we present Fiat, a library for the Coq proof assistant supporting refinement of declarative specifications into efficient functional programs with a high degree of automation. Each refinement process leaves a proof trail, checkable by the normal Coq kernel, justifying its soundness. We focus on the synthesis of abstract data types that package methods with private data. We demonstrate the utility of our framework by applying it to the synthesis of query structures—abstract data types with SQL-like query and insert operations. Fiat includes a library for writing specifications of query structures in SQL-inspired notation, expressing operations over relations (tables) in terms of mathematical sets. This library includes a suite of tactics for automating the refinement of specifications into efficient, correct-by-construction OCaml code. Using these tactics, a programmer can generate such an implementation completely automatically by only specifying the equivalent of SQL indexes, data structures capturing useful views of the abstract data. Throughout we speculate on the new programming modularity possibilities enabled by an automated refinement system with proved-correct rules.

“Every block of stone has a statue inside it and it is the task of the sculptor to discover it.”

— Michelangelo

1. Introduction

Deductive synthesis allows users to derive correct-by-construction programs interactively via stepwise refinement of specifications. The programmer starts with a very underconstrained nondeterministic program, which may be nonobvious how to execute efficiently. Step by step, the developer applies refinement rules, which replace program subterms with others that are “at least as deterministic,” introducing no new behaviors beyond those of the terms they replace. Eventually, the program has been refined to a completely deterministic form, ideally employing efficient data structures and algorithms. At its core, deductive synthesis decomposes a program into a high-level specification of its functionality and a sequence of semantics-preserving optimizations that produces an efficient, executable implementation. So long as the library of primitive refinement steps is sound, developers using this approach can modify the optimizations to suit their performance requirements, remaining confident that the implementation produced meets the original specification.

This paper introduces an approach for the deductive synthesis of abstract data types (ADTs) combining computational refinement [7] and abstraction relations [9, 10]. An important novelty of our approach is that all refinement derivations are carried out inside the Coq proof assistant, thereby achieving a previously unmatched degree of confidence in the correctness of the resulting implementations. Derivations in our prototype system Fiat are optimization scripts that transform programs in correctness-preserving ways, possibly resolving nondeterminism. These optimization scripts yield machine-checkable refinement theorems certifying the correctness of the resulting implementations.

Systems like Specware [20] and its predecessors [2, 16] at the Kestrel Institute have enabled interactive synthesis by refinement since the 1970s. Only recently has Specware supported any kind of mechanized proof about refinement correctness, by instrumenting refinement primitives to generate Isabelle/HOL proof scripts, although each of these generators expands Specware’s trusted code base. Specware also follows a very manual model of choosing refinement steps, which is understandable given the challenging problems it has been used to tackle, in domains like artificial intelligence and programming-language runtime systems.

With Fiat, we instead focus (for now, at least) on more modest programming tasks, like those faced by mainstream Web application developers interacting with persistent data stores. The ultimate goal of Fiat is to enable refinement derivations using the sort of push-button automation found in traditional SQL query planners, while adding a high level of assurance about their correctness by carrying them out inside of Coq with full proofs. At the same time, the framework allows seamless integration with manual derivations where they are called for, without weakening the formal guarantee that a derived implementation meets its specification.

By combining the core of Fiat with domain-specific libraries, programmers can write derivations with a high degree of automation. These libraries combine domain-specific refinement theorems and automation tactics to build what amount to first-class, semantics-preserving compilers. Our main case study to date involves a library for synthesizing ADTs with SQL-like operations, operating in the style of query planners from the database community. We start with declarative queries over relational tables, transforming them into efficient, correct-by-construction OCaml code. This library implements “domain compilers” at varying levels of automation; users can do completely automated planning for a common class of queries, and with more work they can apply some of our more advanced strategies for choosing data structures or algorithms.

Figure 1 shows an example Fiat derivation for a simple data structure representing a book store. We consider this example in
Section 2 introduces Fiat’s basic notions of computations and their refinement and then lifts these ideas to abstract data types, which expose private data through methods with specifications. Section 3 describes how these foundations are utilized to synthesize correct-by-construction ADTs. Section 4 presents query structures, a library for synthesizing ADTs with SQL-style operations on relational tables. This library augments the core of Fiat with new notations for specifying functionality at a high level and optimization-script building blocks for implementing ADTs at varying levels of automation. We have used this machinery to generate correct-by-construction OCaml programs; Section 5 includes more detail. We close with more discussion of related work. The entire Fiat framework, including all the examples discussed in this paper, can be found at http://plv.csail.mit.edu/fiat/ and can be built and run using the standard distribution of Coq 8.4pl2.

2. Refinement

The foundation of deductive synthesis in Fiat is refinement: a user starts out with a high-level specification that can be implemented in any number of different ways and iteratively refines the possible implementations until producing an executable (and hopefully efficient) implementation.

Specifications in Fiat are represented as computations, or sets of values satisfying some defining property. Figure 2 lists the three combinators Fiat uses to define these sets: \(\textsf{ret} \) builds a singleton set, \(\textsf{set} \) comprehension \(\{ \cdot | \cdot \} \) “picks” an arbitrary element satisfying a characteristic property, and the “bind” combinator, \(\cdot \leftarrow \cdot \), combines two computations. Throughout the text we will use the notation \(c \sim v \equiv v \in c \) to emphasize that computations denote sets of “computed” values.

\[
\textsf{ret} \ a \equiv \{ a \} \quad \{ a | P \ a \} \equiv \{ a | P \ a \} \\
x \leftarrow c_i ; c_0(x) \equiv \{ b \mid \exists a \in c_i. \ b \in c_0(a) \}
\]

Figure 2. Computation combinators

Consider the following (particularly permissive) specification of an insert function for a cache represented as a list of key-value pairs:

\[
\text{insert} \ k \ v \ l \equiv \{ l' | l' \subseteq \{(k,v)\} \cup l \}
\]

This specification only requires that insert does not inject extraneous elements in the list. When a key is not included in the original cache, the specification imposes no ordering on the result and somewhat counterintuitively does not require that the result include the new key-value pair. Such underspecification is not a bug. It allows for a wide range of caching behaviors: existing keys can be replaced or retained when they are reinserted, new keys can be inserted in an order that facilitates lookup, and old values can be dropped from the cache to maintain a constant memory footprint.

Each of these choices represents a more refined version of insert, with refinement defined by the superset relation \(\supseteq \) between the set of implementations of insert and that of each choice. Refinement forms a partial order on computations. Intuitively, a computation \(c' \) is a refinement of a computation \(c \) if \(c' \) only “computes” to values that \(c \) can “compute” to. Figure 3 shows a subset of the

more detail later in the paper, but for now we just want to give a basic sense of how Fiat may be used. The code excerpt begins with a definition of a data type as a set of methods over a relational database schema (whose definition we give later, in Figure 8). Methods are written in SQL-inspired syntax, saying more of what values accomplish that purpose in the figure. For each of our two database tables, we define an \(\text{index} \), a data structure useful to look up entries by values of certain keys. The two Definitions of \text{IndexFor} values accomplish that purpose in the figure. Next, we define an \text{abstraction relation}, explaining how we propose to implement set-based relations using the concrete indexes we have defined. Finally, we begin an \text{optimization script} to generate a correct-by-construction implementation (shown later in Figure 11). Most of the work is done by a “domain compiler” called \text{plan}, which knows how to use indexes to implement queries efficiently. The programmer is free to chain sequences of library invocations and more manual steps, as needed to meet his performance target. Any sequence accepted by Coq is guaranteed to preserve correctness, just as in conventional programming any sequence of calls to an encapsulated data type is guaranteed to preserve its invariants. Instead of just decomposing a program into “data structures + algorithms,” implementations synthesized by Fiat are decomposed into “functionality + optimizations,” with a similar kind of \text{enforced modularity} to what we are used to with encapsulated data types.

Considering this idea more carefully, we can spot opportunities for these domain-specific libraries to provide automation that goes beyond the programmer’s usual relationship with her compilers. Compilers generally do not play too well with each other, and any optimization not built into a compiler goes unapplied in the final code. By relying on Fiat’s core as a common foundation, users can freely compose the automation tactics provided by domain-specific libraries. Furthermore, this foundation enables programmers to take an existing domain-specific library and safely extend it with novel optimizations, without affecting the soundness of any program optimized with the extended library.

Specifications in Fiat are represented as computations, or sets of values satisfying some defining property. Figure 2 lists the three combinators Fiat uses to define these sets: \(\text{ret} \) builds a singleton set, \(\text{set} \) comprehension \(\{ \cdot | \cdot \} \) “picks” an arbitrary element satisfying a characteristic property, and the “bind” combinator, \(\cdot \leftarrow \cdot \), combines two computations. Throughout the text we will use the notation \(c \sim v \equiv v \in c \) to emphasize that computations denote sets of “computed” values.

\[
\text{ret} \ a \equiv \{ a \} \quad \{ a | P \ a \} \equiv \{ a | P \ a \} \\
x \leftarrow c_i ; c_0(x) \equiv \{ b \mid \exists a \in c_i. \ b \in c_0(a) \}
\]

Figure 2. Computation combinators

Consider the following (particularly permissive) specification of an insert function for a cache represented as a list of key-value pairs:

\[
\text{insert} \ k \ v \ l \equiv \{ l' | l' \subseteq \{(k,v)\} \cup l \}
\]

This specification only requires that insert does not inject extraneous elements in the list. When a key is not included in the original cache, the specification imposes no ordering on the result and somewhat counterintuitively does not require that the result include the new key-value pair. Such underspecification is not a bug. It allows for a wide range of caching behaviors: existing keys can be replaced or retained when they are reinserted, new keys can be inserted in an order that facilitates lookup, and old values can be dropped from the cache to maintain a constant memory footprint.

Each of these choices represents a more refined version of insert, with refinement defined by the superset relation \(\supseteq \) between the set of implementations of insert and that of each choice. Refinement forms a partial order on computations. Intuitively, a computation \(c' \) is a refinement of a computation \(c \) if \(c' \) only “computes” to values that \(c \) can “compute” to. Figure 3 shows a subset of the

more detail later in the paper, but for now we just want to give a basic sense of how Fiat may be used. The code excerpt begins with a definition of a data type as a set of methods over a relational database schema (whose definition we give later, in Figure 8). Methods are written in SQL-inspired syntax, saying more of what values accomplish that purpose in the figure. For each of our two database tables, we define an \(\text{index} \), a data structure useful to look up entries by values of certain keys. The two Definitions of \text{IndexFor} values accomplish that purpose in the figure. Next, we define an \text{abstraction relation}, explaining how we propose to implement set-based relations using the concrete indexes we have defined. Finally, we begin an \text{optimization script} to generate a correct-by-construction implementation (shown later in Figure 11). Most of the work is done by a “domain compiler” called \text{plan}, which knows how to use indexes to implement queries efficiently. The programmer is free to chain sequences of library invocations and more manual steps, as needed to meet his performance target. Any sequence accepted by Coq is guaranteed to preserve correctness, just as in conventional programming any sequence of calls to an encapsulated data type is guaranteed to preserve its invariants. Instead of just decomposing a program into “data structures + algorithms,” implementations synthesized by Fiat are decomposed into “functionality + optimizations,” with a similar kind of \text{enforced modularity} to what we are used to with encapsulated data types.

Considering this idea more carefully, we can spot opportunities for these domain-specific libraries to provide automation that goes beyond the programmer’s usual relationship with her compilers. Compilers generally do not play too well with each other, and any optimization not built into a compiler goes unapplied in the final code. By relying on Fiat’s core as a common foundation, users can freely compose the automation tactics provided by domain-specific libraries. Furthermore, this foundation enables programmers to take an existing domain-specific library and safely extend it with novel optimizations, without affecting the soundness of any program optimized with the extended library.

Specifications in Fiat are represented as computations, or sets of values satisfying some defining property. Figure 2 lists the three combinators Fiat uses to define these sets: \(\text{ret} \) builds a singleton set, \(\text{set} \) comprehension \(\{ \cdot | \cdot \} \) “picks” an arbitrary element satisfying a characteristic property, and the “bind” combinator, \(\cdot \leftarrow \cdot \), combines two computations. Throughout the text we will use the notation \(c \sim v \equiv v \in c \) to emphasize that computations denote sets of “computed” values.

\[
\text{ret} \ a \equiv \{ a \} \quad \{ a | P \ a \} \equiv \{ a | P \ a \} \\
x \leftarrow c_i ; c_0(x) \equiv \{ b \mid \exists a \in c_i. \ b \in c_0(a) \}
\]

Figure 2. Computation combinators

Consider the following (particularly permissive) specification of an insert function for a cache represented as a list of key-value pairs:

\[
\text{insert} \ k \ v \ l \equiv \{ l' | l' \subseteq \{(k,v)\} \cup l \}
\]

This specification only requires that insert does not inject extraneous elements in the list. When a key is not included in the original cache, the specification imposes no ordering on the result and somewhat counterintuitively does not require that the result include the new key-value pair. Such underspecification is not a bug. It allows for a wide range of caching behaviors: existing keys can be replaced or retained when they are reinserted, new keys can be inserted in an order that facilitates lookup, and old values can be dropped from the cache to maintain a constant memory footprint.

Each of these choices represents a more refined version of insert, with refinement defined by the superset relation \(\supseteq \) between the set of implementations of insert and that of each choice. Refinement forms a partial order on computations. Intuitively, a computation \(c' \) is a refinement of a computation \(c \) if \(c' \) only “computes” to values that \(c \) can “compute” to. Figure 3 shows a subset of the
space of computations that we can explore through sequences of refinements from the initial definition of insert. The second column shows a number of refinements of the initial specification, each of which admits a smaller set of implementations. The computation in the second row of this column, for example, only permits implementations that ignore the insertion of duplicate keys.

The third column shows a sequence of refinements progressing towards such an implementation. The first entry further requires implementations to add new keys to the cache. The next computation is an equivalent but more operational version that decomposes the pick into

\[
\begin{align*}
 b & \leftarrow \{b \mid b \neq l \text{ then } k \notin l \text{ else } k \in l\}; \\
 \text{if } b \text{ then } \text{ret } [(k, v)] \cup l & \text{ else } \{f' | f' \subseteq l\}
\end{align*}
\]

where \(b\) is bound to the negation of a nondeterministic membership check for key \(k\) in list \(l\). \(b\) is passed to a computation that adds the key-value pair to the list if \(k\) is not already used and nondeterministically shrinks \(l\) otherwise. The third entry moves closer to an implementation by implementing the membership check using a \text{notKey} function and the pick in the else case with \text{ret} \(l\). A few basic properties of our computation combiners justify implementing each of these subterms of the bind. Refinement may be pushed down through "bind" in two different ways:

\[
\begin{align*}
 c_1 \supset c_2 & \rightarrow (x \leftarrow c_1; c_2(x)) \supset (x \leftarrow c_2; c_2(x)) \\
 (\forall x, c_2(x)) \supset c_3(x) & \rightarrow (x \leftarrow c_2; c_3(x)) \supset (x \leftarrow c_2; c_3(x))
\end{align*}
\]

The usual monad laws [21] hold for computations under set equality:

\[
\begin{align*}
 (x \leftarrow \text{ret } a; c(x)) &= c(a) \\
 (x \leftarrow c; \text{ret } x) &= c
\end{align*}
\]

These laws justify the final refinement in the third column; by transitivity of refinement, it is also a refinement of the initial specification of insert.

2.1 Refinement of Abstract Datatypes

Fiat defines abstract data types [11] (ADTs) as records of state types and computations implementing operations over states. Figure 4 gives a specification of a cache as an abstract data type. In the CacheSig type signature, \text{rep} stands for an arbitrary abstract implementation type, to be threaded through the methods; this type placeholder has a special status in signatures. The CacheSpec functional specification is a nondeterministic reference implementation of a cache. That is, it uses a simple data representation type and its associated method implementations to clearly express how any implementation of this ADT ought to behave. The representation type of CacheSpec does not even obviously lead to computational execution, since it is phrased in terms of mathematical sets. CacheSpec adds to our running example of insert a \text{method} for retrieving values from the cache, an update \text{method} for updating keys already in the cache, and a \text{constructor} called \text{empty} for creating a fresh cache.

\[
\begin{align*}
 \text{ADTSig} & \quad \text{CacheSig} := \\
 \text{empty} : () \rightarrow \text{rep} & \\
 \text{insert} : \text{rep} \times \text{Key} \times \text{Value} \rightarrow \text{rep} & \\
 \text{lookup} : \text{rep} \times \text{Key} \rightarrow \text{Value} & \\
 \text{ADT CacheSpec implementing} & \\
 \text{CacheSig} := \text{rep} \text{ := Set of (Key \times Value)} \\
 \text{constructor empty := Return } 0 \quad \text{method insert } (r : \text{rep}, k : \text{Key}, v : \text{Value}) : \text{rep} := \{r' | \forall k, v. kv \in r' \rightarrow kv = (k, v) \wedge v \in r\} \quad \text{method lookup } (r : \text{rep}, k : \text{Key}) : \text{Maybe Value} := \{v_{\text{opt}} | \forall v. v_{\text{opt}} = \text{Some } v \rightarrow (k, v) \in r\}
\end{align*}
\]

Figure 4. An abstract data type for caches

While mathematical sets provide a clean way to specify the methods of a Cache, they are unsuitable for an ADT implementation, which requires a computational representation type for method implementations to operate on. Fiat uses abstraction relations [9, 10] to enable refinement of representation types. An abstraction relation \(A \approx B\) between two ADTs implementing a common signature \(ASig\) is a binary relation on the representation types \(A.\text{rep}\) and \(B.\text{rep}\) that is preserved by the operations specified in \(ASig\). In other words, the operations of the two ADTs take “similar” input states to “similar” output states. Since operations in Fiat are implemented as computations, the methods of \(B\) may be computational refinements of \(A\). Thus, an ADT method \(B.m\) is a refinement of \(A.m\) if

\[
\begin{align*}
 A.m \simeq B.m & \equiv \\
 \forall r_A r_B. r_A \approx r_B & \rightarrow \\
 \forall i r_B^o. B.m(r_A, i) \sim (r_B^o, o) & \rightarrow \\
 \exists r_A^o. A.m(r_A, i) \sim (r_A^o, o) \wedge r_A^o \approx r_B^o
\end{align*}
\]

The quantified variable \(i\) stands for the method’s other inputs, beside the “self” value in the data type itself; and \(o\) is similarly the parts of the output value beside “self.”
The statement of constructor refinement is similar:

\[\text{A.c} \equiv \text{B.c} \iff \forall i \ r'_a, \text{B.m}(i) \sim r'_b \quad \rightarrow \quad \exists r'_a, \text{A.m}(i) \sim r'_a \land r'_a \equiv r'_b \]

B is a refinement of A if all the operations of B are refinements of the operations of A:

\[\text{A} \approx \text{B} \iff \forall o \in \text{A.sig} \text{. A.o} \approx \text{B.o} \]

To be completely formal, this relation \(\approx \) should be indexed by the abstraction relation \(\approx \), so that we write \(\text{A} \approx_{\approx_{\text{R}}} \text{B} \) to indicate that relation \(\approx_{\text{R}} \) demonstrates the compatibility between the representation types of A and B. Then we can define more general refinement as:

\[\text{A} \approx_{\text{R}} \text{B} \iff \exists R. \text{A} \approx_{R} \text{B} \]

Note that by picking equality as the abstraction relation, we can justify the refinement of the code of a particular method using any \(\subseteq \) proof. The transitivity of \(\approx \) justifies chaining such steps with others that make representation changes, allowing us to decompose proofs of ADT refinement into applications of basic refinement facts and optimizations of the representation type.

3. Synthesis by Fiat

The core of the Fiat framework includes a Coq formalization of refinement that can be used to write machine-checked proofs certifying that an implementation is a valid refinement of an ADT specification. The implementation of a computation \(C_s \) can be expressed in Coq as a computation \(C_l \) paired with a proof that it is a valid refinement of \(C_s \):

\[\text{SharpenedComputation} C_s \equiv \Sigma \text{C_l} C_s \supseteq C_s \]

The derivation of an implementation of a computation in Fiat is simply a user-guided search for the two components of this dependent product. By applying transitivity of refinement, a user may take a single step toward an eventual implementation:

\[\forall C_s C_s. \text{SharpenedComputation} C_s \rightarrow C_s \supseteq C_s \rightarrow \text{SharpenedComputation} C_s \]

A user satisfied with an implementation of a computation can finish the derivation by reflexivity of refinement:

\[\forall C_l. \text{SharpenedComputation} C_l \]

These two lemmas allow derivations to be decomposed into sequences of applications of basic refinement facts. The refinement proof in Figure 3 gives the recipe for such an optimization script. Beginning with an initial goal of \(\text{SharpenedComputation} \text{CacheSpec} \text{Cache} \text{ hone representation} \), the user can progressively apply transitivity with a proof of each refinement step until arriving at

\[\text{if noKey}(k,l) \text{ then ret } \{ [k,v] \} \cup l \text{ else ret } l \]

Moving the \(\text{ret} \) outside of the if and applying reflexivity to this goal finishes the derivation.

The core of Fiat includes a collection of proofs of basic refinement facts to use in derivations. One example lemma is \textsc{RefinePickDecides}, which can be used to justify the first refinement step in the third column of Figure 3.

\[\forall P_e P_c P_e \{ x \mid P_c \rightarrow P_e x \land \neg P_c \rightarrow P_e x \} \supseteq \]

\[b \leftarrow \{ b \mid b \text{ if } \text{then } P_c \text{ else } \neg P_c \}; \]

\[\text{if } b \text{ then } \{ x \mid P_e x \} \text{ else } \{ x \mid P_e x \} \quad \text{(RefinePickDecides')}
\]

Users can freely augment the set of refinements available by writing their own refinement lemmas. These facts are safe to use in any derivation without any expansion of the trusted code base and without breaking the guarantees of refinement. Fiat automates applying these facts using Coq’s setoid rewriting tactics, which extend Coq’s rewriting machinery with support for partial-order relations other than Leibniz equality.

A synthesis goal involving an ADT is expressed as an ADT \(B \) paired with a proof that it is a valid refinement of a reference ADT \(A \):

\[\text{Sharpened } A \equiv \Sigma B. \text{A} \equiv B \]

A user can interactively derive a Sharpened ADT implementation in a similar manner as above, by transitively applying basic ADT refinement facts. Once a satisfactorily refined ADT has been derived, users can transform it into a version suitable for extraction to OCaml by refining its method bodies to \text{rets}.

In addition to the definitions making up the refinement framework discussed so far, Fiat includes a library of honing tactics to help automate the derivation of Sharpened ADTs. As an illustration of these honing tactics, we consider a derivation of an implementation of the cache specified by CacheSpec. Figure 5 shows this derivation, with single-bordered boxes framing honing tactics and double-bordered boxes framing the goals they produce.

Honing Data Representations One of the key design choices when implementing a bounded cache is the policy used to evict entries from a full cache. Many selection algorithms depend on more information than the reference implementation provides. Conceptually, these algorithms associate an index with each key in the cache, which the insertion algorithm uses to select a key for eviction when the cache is full. By augmenting the reference type with an additional set holding the indexes that are assigned to active keys, we are able to refine toward a whole family of cache algorithms.

The particular abstraction relation we will use is

\[r_v \approx_i (r'_v, r'_i) \iff r_v = r'_i \land \forall k. (k, i) \in r'_i \leftrightarrow (k, v) \in r'_v \]

Importantly, it is always possible to build a default (very nondeterministic!) implementation for any abstraction relation:

\[\text{default}^{=}_v (A.m, r_v, i) \equiv \begin{cases} \{ (r_v, o) \mid \forall r_i. r_i \approx r_v \rightarrow \exists r'_a. A.m(r_i, i) \sim r'_a \land r'_a \equiv r_v \} \\
\text{default}^{=}_c (A.c, i) \equiv \{ r'_c \mid \exists A_c. A.c(i) \sim r'_a \land r'_a \equiv r_v \} \end{cases} \]

Fiat includes a honing tactic “hone representation using \(R \)” which, when given an abstraction relation \(R \), soundly changes the refinement goal from Sharpened \(A \) to Sharpened \(A' \), where \(A' \) is an ADT with the new representation type and with methods and constructors built by the default functions, respectively. Applying hone representation to CacheSpec produces the Cache2 ADT in Figure 5.

Honing Operations After honing the representation of CacheSpec, we can now specify the key replacement policy of a bounded cache as a refinement of the insert method. Fiat includes a honing tactic “hone method \(m \)” that generates a new subgoal for interactively refining \(m \). Figure 5 shows the result of using “hone method insert” to sharpen Cache2. We can refine the initial specification of insert in this goal to

\[\{ l' \mid \exists k_v. l' = [k, v] \cup \text{RemoveKey}(k_v, l) \} \]

by rewriting with the refineReplaceUsedKeyAdd refinement fact, as in Figure 3. We then use a sequence of rewrites to select the key with the smallest index in \(r_v \) once \(r_v \) is full.

After selecting the replacement policy, the refined insert method still has dangling nondeterministic choices, with constraints like

\[1^\text{The Coq documentation[6]} \text{ has a full explanation of the machinery involved.} \]

\[2^\text{As the keywords refine, replace, and change are already claimed by standard Coq tactics, Fiat uses the keyword hone in many of the tactics it provides – hence the name of the Sharpened predicate.} \]
We apply refinements step-by-step with the latter can use the second map to do this lookup in $O(n)$ time. Therefore, we can implement it by honing the representation using \approx.

Sharpened (CacheADT)

hone representation using \approx

Sharpened (LRU)

CacheSig :=
rep := Set of (Key \times Value) \times Set of (Key \times N)
constructor empty := default_{CacheSpec.empty},
method insert (r : rep, k : Key, v : Value) := rep := default_{CacheSpec.insert, r, k, v},
method update (r : rep, k : Key, f : Value \rightarrow Value) := rep := ..., method lookup (r : rep, k : Key) := Maybe Value := ...

Figure 5. Derivation of an LRU implementation of CacheSpec

In particular, we demonstrate the versatility of our approach on specifications inspired by SQL-style relational databases, almost...
completely automating derivations in this domain with a set of honing tactics that act like database query planners.

4. Query Structures

This section presents a library for writing specifications of ADTs using reference implementations called query structures and with SQL-like query and insert operations. The library also provides tactic support for automatically refining those specifications into correct and efficient implementations, allowing users to generate custom database-like ADTs. Figure 8 shows the definition of a schema describing a query structure for a simple bookstore ADT, which we used in Figure 1 from the introduction. This code is taken almost verbatim from the QueryStructure library.

4.1 Specification of Query Structures

The Fiat query structure library includes a DSL for specifying reference query structures implemented in convenient notation, thanks to Coq’s extensible parser. Figure 7 presents the grammar of this embedded DSL: the types, terms, and propositions are exactly those of Coq itself. The grammar also draws on an infinite set of identifiers I.

Query structures are designed to align with the conceptual abstraction of SQL databases as sets of named relations (i.e. tables) containing tuples. The query structure library defines tuples as functions from $attributes$ (i.e. column names) to values; the type of each value is described by a $heading$ mapping attributes to types. Tuple projection is denoted using the $!$ notation:

$$(Author::"T. Pynchon",Title::"Bleeding Edge")!Title = "Bleeding Edge"$$

To align with the standard SQL notion of tables, relations are multisets (mathematical sets that can have repeated elements) of tuples. We implement that concept more concretely by pairing each tuple with a unique numeric index, storing these pairs as sets. Subsection 4.2 discusses how these indexes can be dropped for query structure implementations that only have SQL-like operations. A $relation$ (S) schema specifies the heading of the tuples contained in a relation and also a set of constraints describing properties that included tuples must satisfy. Relations themselves are implemented as records, with a field for a mathematical set containing the relation’s tuples, and a field for a proof that the schema constraints hold for every pair of tuples in the relation. A query structure is similarly described by a $query structure$ (Q) schema that contains a set of schemas and a set of cross-relation constraints describing properties that must hold between tuples of different tables. A query

$$t \in \text{Set } (* \text{Types } *)$$

$$v \in V \ (* \text{Terms } *)$$

$$P \in \text{Prop } (* \text{Propositions } *)$$

$$i \ g \ h \in I \ (* \text{Identifiers } *)$$

$$H ::= \{i := t\} \ (* \text{Headings}*)$$

$$T ::= \{i :: v\} \ (* \text{Tuples}*)$$

$$S ::= \text{relation } i \text{ } \text{schema } H \text{ where } P \ (* \text{Relation Schemas}*)$$

$$Q ::= \text{QueryStructure Schema } S \text{ enforcing } P \ (* \text{Query Structure Schemas}*)$$

$\text{attributes } i \text{ depend on } g \equiv \forall t_1 t_2. t_1!g = t_2!g \rightarrow t_1!i = t_2!i$ ($*\text{Functional Dependencies}*$$)

$\text{attribute } i \text{ for } g \text{ references } h \equiv \forall t_1 \in g. \exists t_2 \in h. t_1!i = t_2!i$

4.2 Specification of Operations

The query structure library also provides a set of definitions and notations for specifying query and insertion operations mimicking standard SQL queries. Note that ADTs using query structures as reference implementations can support a mix of these operations and with arbitrary specifications, and can furthermore use SQL-style notations in the specifications of nonstandard operations. The most basic definition is empty, which returns a query structure containing only empty relations. All the operation specifications provided by the library have two implicit arguments: qs, the Q schema of the reference implementation; and q, the rep argument used by each method.

Figure 6. Complete optimization script for Figure 5

\begin{verbatim}
hone method insert. {
StartMethod
setoid_rewrite refine_ReplaceUsedKeyAdd.
setoid_rewrite refine_SubEnsembleInsert.
autorewrite with monad laws.
setoid_rewrite refine_pick_KeyToBeReplaced_min.
setoid_rewrite refine_If_Then_Else_Bind.
autorewrite with monad laws.
setoid_rewrite refine_If_Opt_Then_Else_Bind.
autorewrite with monad laws.
setoid_rewrite refine_pick_CacheADTtwLogIndex.AbsR.
setoid_rewrite refine_pick_KVEnsembleInsertRemove
 with (1 := EquivKeys.H).
setoid_rewrite refine_pick_KVEnsembleInsert
 with (1 := EquivKeys.H).
autorewrite with monad laws; simpl.
finish honing. }
\end{verbatim}

Figure 7. Syntax for reference query structure implementations

\begin{center}
\begin{tabular}{ll}
Query Structure Schema \\
\text{[relation Books has schema} \\
 \text{(Author :: string, Title :: string, ISBN :: nat) where attributes [Title; Author] depend on [ISBN];} \\
\text{relation Orders has schema} \\
 \text{(ISBN :: nat, Date :: nat) enforcing [attribute ISBN for Orders references Books]} \\
\text{]} \\
\end{tabular}
\end{center}

Figure 8. Query structure schema for a bookstore

\begin{verbatim}
structure is implemented as a record that contains a list of relations and proofs that each pair of relations satisfies its cross-relation constraints. The relations of a query structure are accessed using the $!$ notation: $qs!i$.

Data-Integrity Constraints The constraints contained in relation and query structure schemas are familiar to SQL programmers in the form of data-integrity properties like functional dependencies and foreign-key constraints. In our library, these constraints are simply representation invariants over the state of query structures, enforced by the proof fields of the relation and query structure records. Fiat’s query structure library includes notations for these common SQL constraints (listed in Figure 7), but S and Q schema constraints are not limited to them: query structures can include arbitrary predicates over tuples. It is possible to specify that the population of a nation is always equal to the sum of the populations of its cities, for example. Since query structure notations are simply an embedded DSL for writing ADTs, it is possible to write non-SQL-like operations for these ADTs – in addition to conforming with the standard data-integrity properties SQL programmers are familiar with, explicitly including these constraints allows users to be sure that they cannot write operations that go wrong.

4.2 Specification of Operations

The query structure library also provides a set of definitions and notations for specifying query and insertion operations mimicking standard SQL queries. Note that ADTs using query structures as reference implementations can support a mix of these operations and with arbitrary specifications, and can furthermore use SQL-style notations in the specifications of nonstandard operations. The most basic definition is empty, which returns a query structure containing only empty relations. All the operation specifications provided by the library have two implicit arguments: qs, the Q schema of the reference implementation; and q, the rep argument used by each method.

Querying Query Structures Figure 9 presents the notations the query structure library provides for specifying query operations.
empty \equiv \{ q \mid \forall i \in qs. q.i = \emptyset \}

For \(b \equiv result \leftarrow b; \)
\{ l \mid \text{Permutation} \ l \ result \}

\(\{ x \in b \} \equiv table \leftarrow \{ l \mid q.i \sim \emptyset \}; \)
fold_right \((\lambda x b. l \leftarrow a; l' \leftarrow b; \text{ret} \ (l' \leftarrow \emptyset)) \)
\(\{ \text{map} \ (x \mapsto b) \ \text{table} \)

Where \(P \ b \equiv \{ l \mid P \ b \equiv \lambda x b. l \} \)

Return \(a \equiv \text{ret} \ [a] \)

Count \(b \equiv \text{results} \leftarrow b; \text{ret} \ \text{length(results)} \)

Figure 9. Notations for initializing a query structure and defining query operations

Queries specified by the For notation compute any permutation of a list of result tuples generated by a body expression. We use permutations in order to avoid fixing a result order in advance. Since queries are specified over relations implemented as mathematical sets, the definitions of these operations are a straightforward lifting of the standard interpretation of queries using comprehensions [3] and the list monad to handle computations. The in notation picks a result list that is equivalent (\(\sim \)) to the mathematical set of relation \(i \); this is a placeholder for an enumeration method that is filled in by an implementation. This equivalence relation ignores the indexes of the tuples and only considers their multiplicities, and result thus disregards the indexes of the tuples in \(i \). The body \(b \) is a function that is mapped over each tuple in result, producing a list of computations of query results for each element. This list of computations is then flattened into a single list of query results. Finally, Where clauses are allowed to use arbitrary predicates. Decision procedures for these predicates are left for an implementation to fill in.

Query Structure Inserts Whereas queries are observers for the query structure, insertion operations are mutators returning modified query structures, which by definition must satisfy the data-integrity constraints specified by their \(Q \) schema. The naive specification of insertion always inserts a tuple into a query structure:

\[\text{Insert } t \ \text{into } i \equiv \{ q' \mid \forall u \in q.l' \ \text{if } u \in \{ q.i \cup \{ t \} \} \} \]

This specification is unrealizable in general, however, as there does not exist a proof of consistency for a query structure containing a tuple violating its data-integrity constraints. The specification of Insert shown in Figure 10 thus only specifies insertion behavior when the tuple satisfies both the \(S \) and \(Q \) schema constraints. This definition highlights Fiat’s ability to specify method behavior at a high level without regard for implementation concerns. The specification delays the decision of how to handle conflicts (i.e., ignore the insertion, drop conflicting tuples, etc.) to subsequent refinements. As we shall see in the following section, this specification can be transformed automatically into a more readily implementable form.

4.3 Honing Query Structures

Figure 10 contains the specification of an ADT using a query structure with the bookstore schema from Figure 8 and insert and query operations specified with the notations from the query structure library. As an initial step in implementing this specification, the library provides a fully automated tactic for removing the data-integrity constraints from the representation type of the ADT, building an ADT that uses unconstrained query structures, i.e.

\[a \equiv \text{ret} \ [a] \]

collections of mathematical sets with no proof components, freeing subsequent refinements from having to consider these proof terms. We pick an abstraction relation enforcing that a query structure is equivalent to an unconstrained query structure if the two contain equivalent sets of tuples:

\[q \equiv q' \equiv \forall i \in qs. q.i = q'.i \] (1)

The implementation of this tactic is straightforward for the empty constructor. Queries over unconstrained query structures can also be constructed trivially if they are built from the notations in Figure 10, as those definitions do not reference the proof components of a query structure. For insertions, the tactic applies a lemma showing that if a tuple satisfies a set of consistency checks, it is possible to build the proof component of a query structure containing that tuple. By running these consistency checks before inserting a tuple into the unconstrained query structure, this lemma shows that there exists some query structure, i.e., that the abstraction relation is preserved. For a concrete query structure schema, these checks are materialized as a set of nondeterministic choices of decision procedures for the constraints. If there are no constraints, the tactic simplifies these checks away entirely. Figure 10 shows the result of applying this tactic to the bookstore ADT.

Refining the decision procedures for the remaining constraints into a concrete implementation is easily done by first transitioning to a query-based representation. In the foreign-key case, we refine

\[\{ b \mid b \ \text{decides} \ \text{exists} \ \text{book} \in \text{Books}. \ \text{book}!\text{ISBN} = \text{order}!\text{ISBN} \} \]

into

\[c \leftarrow \text{Count} \ \text{(For } \text{book} \in \text{Books} \ \text{Where} \ \text{book}!\text{ISBN} = \text{order}!\text{ISBN}) \ \text{Return} \ (c); \text{ret} \ (c \neq 0) \]

Similarly, functional-dependency checks are refined from

\[\{ b \mid b \ \text{decides} \ \forall x \in \text{Books}. \ \text{book}!\text{ISBN} = \text{book}!\text{ISBN} \rightarrow \text{book}!\text{Author} = \text{book}!\text{Author} \land \text{book}!\text{Title} = \text{book}!\text{Title} \} \]

into

\[c \leftarrow \text{Count} \ \text{(For } \text{book}' \in \text{Books) Where} \ \text{book}'!\text{ISBN} = \text{book}!\text{ISBN}) \ \text{Where} \ \text{book}!\text{Author} \neq \text{book}'!\text{Author} \lor \text{book}!\text{Title} \neq \text{book}'!\text{Title}) \ \text{Return} \ (c); \text{ret} \ (c = 0) \]

\[\]
This type of refinement allows clients of the library to reuse the existing query machinery to implement these checks and facilitate the automatic derivation of efficient query plans.

Importantly, this tactic only removes constraints from operations built from the notations provided by the library — any “exotic” operations will have to be refined manually to show that they preserve (1). Having removed the constraints automatically for “standard” queries, we now consider how to construct data structures that efficiently implement query and insertion operations.

4.4 The Bag Interface

The data structures used to store and retrieve data records are created, accessed, and modified through a unified Bag interface, which guarantees that all underlying implementations behave as multisets. This interface is implemented as a Coq type class parameterized over three types: TContainer, the type of the underlying representation (e.g. lists); TItem, the type of the items stored in the bag (e.g. tuples); and TSearchTerm, the type of the search terms used to look up items matching specific conditions (e.g. a function mapping tuples to Booleans). These types are augmented with a set of operations whose behavior is described by a small number of consistency properties. While maintaining sufficient expressive power to allow for efficient retrieval of information, keeping the interface reduced makes it relatively simple to implement new instances.

The bag interface is split between constants, methods, and axioms. Methods operate on containers and include binsert, which returns a list of all items stored in a container; bfind, which returns a copy of a container augmented with one extra item; and binsert, which returns all items matching a certain search term. Axioms specify the behavior of these transformations, in relation to two constants: bempty, the empty bag; and bfind_matcher, a matching function used to specify the behavior of bfind: calling bfind on a container must return the same results, modulo permutation, as filtering the container’s elements using the bfind_matcher function (including this function allows us to retain maximal generality by allowing different bag instances to provide widely varying types of find functions). Finally, for performance reasons, a bag implementation is required to provide a bcount method (elided here), used to count elements matching a given search term instead of enumerating them.

Class Bag (TContainer TItem TSearchTerm : Type) := {
 bempty : TContainer;
 bfind_matcher : TSearchTerm → TItem → bool;
 binsert : TContainer → list TItem → TContainer;
 bfind : TContainer → TSearchTerm → list TItem;
 binsert : TContainer → TSearchTerm → list TItem;
 binsert_empty : binsert bempty = [];
 binsert_correct : ∀ inserted container,
 Permutation (filter (bfind_matcher search_term) (binsert container)) = (binsert container search_term).
}

4.5 Bag Implementations

Fiat provides two instances of the Bag interface, one based on lists and the other based on AVL trees through Coq’s finite map interface. The definitions making up the list instance are extremely simple and can thus be reproduced in their entirety below:

Instance ListAsBag (TItem TSearchTerm : Type) (matcher : TSearchTerm → TItem → bool) : {bempty := nil; bfind_matcher := matcher; binsert_container := container; bfind_container_search_term := filter (matcher search_term) container; binsert_container_item := item :: container|}.

The tree-based implementation, though lengthier, is also readily explained: it organizes elements of a data set by extracting a key from each element and grouping elements that share the same key into smaller bags. The smaller bags are then placed in a map-like data structure, which allows for quick access to all elements sharing the same key. Tree-based bags can thus be used to construct a nested hierarchy of bags, with each level representing a further partition of the full data set (in that case, smaller bags are tree-based bags themselves). In practice, tree bags are implemented as AVL trees mapping projections (keys) to sub-trees whose elements all project to the key under which the sub-tree is filed.

The search terms used to query tree-based bags are pairs, each consisting of an optional key and a search term for sub-bags. The bfind operation behaves differently depending on the presence or absence of a key: if a key is given, then bfind returns the results of calling bfind with the additional search term on the smaller bag whose elements project to the given key. If no key is given, then bfind calls bfind on each smaller bag and then merges all results (a process usually called a skip-scan, in the database world). Finally, binsert is implemented by calling binsert on each sub-tree and concatenating the resulting lists, and binsert is implemented by finding (or creating) the right sub-bag to insert into and calling binsert on it. This design is similar to that found in most database
management systems, where tuples are indexed on successive columns, with additional support for skip-scans. Figure 12 presents an example of such an indexed bag structure.

Figure 12. Indexed data is organized in a hierarchy of nested bags. In this example, the data set is first partitioned by column x, then by column y. Since our nested bags implementation supports skip-scanning, this same index can be used to answer queries related to x, to y, and to both x and y.

4.6 Automation

As an example of a very general optimization script, we implemented a tactic plan, which works automatically and is able to synthesize efficient implementations of a variety of query structures containing at most two tables, based on index structures backed by our bags library. Figure 13 shows an example of the code output by plan for our running Bookstore example. To produce this code from the reference implementation, the programmer only needs to specify a method definitions. The plan tactic applies heuristics to rewrite each method into a more efficient form, given a set of available bag-based indexes. We describe query heuristics in the most detail before briefly covering mutator refinement.

The query heuristics run to refine default (nondeterministic) method bodies induced by choices of abstraction relations. Here a relevant abstraction relation connects each table to a bag-based index. Default query bodies will compute with table contents specified as mathematical sets, and we need to rewrite those operations to use the indexes efficiently. Every actual code transformation is implemented as a Coq setoid rewrite; we just need to determine a useful sequence of rules.

1. The starting point of refinement is expressions that work directly with mathematical sets. For example:

 \[\text{For (r in } T \text{ Where (r.c1 = 7) Return (r.c2)}\]

2. A concretization step replaces all references to sets with references to lists built by enumerating all members of index structures. For instance, the abstraction relation might declare that table \(T \) is implemented with index structure \(I \), in which case we may rewrite the above to:

 \[\{\ell | \text{Permutation } \ell \ (\text{map } (\lambda r. \ r.c2) \ (\text{filter } (\lambda r. \ r.c1 == 7) \ (\text{benumerate } I)))\}\]

 That is, we convert set operations into standard functional-programming operations over lists, starting from the list of all table elements. Note that we use nondeterministic choice to select any permutation of the list that we compute. We do not want to commit to ordering this early, since we hope to find more efficient versions with different orders.

3. A rewriting-modulo-permutation step simplifies the list expression, possibly with rules that change ordering. Here we use standard algebraic laws, like \(\text{map } f \ (\text{map } g \ell) = \text{map } (f \circ g) \ell \). Less standard rules locate opportunities to apply our index structures. Our example query would be refined as follows, assuming the index structure only covers table column \(c1 \):

 \[\{\ell | \text{Permutation } \ell \ (\text{map } (\lambda r. \ r.c2) \ (\text{bfind } I (7, [])))\}\]

 Our tactic analyzes filter functions syntactically to figure out useful ways of applying index structures. In full generality, the heuristics of this phase apply to filter conditions over two tables, and they are able to decompose conjunctive conditions into some use of indexes and some use of less efficient filtering for conditions that do not map neatly to the indexes.

4. A commitment step accepts the current list expression as the final answer, committing to an ordering. Our example is refined in one simple step to:

 \[\text{ret } (\text{map } (\lambda r. \ r.c2) \ (\text{bfind } I (7, [])))\]

 This basic three-step process can be extended quite flexibly. Our implementation handles aggregate functions (e.g., count or max) in the same way. A use of such an operation is concretized to a fold over a list, and we apply rewriting to incorporate chances to use index structures to compute folds more directly.

 One further subtlety applies in the rewriting step for queries over multiple tables. Concretization rewrites a join of two tables into a Cartesian-product operation Join_Lists, defined as follows, where
flat_map is a variant of map that concatenates together the lists produced by its function argument.

Join_Lists $\ell_1 \; \ell_2 \equiv \text{flat_map } (\lambda a. \; \text{map } (\lambda b. \; (a, b)) \; \ell_2) \; \ell_1$

This code pattern is known as a nested loop join, in the database world. Notice that it is inherently asymmetric: we handle one table in an "outer loop" and the other in an "inner loop." Imagine that, because of a Where clause, our nested loop has been concretized within a filter call, like so:

$$\text{filter } (\lambda (a, b). \; a \cdot c_1 = 7) \; (\text{Join_Lists } \ell_1 \; \ell_2)$$

Note that this filter condition is highly selective when it comes to rows of ℓ_1, but it accepts any row of ℓ_2. Rewriting will apply the following algebraic law to push the filter inside the Join_Lists:

$$\text{filter } f \; (\text{Join_Lists } \ell_1 \; \ell_2) = \text{flat_map } (\lambda a. \; \text{map } (\lambda b. \; f (a, b)) \; \ell_2) \; \ell_1$$

Here we see that the inner filter can be refined to an efficient use of bfind, if we first swap the order of the Join_Lists arguments. The plan tactic attempts heuristically to orchestrate this style of strategic rewriting.

The heuristics for queries are the heart of what plan does, but it also optimizes insert operations. Subsection 4.3 explained how we refine constraint checks into queries, to reuse query-based refinement tools. A plan invocation is responsible for noticing opportunities to apply a suite of formal checks-to-queries rules. We also apply a set of refinements that remove trivially true checks and prune duplicate checks. After the set of checks has been simplified as much as possible, we do a case analysis on all the ways that all the checks could turn out, performing an actual table insert only in cases whose checks imply validity.

4.7 Caching Queries

Expressing refinement using the small set of core ideas presented so far allows us to soundly and cleanly integrate optimizations from different domains. As a demonstration, this section will show how we integrate the cache ADTs developed in Subsection 2.1 to cache query results. Importantly, we will apply this refinement after dropping the data-integrity constraints, but before implementing the query structure. Moreover, we perform this refinement using the CacheSpec reference implementation, allowing users to choose any caching implementation independently of the query structure. We will be refining a variation of the bookstore ADT that replaces the GetTitles method with one that counts the number of books an author has written:

```plaintext
query NumTitles (author: string) : list string := . . .
```

We begin by honing the representation of the reference query structure to include a cache ADT keyed on author names. The abstraction relation used to hone the representation maintains the invariant that the cache of the new representation only holds valid book counts for each author:

$$r_v \equiv (r'_v, r'_v) \equiv r'_v = r_v \land \forall k, v, (k, v) \in r'_v \rightarrow \text{NumTitles}(r_v, k) \sim v$$

We can use the cache consistency predicate to refine NumTitles so that it first nondeterministically picks a key in the cache using lookup, returns that value if it exists, and otherwise runs the query and adds a new key to the cache (this updated cache trivially satisfies the representation invariant). NumOrders and PlaceOrder are unchanged. Since AddBook can increase the number of books for an author in the cache, it needs to update the cache if the author of the new book is in the cache. Applying all these refinements to the bookstore ADT from Figure 11 yields the refined ADT in Figure 14.

Observe that the following refinement holds:

$$l \leftarrow b \cdot a; \quad f' \leftarrow \text{For } (x \in R \cup \{a\}) \; b \rightarrow f' \rightarrow \text{For } (x \in R) \; b;$$

thus allowing us to refine the query in AddBook:

```plaintext
Count( l \leftarrow \text{Where } (author = a!Author) \text{Return } ();
\quad f' \rightarrow \text{For } (b \in Books)
\quad \text{Where } (author = b!Author) \text{Return } ();
\quad \text{Return } (l + f')' )
```

which can be further refined into:

```plaintext
n \leftarrow \text{Count } \text{Where } (author = a!Author) \text{Return } ();
\quad n' \leftarrow \text{Count } \text{For } (b \in Books)
\quad \text{Where } (author = b!Author) \text{Return } ();
\quad \text{Return } (n + n')
```

Due to the representation invariant in the abstraction relation, we know that the query bound to n' returns precisely the cache contents, allowing us to refine the update to simply increment the value of author currently in the cache:

```plaintext
meth AddBook (r : rep, book: Books) : rep :=
\quad (r_v, r_c) \leftarrow \text{Insert book into Books;}
\quad (r_v, \text{CacheSpec.update } (r_c, \text{book!Author, increment}))
```

This case is actually an example of the broader finite differencing [13] refinement for improving the performance of an expensive operation f whose input can be partitioned into two pieces, old y and new x, such that $f(x \oplus y) = f'(x) \oplus f'(y)$. The representation invariant ensures that each value in the cache already stores $f(y)$, allowing us to reduce the computation of $f(x \oplus y)$ to computing $f'(x)$ and updating the value in the cache appropriately. Note that Fiat’s refinement process supports finite differencing of any ADT operation, through the use of abstraction relations to express cache invariants and refinements to replace repeated computations. In particular, (2) allows us to easily cache For queries by partitioning their results into novel results and the portion already in the cache when performing Insert updates.
5. Evaluation

5.1 Extraction of the Bookstore Example

Once they have been fully refined, our data structures can be extracted to produce verified OCaml database management libraries. We performed such an extraction for the bookstore example and benchmarked it. The observed performance is reasonable, and the operations scale in a way that is consistent with the indexing scheme used, as demonstrated by Figure 15. Starting with an empty database, for instance, it takes about 480 ms on an Intel Core i5-3570 CPU @ 3.40GHz to add 10 000 randomly generated books filed under 1 000 distinct authors, and then 6.8 s to place 100 000 orders. Afterward, the system is able to answer about 350 000 GetTitles queries per second and about 160 000 NumOrders queries per second.

![Graph](image)

Figure 15. Average query execution time, for increasingly large bookstores

5.2 Further Examples

To demonstrate the generality of our automated refinement strategies, the code base also includes two more examples: a weather-data database and a stock-market database, both of which are included in the Fiat distribution.

The weather example includes two tables – one to hold information about the weather stations and one to log the measurements – and supports operations such as counting the number of stations in a given geographic area or computing the highest temperature on one day. The stock market example includes one table listing information about stocks and one table keeping track of transactions, and it allows clients to compute the total volume of shares exchanged on one day for a particular stock, plus the largest transaction for a given type of stock.

In both cases skip-scanning allowed for space-efficient indexing (in the weather case, stations could produce a small number of different measurement types: wind speed, temperature, air pressure, or humidity; in the stocks case, different types of stocks were distinguished), and in both cases nontrivial functional dependencies were expressed (for examples, two transactions occurring at the same time and concerning the same stock could differ in the number of shares exchanged but not in price). The plan tactic synthesizes correct, efficient implementation code in both cases.

6. Related Work

The concept of deriving implementations that are correct by construction via stepwise refinement of specifications has been around since at least the late sixties [7].

Deductive Synthesis Specware [20] and its predecessors KIDS [16] and DTRE [2] are deductive synthesis tools for deriving correct-by-construction implementations of high-level specifications. Specware is accompanied by a library of domain theories that describe how to do iterative decomposition of high-level specifications into subproblems until an implementation can be constructed. At each step, Specware checks the validity of the refinement, although only recently have they begun generating Isabelle/HOL proof obligations justifying these transformations. Each of these proof obligation generators makes up part of Specware’s trusted code base; by implementing Fiat completely in Coq we rely on a considerably smaller trusted code base. At the end of refinement, Specware has a series of automated and quite sophisticated transformations that generate C code, though these final steps are currently unverified. In contrast, derivations of ADTs with Fiat are completely verified by Coq, and these derivations may be integrated within larger, more general proof developments. We have also demonstrated more automated refinement for more restrictive domains, as in our query structure examples.

Synthesis of Abstract Data Types There is also a philosophical difference between Fiat and Specware – Kestrel has focused on using Specware to develop families of complex algorithms, including families of garbage collectors [14], SAT solvers [17], and network protocols. In contrast, we envision Fiat being used to generate high-assurance code for algorithmically “simple” domains that are amenable to automation. A number of domains have been shown to have this property: Paige et. al [12] demonstrate how efficient implementations of ADTs supporting set-theoretic operations can be derived by applying fixed-point iteration [12] to generate initial implementations, using finite differencing [13] to further optimize the resulting implementation, before finally selecting data structure implementations. The generation of data types supporting query-like operations is another such domain. P2 [1] was a DSL extension to C that allowed users to specify the layout of container data structures using a library of structures implementing a common interface, akin to Fiat’s Bag interface. This interface included an iterator method for querying contents of the container – implementations of these iterators would dynamically optimize queries at runtime. More recently, Hawkins et. al [8] have shown how to synthesize the implementations of abstract data types specified by abstract relational descriptions supporting query and update operations. They also provide an autotuner for selecting the best data representation implementation in the space of possible decompositions. Our work with Fiat expands on these past projects by adding proofs of correctness in a general-purpose proof assistant, which also opens the door to sound extension of the system by programmers, since Coq will check any new refinement rules.

Constraint-Based Synthesis Constraint-based synthesis formulates the synthesis problem as a search over a space of candidate solutions, with programmers providing a set of constraints to help prune the search space. The Sketch [18] synthesis system, for exam-
ple, allows programmers to constrain the search space by encoding their algorithmic insight into skeleton programs with “holes” that a synthesizer automatically completes. Sketching-based approaches have been used to synthesize low-level data-structure manipulating algorithms [15], concurrent data structures [19], and programs with numeric parameters that are optimized over some quantitative metric [4]. These approaches fit into the broad decomposition of “functionality + optimization” proposed here, with the initial sketch representing the former and the synthesizer providing the optimization. Excitingly, Fiat enables opportunities for programmers to inject further insight into the synthesis process by chaining together honing tactics with various degrees of automation. Section 4.7 provides an example of such a development, with the user first automatically dropping data-integrity constraints via a honing tactic before manually specifying how to cache certain queries.

Reasoning with Refinements Cohen et al. rely on a similar foundation of refinement to verify an algebra library in Coq using data type refinement [5] by verifying algorithms parametrized over the data type and its operations. Verification is done using a simple, “proof-oriented” data type. The authors then show how to transport the proof of correctness to a version of the algorithm using a more efficient implementation that is related to the proof-oriented data type by a refinement relation. In contrast, Fiat is a system for (semi-) automatically deriving efficient ADTs that are valid refinements. The two approaches could certainly be combined to enable users to build and verify clients of ADTs synthesized by Fiat.

7. Future Work and Conclusion

We have reported here on the start of a project to explore the use of proof assistants to enable a new modularity pattern in programming: separating functionality from performance, where programmers express their functionality and then apply optimization scripts to refine it to efficient implementations. Special-case systems like SQL engines have provided this style of decomposition, but only for hardcoded domains of functionality. We explained how the design of Fiat allows programmers to define new functionality domains and new optimization techniques, relying on Coq to check that no optimization technique breaks program semantics. Programmers think of implementing a new database engine as a big investment, but they think of implementing a new container data structure as a reasonable component of a new project. The promise of the Fiat approach is to make the former as routine as the latter, by giving that style of optimization strategy more first-class status within a programming environment, with enforced modularity via checking of optimization scripts by a general-purpose proof kernel.

We plan to explore further applications of Fiat, both by identifying other broad functionality domains that admit effective libraries of optimization scripts, and by narrowing the gap with hand-tuned program code by generating low-level imperative code instead of functional code, using the same framework to justify optimizations that can only be expressed at the lower abstraction level.

Acknowledgments

We thank Eddy Westbrook, Arthur Charguéraud, and the anonymous reviewers for their feedback on earlier versions of this paper. The second author would like to thank École Polytechnique for allowing and supporting the internship during which his contributions were made. This work has been supported in part by NSF grant CCF-1253229 and by DARPA under agreement number FA8750-12-2-0293. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of DARPA or the U.S. Government.

References

