Wang, P., Cuellar, S., Chlipala, A.: Compiler verification meets cross-language
linking via data abstraction. In: ACM International Conference on Object Ori-
ented Programming Systems Languages & Applications, OOPSLA 2014, part of
SPLASH 2014, Portland, OR, USA, October 20-24, 2014. pp. 675–690 (2014).
https://doi.org/10.1145/2660193.2660201

https://people.csail.mit.edu/wangpeng/facade-tr.pdf
https://people.csail.mit.edu/wangpeng/facade-tr.pdf
https://doi.org/10.1145/2660193.2660201

	Extensible Extraction of Efficient Imperative Programs with Foreign Functions, Manually Managed Memory, and Proofs
	Introduction
	A brief outline of our approach
	An example of proof-producing extraction
	Proof-generating extraction of nondeterministic functional programs: from Fiat to Facade
	The Facade language
	Fiat and Facade states
	Proof-generating extraction by synthesis

	The complete proof-generating pipeline
	Evaluation
	Microbenchmarks
	Relational queries

	Related work
	Conclusion

