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Compared to familiar hardware-description languages like Verilog, rule-based languages like Bluespec offer

opportunities to import modularity features from software programming. While Verilog modules are about

connecting wires between submodules, Bluespec modules resemble objects in object-oriented programming,

where interactions with a module occur only through calls to its methods. However, while software objects

can typically be characterized one method at a time, the concurrent nature of hardware makes it essential to

consider the repercussions of invoking multiple methods simultaneously. Prior formalizations of rule-based

languages conceptualized modules by describing their semantics considering arbitrary sets of simultaneous
method calls. This internalized concurrency significantly complicates correctness proofs. Rather than analyzing

methods one-at-a-time, as is done when verifying software object methods, validating the correctness of

rule-based modules necessitated simultaneous consideration of arbitrary subsets of method calls. The result

was a number of proof cases that grew exponentially in the size of the module’s API.

In this work, we side-step the exponential blowup through a set of judicious language restrictions. We

introduce a new Bluespec-inspired formal language, Fjfj, that supports sequential characterization of modules,
while preserving the concurrent hardware nature of the language. We evaluated Fjfj by implementing it in

Coq, proving the key framework principle: the refinement theorem. We demonstrated Fjfj’s expressivity via

implementation and verification of three examples: a pipelined processor, a parameterized crossbar, and a

network switch.
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1 Introduction
We are in the midst of a flurry of work developing new digital hardware designs. Companies that we

used to think of as primarily software or service companies are now designing very sophisticated

hardware for their own products. For example, Google designed their Tensor system on a chip

for phones, Apple designed the M cores for laptops and tablets, and Amazon AWS designed their

Graviton processors for the cloud. Even Tesla, primarily an automotive company, designed a chip

for their cars. This trend can be seen as the real-world materialization of a foundational principle

of computer architecture: the more we know about the typical workload, the more efficient a machine
we can design.
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As long as engineers continue taking advantage of that mantra, there will be a steady stream of

new hardware development, and the cost of that development matters. While the hardware world

outstrips software in industrial use of formal methods, dramatic opportunities for cost savings

remain, given that many hardware projects devote majorities of their budgets to verification (formal

and testing-based). Formal verification in the hardware industry is most commonly based on model

checking, especially bounded model checking. These techniques have clear appeal in automation,

but they still face classic state-space-explosion problems that limit their use to either bounded

verification, relatively small hardware designs, relatively simple specifications, or all of the above.

A key advantage of many celebrated software-verification methods is modularity in specification

and proofs [Barnett et al. 2006; Leino 2017]. A complex implementation can be broken into reusable

pieces, with each specified and proved independently, perhaps depending on the specifications

of other pieces but not their implementations. For instance, a class can be verified against a

specification that assigns a precondition and postcondition to each method. Then methods can be

proved individually, using verification-condition generation targeting SMT solvers.

The goal of this paper is to achieve the same form of modular verification for hardware modules.

An intuition about the main roadblock comes from the fact that hardware is fundamentally con-

current, and it is well-known that the specifics of software verification get much more complicated

moving to concurrent programs. There, proof methods have evolved from relatively tame methods

like rely-guarantee [Jones 1983] to extremely flexible frameworks like Iris [Jung et al. 2015]. The

situation is simplified substantially by narrowing the concurrency idiom to transactions, with a

runtime system to guarantee that every method call appears to execute atomically.

In this paper, we share our new insights on how rule-based hardware languages can be adapted
to support that style of transactional verification. In the first section of this paper, we review key

practical considerations of digital hardware design. This section serves as an introduction to our

language, the framework, and its specifics.

Then we explain the key metatheorems that hold in the framework and show a simple example

of a proof of refinement in the framework. Finally we demonstrate that Fjfj is suitable to do

both processor and accelerator verification by evaluating our methodology on 3 examples: a

pipelined processor, a programmable network switch, and a crossbar. All results presented have

been mechanized in Coq.

The contributions of the paper are:

• A proof framework to reason about rule-based hardware designs one method/rule at a time
• A mechanization of the refinement principle, key to our reasoning strategy

• An evaluation of the methodology with specific correctness proofs for three designs show-

casing interesting challenges and insights into specification of hardware designs

2 Software-Like Abstractions for Hardware Description
Let us consider standard notations for defining hardware systems, progressing through thornier

and thornier challenges that motivate higher-level abstraction. By the end, we hope to have justified

our new core language Fjfj, which is heavily influenced by Bluespec. An informal introduction to

Fjfj follows in section 3, after which we justify a key new restriction just introduced (section 4) and

present the formal semantics (section 5) and key modular proof principles (section 6).

The lowest level of abstraction we will consider in this paper is so-called register-transfer level
(RTL) for a synchronous circuit with a single clock. At this abstraction level, a circuit is described

by three components: a finite collection of Boolean state elements (registers), a Boolean function

𝑓 (𝑠, 𝑖) that specifies how the state should be updated based on old state and the inputs, and another

Boolean function out that specifies the outputs depending on the previous state and the inputs.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 228. Publication date: June 2025.



Making Concurrent Hardware Verification Sequential 228:3

When given such a circuit description, its semantics are straightforward to define: 𝑠𝑡+1 =

𝑓 (𝑠𝑡 , 𝑖𝑡+1), 𝑜𝑡+1 = out (𝑠𝑡 , 𝑖𝑡+1). The question of composing such circuits together is slighty trickier,

as one must beware the risk of inadvertently tying an input to an output, without going through s
(called a combinational loop), which would make the previous recursion not well-founded.

When one writes z=f(x,y) as one line among many in a hardware design, it does not indicate

that a function f is called “at runtime.” It means that a compiler should generate a Boolean function

f and connect wires corresponding to the values x and y to the input, and it should connect the

output of the Boolean function to z. In particular, if such a box f does not have outputs, it can be

completely eliminated, as there is no notion of side effects.

One might be tempted to think of f as calling a pure function in a functional language. However,

here the analogy breaks down and gives a misleading impression. For example, there is no notion

of recursion in RTL. Even more important, such an analogy hides the reality that f will always be

physically present in the hardware, and at this level of abstraction f cannot not be called. RTL simply

describes a DAG of Boolean operators, with an implicitly fully concurrent model of execution.

While remaining grounded in this fairly chaotic language model (since it is a practical choice for

synthesis of physical circuits), we strive to regain as much as possible of the software-verification

experience in the tradition of Hoare logic. The key tool is reintroducing more of a software-style

method-call abstraction, carefully tweaked to confront just enough of the realities of hardware.

Hardware circuits do often contain blocks of digital logic that are easily seen as implementing

callable methods. Such a circuit canonically has an “enable” wire flowing into it, and this bit should

be set to 1 on exactly those cycles when “the method is being called.” In a literal, physical sense,

the logic of the method runs every cycle. However, we introduce logic to ignore the method effects

when “enable” is 0, in computing the new values of affected registers.

Consider the example of an integer counter with methods to get, set, and increment by one. When

the enable bit of the set method is high, the new state (value of a register considered private to the

counter) is the argument put on the wire. Otherwise, we leave the state of the module unchanged.

Similarly, if the enable bit for increment is high, the new state is the application of a “+1” circuit

to the old state. The get method is pure observer and does not change the state, so we need not

introduce extra signals to signify to the circuit when we want to “call” this method.

In this simple regime, each method call takes one cycle. If an enable wire stays at 1 across

cycles, we consider that a new call happens per cycle. In this setting, if we were thinking of a

software construction c.inc(); c.set(0); c.inc(), one reasonable way to interpret the software
semicolon would be, “wait for an arbitrary number of cycles, disabling all methods during this

time.” Such a counter can seemingly be characterized by explaining each method in isolation.

Note, however, that it seems that the arbitrary number of cycles for a semicolon must be at least

one, as if c.inc() already wrote a value to the counter, it is incoherent to ask to rewrite a new

value the same cycle. Presuming an appropriate delay between method calls, we might hope to

construct an ordered trace of method calls, such that our “object” seems to behave as if those calls

were executed serially. Sadly, this model is a poor fit to the realities of hardware circuits. Consider:

• getA and getB, getters for two private fields A and B, which would be implemented in

hardware by two registers

• setA and setB, the corresponding two setters

Problem introduced by concurrency. Now we consider setting the enablement bits for setA and

setB simultaneously, and we connect the output of getA to the argument of setB and the output

of getB to the argument of setA (naively trying to swap the field values). The next state obtained

by this driving of the wires is equivalent to neither setA(getB()); setB(getA()) nor the other

order. Driving wires this way leads to a race that creates a behavior not sequentially explainable, so
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we would need to specify a new relation to say what it means to do setA and setB “simultaneously.”

More generally, we would potentially need to specify an exponential number of relations to describe

what is the effect of calling any subset of methods simultaneously. That approach was taken in

previous work on verification for Bluespec-style hardware modules, Kami [Choi et al. 2017].

For example, a Kami proof of a queue module requires a proof case for enqueue and dequeue

happening at once. The case may quickly be ruled out as contradictory because the two methods

both write a common register, which Bluespec must forbid. However, that reasoning about a

contradiction must be carried out explicitly for every subset of the methods exported by a module.

It is also tempting to think of method-call semantics as similar in hardware to software, where

(without recursion) we may simply substitute every method call with a suitably rewritten version

of the method’s definition. The trouble is that a hardware method corresponds to a subgraph of

a physical circuit, and one consequence is that a method may only be called once per cycle. To

support multiple calls, we would need to clone the method. An inlining transformation may in

general hide that restriction and allow illegal (physically impossible) executions to proceed.

To recap, we have managed to fake a form of method calls, but when we call multiple methods

“at the same time,” the semantics become burdensome. If we forbid calling two arbitrary methods

of the same module in the same cycle (i.e. never setting two enable wires to one), we sidestep the

problem, but that would be too drastic as it would prevent writing most interesting designs. Let us

instead adopt a slight variation: allow an arbitrary number of observation methods (value methods

like gets) per cycle, while at most one action method (updating the state, like set) may be called.

Logical atomicity versus clock cycle. At this point, even a novice hardware designer is ready to

protest that our restriction of allowing only one update method is excessive, standing in the way of

achieving performance through parallelism. Consider a queue module in a pipeline. One would

want to be able to enqueue and dequeue from it each cycle, since otherwise we miss the point

of improving parallelism through pipelining. A key insight of Bluespec is to promise to show

programmers an abstraction of logical cycles where we may enforce one method call per object,

while using clever compilation to realize a physical reality of greater concurrency. Hence, even

though our restriction states that a single action method of a submodule can be called within the

definition of a parent action method or parent rule (to be introduced in the following paragraph),

on each clock cycle multiple methods may be called, simply restricted to be made by different rules.

So far the objects interfaced with through methods and the corresponding circuits with ready

and enable signals we outlined actually map to each other one-to-one fairly straightforwardly.

However, there exists one very common and central hardware pattern that does not have a standard

software counterpart. We introduce that pattern now and explain how it is not too difficult to model

with a software counterpart. This pattern is called rules.
Consider a hardware circuit that performs a multiplication by repeated addition.

inputs in_a, in_b
output reg [63:0] res
reg [31:0] a, b
reg [5:0] cnt

// Wire to request multiplication of two numbers
if (EN_multiply) {a = in_a; b = in_b; cnt = 0; res = 0;}

// When the method is not called, the circuit continues,
// computing the binary multiplication algorithm.
if (!EN_multiply & cnt < 32) {cnt = cnt+1; res = res + (b[cnt] ? a<<cnt : 0);}
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As conceptually each action-method call runs in exactly one cycle, the background computation

(last if above) is not part of the method call. It instead is better thought of as another transition, a

spontaneous method that is always called when possible, without arguments: an epsilon transition.

Such a piece of logic is called a rule in Bluespec, where a module may contain an arbitrary number

of rules, each available to execute nondeterministically and atomically.

The previous example also brings us to the last common pattern that requires introduction and

careful semantic treatment. Notice the delicacy in this example stemming from the fact that the

result of the multiplication is unstable until computation finishes, so it is not easy to know when

we can use the value on the result wire. In hardware, the design pattern is simply to add another

“ready” wire (set to cnt == 32 here). Similarly to the way one cannot dequeue from an empty

queue, arbitrary circuits might have arbitrary guard conditions corresponding to the usage of some

of their externally facing methods (or to the execution of internal rules).

In Bluespec, ready signals are handled by the compiler: the compiler introduces a ready signal for

every method and rule, and calls to unready methods and execution of unready rules are blocked

(the corresponding enable signal of a method will always be set to 0, when the method is not ready),

which will exert backpressure that prevents parent rules from firing. To give a preview of what

such a multiplier would look like in a rule-based language, the programmer would simply write

the following code and rely on the compiler to compile to RTL, adding the required signals.

module mkMul(MultiplierIfc);
Reg#(Bit#(6)) cnt <- mkReg(0);
Reg#(64) result <- mkReg(0);
Reg#(32) a <- mkReg(0);
Reg#(32) b <- mkReg(0);

rule compute if (cnt < 32);
cnt <= cnt + 1; result <= result + (b[cnt] ? a<<cnt : 0);
// (the barrel shifter on previous line could easily be optimized,
// but it goes beyond the goal of this example)

endrule

method Action mul(Bit#(32) in_a, Bit#(32) in_b);
a <= in_a; b <= in_b; cnt <= 0; result <= 0;

endmethod

method Bit#(64) result() if cnt == 32;
return result;

endmethod
endmodule

The absence of control signals in the high-level source is a key advantage of rule-based languages

for verification. The ready signals do not appear in the semantics of the language. Rule-based

languages shift responsibility for control signals to the compiler.

We now have all our pieces of restricted Bluespec: methods and rules, each able to impose guards,

all sitting within arbitarily deep tree hierarchies of modules. Each rule or method is allowed at

most one side-effecting method call to any given submodule.
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3 Fjfj Informally
Our top goal is hardware development where each module can be proved individually to refine an

appropriate specification, and then such a library of modules can be assembled into a variety of

different verified systems, without needing to revisit module implementations or proofs. To that

end, following the analysis from the prior section, we introduce Fjfj.

Consider a canonical “hello world” example of computer architecture, a two-stage pipeline

computing a pure function. We will implement a module computing 𝑔 ◦ 𝑓 . The implementation of

such a module would be given by the following Lisp-inspired syntax (which Coq parses).

Local Instance submodules : instances := #|
QueuePkg.mkQueue1 inp;
QueuePkg.mkQueue1 mid;
QueuePkg.mkQueue1 out |#.

Definition pipe_enq := (action_method (el) {enq inp el}).
Definition do_f := (rule (begin (set el {first inp}) {deq inp} {enq mid (f el)})).
Definition pipe_deq := (action_method () {deq out}).
Definition pipe_first := (value_method () {first out}).
Definition do_g := (rule (begin (set el {first mid}) {deq mid} {enq out (g el)})).

Global Instance mkPipeline : module _ :=
module#(rule [do_f; do_g] vmet [pipe_first] amet [pipe_enq; pipe_deq]).

Because Fjfj is a DSL embedded in Coq, we first identify the different syntactic elements of such

snippets. We use Coq forms like Definition NAME : COQTYPE := BODY. or Local Instance
NAME : COQTYPE := BODY. to define Coq-level values. The bodies, on the right sides of the :=
symbols, are the actual Fjfj terms and objects. The Fjfj form (begin a b c d) used in the body of

the do_f rule is syntax for a sequence of actions or expressions.

The submodules (“private fields” of the main module) of this example are three queues, which

are the only part containing mutable state. The pipe_enq method simply enqueues a value in inp,
while the do_f rule picks the first element from inp and enqueues it in mid after modifying it by

function f. It also dequeues inp. Curly braces delimit the concrete syntax for method calls. The

rest of the example has a similar explanation, where vmet stands for value (pure) method and amet
for action (side-effecting) method. Contrary to curly braces that delimit the syntax for method

calls, parentheses like (g el) denote the syntax for calling a combinational function. Semantically

combinational functions are simply pure functions, and they can simply be inlined. Finally, the

set el form needs to be considered carefully: it is not like a software variable assignment. Such

local variables are simply wire labels, giving names to intermediate expressions, reminiscent of

let in functional languages. Importantly, setting a variable is not the same thing as calling the

write method of a register, as setting a variable does not cause a side effect on any submodule.

The top-level language semantics is repeated nondeterministic choice of a rule to execute. Hence,
the compiler in charge of compiling the rule-based description to a circuit is left free to construct

an arbitrary scheduling circuit to pick which sequence of rules to schedule each cycle. In rule-based

languages, functional correctness of designs should never be impacted by scheduling choice. While

rules execute nondeterministically on their own, methods need to be called.

One question left to understand this snippet is the definition of the queue modules. One valid

implementation would be a one-element queue, defined in the same language using only registers:

Local Instance submodules : instances := #|
reg.mkReg valid;
reg.mkReg data |#.
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Definition enq := (action_method (el)
(if (not {read valid})

(begin {write valid 1} {write data el})
abort)).

Definition first := (value_method ()
(if {read valid} {read data} abort)).

Definition deq := (action_method ()
(if {read valid} {write valid 0} abort)).

Global Instance mkQueue1 : module _ :=
module#(vmet [first] amet [enq; deq]).

When a method does not succeed because the method dynamically aborts, the abort propagates

to the caller, causing the caller to abort, all the way to an ancestor rule. In other words, a rule

might not be ready because a nested submodule that it is trying to call indirectly is not ready.

Note however that another rule might (and typically will) be ready. For example, when we start a

processor, because there are no instructions in-flight, there is a single rule that will be ready: the

fetch rule. Other rules will be aborted because they will typically try to call the dequeue methods

of empty queues of instructions.

Unusual aspects. Consider a simple register r. The object view of a register is simply a module with

two methods: a value method read and an action method write. Now consider trying to replicate

this software-style coding pattern: r.write(2); value = r.read(). One might expect value to

be 2, but that is not the behavior in rule-based languages. Instead value gets the old value. Indeed,

if we look at the module boundary with the registers, there are simply wires to declare if we want

to do a write this clock cycle. The hardware cannot sequentially call methods of the register. It can

only call all the methods desired simultaneously, and these simultaneous calls will look like first

the read method was called and then the write method was called. So when one has compiled a

submodule with the discipline to think of it like a software object, the effect of calling multiple

of its methods within the clock cycle is fixed at compile time of the module, and the effect is one

specific ordering. For registers, during one atomic step of execution, all state reads view initial
values, even if state writes have happened in between within the atomic action.

Another interesting observation is that it is impossible to do separate compilation of a submodule

and then allow a parent to call the same action multiple times within the same clock cycle, as there

is only one set of wires corresponding to the method call. Notice that this restriction is qualitatively

very different from the language restriction we mentioned earlier (restriction of one action method

per logical cycle): it is not a limitation of our language but rather a structural hazard in the hardware

that exists in every hardware language.

In a circuit, all reads of a register naturally read the version from before the cycle began. It would

also be prohibitively expensive to allow some state updates to persist while blocking others due to

aborts, requiring extensive use of demultiplexing gates with complex Boolean signals. The idea

of aborts might seem unusual to hardware engineers, who are not used to transactions, but it is

actually very commonly used without being named, through carefully crafted control logic. Both
Bluespec and FjFj include it because of how it enables clean modularity, where each module may

impose its own conditions on method callability, without burdening callers with the details.

One might wonder what are the basic primitive modules that we can start from. In a traditional

setup where we only do design, we would just have registers holding bounded-size data as primitive

building blocks. It is known that rule-based programs using only such registers as leaf submodules
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can be compiled to efficient RTL [Greaves 2019; Nikhil 2004]. This paper does not discuss the

synthesis of Fjfj. Because the language is morally a restrictive subset of Bluespec, we typically start

from a Bluespec design and one-to-one translate it (currently manually) to Fjfj. This way we can

use the Bluespec compiler on the original source design for synthesis. The composition of a proof

of design correctness and correctness of a rule-based language compiler as in Bourgeat et al. [2020]

is not in-scope for this paper.

Importantly, Fjfj allows us to define new primitive modules with custom semantics: the basic

building blocks are not limited to registers. When we introduce arbitrary primitive modules, we

lose synthesizability (the hardware word for “compilability”), but we gain ease of expressivity

and better modeling facilities, easing verification. Those nonsynthesizable primitive modules will

typically be used both for the top-level specification and for intermediate specifications during

verification, but they will not be present in the actual implementation design. We now explain how

we represent the semantics of our so-called primitive modules.

3.1 Primitive Modules and Semantics of Modules
The semantics of a module, noted M, is described by the following collection that conceptually

represents a labelled transition system (LTS). Note that, for simplicity in this exercise (and our

implementation), we enforce that all method arguments and return values are unbounded natural

numbers (we encode pairs and other types in natural numbers). In the following let𝑇 be the internal
module type: the type of data that the module manipulates. Also take P as the type of logical

propositions.

• A collection of rules’ transition relations, where each rule is an update relation on state:

r : 𝑇 → 𝑇 → P.
• A collection of value methods’ observation relations, where each method is an observation

relation on the state: 𝑣 : 𝑇 → N → N → P which relates a state, an argument, and a returned

value.

• A collection of actionmethods’ transition relations, where eachmethod is a state-transformation

relation: 𝑎 : 𝑇 → N → 𝑇 → P which relates a state, an argument, and a new state.

The three fields of M sometimes will be derived from actual pieces of syntax for rules and methods

and submodules (i.e. see section 5 for the actual definition of [[M]]), but for the primitive modules,
they are directly defined as three relations and a type in Coq. Note that these relations are permitted

to be nondeterministic, a possibility we will heavily take advantage of in specifications but not

synthesizable implementations.

3.2 Primitive Modules
In general, a Fjfj design is a tree of modules, bottoming out in primitive modules, whose existence

we essentially axiomatize. That is, while a synthesizable module is a syntax tree in a language to be

defined, a primitive module is represented by its specification, directly as the three-tuple introduced

above. A register module has a simple specification, where the state is just a value of the datatype

being stored. Another common primitive module is an unbounded queue, which implements the

same interface as our queue example from earlier but with simpler internals. For instance, its deq
method is axiomatized as follows.

Definition deq _arg st newst := ∃ (h : N) (t : list N),
st = #(cons h t) /\ newst = #t.

The # operator injects into a universal “dynamic” type (a pair of a tagged type and a value) which

the framework adopts for module-state representation to avoid unwieldy Coq bookkeeping with

dependent types. Note that the method cannot be called if the internal state is not of the form
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cons h t. Therefore, the relation is partial and implies a guard: one can only dequeue from this

module if there is an element in it. Fjfj allows a designer to use the full power of Coq’s higher-order

logic to define the semantics of primitive modules.

3.3 Restrictions and Subtleties
As we outlined earlier, delaying the effects of the action methods of the submodules to the end of

each action requires us to clarify the thorny question of the semantics of calling several actions in

a rule, e.g. the case where write is called twice on the same register, or the case where one both

enqueues and dequeues from a queue. While there are several ways to define the semantics in a way

that is both sound and realizable in circuits, we take the opinionated stand to rule out such issues

by simply forbidding calling two action methods of the same module in a single rule. That is, the

semantics detect dynamically when a rule tries to call two action methods of the same submodule

and we abort the rule. Hence, the following rules do nothing.

Definition aborts1 := (rule (begin {write r 3} {write s 0} {write s 1})).
Definition aborts2 := (rule (begin {enq queue 1} {deq queue})).

This restriction does not prevent a program from calling two action methods of different modules.

The partial definition of the relations that constitute the semantics of a module is important to

keep in mind: it highlights that the domain of the relation is encoding the abort semantics. Every

rule and action method is a partial transition relation: for example in our first complete module

mkPipeline, when the mid queue is empty, it is impossible to dequeue from it. Hence, the do_g
rule of our pipeline module cannot fire when mid is empty.

4 Evaluating Language Restrictions
Before moving on to more formalism, we pause to justify our decision to restrict action-method

calls to one per receiver module per logical cycle. We performed a corpus study to evaluate how

widely followed this convention is in Bluespec code.

We implemented a compiler pass for the open-source Bluespec compiler
1
that analyzes method-

invocation patterns and checks for violations of our language restrictions. Specifically, the pass

identifies cases where Bluespec code would not be directly translatable to Fjfj. Our analysis operates

at the granularity of synthesized modules, examining method calls within both rules and methods.

Table 1 summarizes the results.

4.1 Methodology
Our goal was to evaluate how frequently these restrictions are violated in large-scale Bluespec

developments that are currently beyond the reach of verification. We analyzed five Bluespec designs

of varying complexity: (1) a processor design from a Bluespec course, (2) a switch implementation

described later, (3) a simple pipelined superscalar processor, (4) a large superscalar, multicore,

out-of-order processor capable of booting Linux [Zhang et al. 2018], and (5) a fairly large accelerator:

an H.264 video decoder.

The total codebase spans approximately 100K lines of code, with the out-of-order processor

comprising the majority. Our analysis operates on the elaborated design, examining all the modules

synthesized by the compiler. The absolute number of rules and methods should be taken with a

grain of salt, as earlier phases turn parameterized modules into specialized copies.

4.2 Analysis of Violations
The most common kind of violation is a false alarm: warnings due to the conservativity of our

analysis. These are calls to the same action methods that are in two disjoint paths of branches.

1
https://github.com/B-Lang-org/bsc
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Table 1. Restriction violations across different designs

Design Rules Methods Rule Violations Method Violations
Course Processor 73 12 0 0

Switch 123 212 0 0

Simple Superscalar 126 12 6 0

OoO Processor 1,936 1,212 22 3

H.264 Decoder 100 158 5 0

We found the first violation in a Bluespec implementation of superscalar queues, implemented

in an unsafe fragment of Bluespec (using direct wires). In Fjfj, such modules would be reasonably

hand-considered as primitive modules.

More interestingly, all other violations are at uses of these superscalar queues. These violations

involve multiple enqueue methods (e.g., enq1, enq2) intended for direct calls from one rule: for

example, the decode rule might decode one or two instructions each time the rule is called (hence

calling potentially both enq1, enq2 of the execute stage). Such designs clearly violate our restrictions.
We briefly confirmed that two different refactorings can bring the relevant code into compliance

with our restriction. We can refactor the design by merging multiple enqueue methods into a

single method with optional parameters (e.g., enqEither1Or2(x, Maybe y)). Alternatively, maybe

a more modular and Bluespec-friendly pattern would be to split such a decode rule into two

rules decode_1 and decode_2. For this small superscalar processor, we experimented with both

alternatives with no noticeable impact on quality of the circuit generated.

Finally, there is one violation in the H.264 decoder due to a mysterious zero-bit module called

sched_hack. The module seems to be used as a ghost module to communicate scheduling constraints

to the Bluespec scheduler implicitly. We can achieve the same effect without using this hack, using

pragmas.

In summary, we conclude that the method-call restriction is already quite commonly followed in

Bluespec code “in the wild,” and simple refactorings suffice to remedy most violations.

5 Formal Semantics
The goal of the formal semantics is to specify what value gets returned by each value method (and

when value methods can be called) and what are the state updates caused by the rules and action

methods. That is, we want to define the transition relation of rules and methods, from pieces of

Fjfj syntax (presented in Figure 1) as a composition of the relations forming the semantics of the

submodules (presented in Figure 2 and Figure 3).

We write the judgment (𝛼1, Γ1, 𝛽1) −[action_expr]→ (𝛼2, Γ2, 𝛽2) to say that action_expr transforms

an initial triple, of requested action calls on submodules, environment, and requested value calls

on submodules, into a new triple. Note that action expressions do not return values; they only

have side effects on the submodules. A Γ value records local variables. We will often say that

expressions do not have side effects because they cannot update submodules. Note however from

the previous section that both actions and expressions are allowed to update the local environment.

The reason is that in rule-based languages, these local variables are not actually updating any state;

they correspond to giving names to intermediate wires.

An 𝛼 value records requested calls to action methods in the form of a partial function from

submodule identifiers to action methods requested on them. A 𝛽 value is structured differently due

to support for multiple value-method calls to a module per logical cycle: it is simply a set of pairs

of submodule identifiers and value methods called on them.
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We also define a similar judgment for a value expression, which instead of returning an updated

𝛼 data structure (which would not make sense, as value expressions do not request actions on

submodules), returns a value. We write (Γ1, 𝛽1) −[value_expr]→value (Γ2, 𝛽2, ret) to indicate that

the value expression takes a pair of an environment and a set of value method calls performed so

far, relating them to a new environment, a new set of value-method calls performed, and a value

returned by the value expression: ret.
Actually, both judgments must be parameterized further by the states st of the submodules of

the current module. It is usually clear from context which state we run expressions in, but where

needed for clarification, we will add st ⊢ before an assertion.

We now explain one of the rules that exercises the most interesting design choices.

(Γ, 𝛽) −[𝑒]→value (Γ′, 𝛽 ′, 𝑣arg) (inst, vm) ∉ 𝛽 ′ (𝑠𝑡 [inst], 𝑣arg, ret) ∈ [[inst]] .vmethods[vm]
(Γ, 𝛽) −[{vm inst 𝑒}]→value (Γ′, 𝛽 ′ ∪ {(inst, vm)}, ret)

Call

A call to a value method (vm) of a submodule (inst) is possible only if this precise value method

was not already called so far (it is not in 𝛽 ′). Moreover, we need to look at the semantics of the

corresponding value methods of the submodule e.g. [[inst]] .vmethods[vm]. By definition, this

object is a set of triples, such that (subst, arg, ret) ∈ [[inst]] .vmethods[vm] whenever calling the

value method with argument arg when the submodule has state subst returns the value ret. Note,
as was pointed out in subsection 3.1, that if a pair of a state and an argument is not in the domain

of the relation, then the method cannot be called.

Derived semantics of rules. A transition from state st to state st′ by rule 𝑅, noted st →𝑅 st′, is
defined as follows:

∃𝛼. st ⊢ (∅, ∅, ∅) −[𝑅]→ (𝛼, ∗, ∗) ∧
(∀ inst ∈ dom(𝛼). (st .inst, 𝛼 (inst) .arg, st′ .inst) ∈ [[inst]] .amethods[𝛼 (inst).method]) ∧
(∀ inst ∈ dom(st) \ dom(𝛼). st .inst = st′ .inst)

(1)

In other words, a new state is a valid transition when every new submodule state either corresponds
to a transition of an action method being called on the submodule if an action is called on the submodule,
or the submodule is left unchanged if no action was called on the submodule.

We then define the semantics of a rule 𝑅 as:

[[𝑅]] := {(st, st′) |st →𝑅 st′}

This judgment can be derived only if all the value methods of the submodules run without aborting.

Derived semantics of action methods. Very similarly to the semantics of a rule, we can use the same

judgment rules to define the transitions for an action method st →am,arg st′ by:

∃𝛼. st ⊢ (∅, {arg : arg}, ∅) −[am]→ (𝛼, ∗, ∗) ∧
(∀ inst ∈ dom(𝛼). (st .inst, 𝛼 (inst).arg, st′ .inst) ∈ [[inst]] .amethods[𝛼 (inst).method]) ∧
(∀ inst ∈ dom(st) \ dom(𝛼). st .inst = st′ .inst)

(2)

And as expected we pose the semantics of an action method as follows:

[[am]] := {(st, arg, st′) | st →am,arg st′}

Derived semantics of value methods. Finally, the value methods (which only return values and do

not need to update state) return values given by the already-explained judgment ∗ −[∗]→value ∗:

st →vm,arg ret := (∅, {arg : arg}, ∅) −[vm]→value (∗, ∗, ret)
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value_expr ::= 𝑣 Variable

| c Constant

| (f value_expr ... value_expr) Pure combinational

| (set 𝑣 value_expr) Set variable

| (if value_expr value_expr value_expr)
| abort
| {value_name instance value_expr} Pure method call

action_expr ::= (if value_expr action_expr action_expr)
| value_expr
| (begin action_expr ... action_expr)
| pass
| {action_name instance value_expr} Side-effecting

method call

base ::= instance := module Submodule

| action_name := (action_method (v) action_expr)
| value_name := (value_method (v) value_expr)
| (rule action_expr)

module ::= base* | axiomatic specification

Fig. 1. Syntax of Fjfj

We define the semantics of value methods as expected:

[[vm]] := {(st, arg, ret) | 𝑠𝑡 →vm,arg ret}
We use the notation 𝑥 →∗

𝑀
𝑥 ′ to signify that there exists a sequence of rules of 𝑀 to go from

state 𝑥 to 𝑥 ′.

Definition of a New Fjfj Module
Given:

(1) 𝑆 = {m𝑖 |𝑖 ∈ [0, 𝑘)}, a family of submodule denotations (each composed of an internal state

type and three relations, see subsection 3.1)

(2) 𝑅 = {𝑟𝑖 |𝑖 ∈ [0, 𝑛rules)} action expressions (pieces of syntax)

(3) 𝑉 = {vm𝑖 |𝑖 ∈ [0, 𝑛vmethods)} value expressions (pieces of syntax)
(4) 𝐴 = {am𝑖 |𝑖 ∈ [0, 𝑛amethods)} action expressions (pieces of syntax).

We define the semantics of a nonprimitive module (𝑆, 𝑅,𝑉 ,𝐴) as follow:
[[(𝑆, 𝑅,𝑉 ,𝐴)]] = {

Internal type := m0.𝑇 × · · · × m𝑘 .𝑇 ;

Rule relations := {r𝑖 |r𝑖 = [[𝑟𝑖 ]]} ∪
⋃

𝑙 lift(m𝑙 .rules);
Action-method relations := {am𝑖 |am𝑖 = [[am𝑖 ]]};
Value-method relations := {vm𝑖 |vm𝑖 = [[vm𝑖 ]]}}

The lift operation flattens the rules of submodules and promotes them to rules of the parent

module. We found that this encoding worked better than retaining hierarchy semantically.

Note that we do not directly use the syntax of the submodules (which might not even exist if the

submodules are primitive modules) to define the semantics of the parent module.
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(Γ, 𝜈) −[arg]→value (Γ, 𝜈, Γ [𝑎𝑟𝑔])
Arg

(Γ, 𝛽) −[v]→value (Γ, 𝛽, Γ [v])
Var

(Γ, 𝛽) −[𝑒]→value (Γ′, 𝛽 ′, 𝑟 )
(Γ, 𝛽) −[(set x 𝑒)]→value (Γ′ [x := 𝑟 ], 𝛽 ′, 𝑟 )

SetVar

(Γ, 𝛽) −[𝑒]→value (Γ′, 𝛽 ′, 1) (Γ′, 𝛽 ′) −[𝑡]→value (Γ′′, 𝛽 ′′, 𝑟 )
(Γ, 𝛽) −[(if 𝑒 𝑡 𝑓 )]→value (Γ′′, 𝛽 ′′, 𝑟 )

IfVT

(Γ, 𝛽) −[𝑒]→value (Γ′, 𝛽 ′, 0) (Γ′, 𝛽 ′) −[𝑓 ]→value (Γ′′, 𝛽 ′′, 𝑟 )
(Γ, 𝛽) −[(if 𝑒 𝑡 𝑓 )]→value (Γ′′, 𝛽 ′′, 𝑟 )

IfVF

(Γ, 𝛽) −[𝑒1]→value (Γ′, 𝛽 ′, 𝑟1) (Γ′, 𝛽 ′) −[𝑒2]→value (Γ′′, 𝛽 ′′, 𝑟2)
(Γ, 𝛽) −[(𝑓 𝑒1 𝑒2)]→value (Γ′′, 𝛽 ′′, 𝑓 (𝑟1, 𝑟2))

PureF

(Γ, 𝛽) −[𝑒]→value (Γ′, 𝛽 ′, 𝑣arg) inst.vm ∉ 𝛽 ′ (𝑠𝑡 [inst], 𝑣arg, 𝑟 ) ∈ [[inst]] .vmethods[vm]
(Γ, 𝛽) −[{vm inst 𝑒}]→value (Γ′, 𝛽 ′ ∪ {inst.vm}, 𝑟 )

Call

Fig. 2. Judgment rules for ∗−[∗]→value ∗. The relation tracks the effects of value expressions on the environment,
on the data structure tracking the value methods used by the expression, and the returned value.

(Γ, 𝛽) −[𝑒]→value (Γ′, 𝛽 ′, _)
(𝛼, Γ, 𝛽) −[𝑒]→ (𝛼, Γ′, 𝛽 ′)

Expr

(𝛼, Γ, 𝛽) −[pass]→ (𝛼, Γ, 𝛽)
pass

(Γ, 𝛽) −[𝑒]→value (Γ′, 𝛽 ′, 1) (𝛼, Γ′, 𝛽 ′) −[𝑡]→ (𝛼 ′, Γ′′, 𝛽 ′′)
(𝛼, Γ, 𝛽) −[(if 𝑒 𝑡 𝑓 )]→ (𝛼 ′, Γ′′, 𝛽 ′′)

IfT

(Γ, 𝛽) −[𝑒]→value (Γ′, 𝛽 ′, 0) (𝛼, Γ′, 𝛽 ′) −[𝑓 ]→ (𝛼 ′, Γ′′, 𝛽 ′′)
(𝛼, Γ, 𝛽) −[(if 𝑒 𝑡 𝑓 )]→ (𝛼 ′, Γ′′, 𝛽 ′′)

IfF

(Γ, 𝛽) −[𝑒]→value (Γ′, 𝛽 ′, 𝑟 ) inst ∉ 𝐷𝑜𝑚(𝛼) (𝑠𝑡 [inst], 𝑟 , _) ∈ [[inst]] .amethods[am]
(𝛼, Γ, 𝛽) −[{am inst 𝑒}]→ (𝛼 [inst ↦→ am], Γ′, 𝛽 ′)

CallAct

Fig. 3. Judgment rules for ∗ −[∗]→ ∗ tracking the effect of action expressions on the environment, the data
structure tracking the value methods used, and the one tracking the action methods requested.

6 Simulations as Refinement
Now we are ready to adapt classic correctness notions and proof principles for transition systems.

The different limitations and hierarchical structure that we have woven into the language design

will pay off in greater simplicity, compared to how these details worked out in RTL-level reasoning

or in past work on verifying Bluespec-style designs [Choi et al. 2017].

State One-Step-Simulation. Let𝑀𝐼 and𝑀𝑆 be two Fjfj modules which expose the same interface,
i.e., they define the same value methods and action methods. Let their corresponding semantics be

[[𝑀𝐼 ]], [[𝑀𝑆 ]], respectively.
Let 𝑖 and 𝑠 be states for the implementation and specification modules respectively. We say that

the module 𝑀𝐼 in state 𝑖 one-step-refines the module 𝑀𝑆 in state 𝑠 (or that 𝑠 one-step-simulates 𝑖),
when:
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(1) For every value method vm,

∀ arg, ret . (𝑖, arg, ret) ∈ [[𝑀𝐼 ]] .vmethods[vm] ⇒ (s, arg, ret) ∈ [[𝑀𝑆 ]] .vmethods[vm]

(2) For every action method am,

∀ arg, i′ . (i, arg, i′) ∈ [[𝑀𝐼 ]] .amethods[am] ⇒ ∃s′ .(s, arg, s′) ∈ [[𝑀𝑆 ]] .amethods[am]

In such a situation, we write 𝑖
𝑀𝐼
≺
𝑀𝑆

𝑠 . Intuitively it says that if a module𝑀𝐼 is in state 𝑖 , nothing

that it can do immediately cannot be done by a module𝑀𝑆 in state 𝑠 . We will often omit𝑀𝐼 and

𝑀𝑆 in the notation and write 𝑖 ≺𝑠 when they are obvious from the context.

Module Simulation. We say that𝑀𝑆 simulates𝑀𝐼 (or𝑀𝐼 refines𝑀𝑆 ) along the relation 𝜙 ⊂ State𝑀𝐼
×

State𝑀𝑆
, noted𝑀𝐼 ⊑𝜙 𝑀𝑆 , when:

(1) For every initial state 𝑖 of the implementation, there exists an initial state 𝑠 of the specification,

such that 𝑖 ≺ 𝑠 ∧ 𝜙 𝑖 𝑠 .

(2) For every 𝑖1 and 𝑠1 such that 𝑖1 ≺ 𝑠1 ∧ 𝜙 𝑖1 𝑠1, and for every 𝑟 and 𝑖2 such that (𝑖1, 𝑖2) ∈
[[𝑀𝐼 ]] .rules[𝑟 ], there exists a sequence of rules (and corresponding intermediate states)

r1, . . . , r𝑘 , 𝑠2 . . . 𝑠𝑘 , s.t.

(∀𝑗 ∈ [1, 𝑘). (𝑠 𝑗 , 𝑠 𝑗+1) ∈ [[𝑀𝑆 ]] .rules[𝑟 𝑗 ]) ∧ 𝑖2 ≺ 𝑠𝑘 ∧ 𝜙 𝑖2 𝑠𝑘

(3) For every 𝑖1 and 𝑠1 such that 𝑖1 ≺ 𝑠1 ∧ 𝜙 𝑖1 𝑠1, and for every am, arg and 𝑖2 such that

(𝑖1, arg, 𝑖2) ∈ [[𝑀𝐼 ]] .amethods[am], there is 𝑠2 such that (𝑠1, arg, 𝑠2) ∈ [[𝑀𝑆 ]] .amethods[am],
and there exists a sequence of rules (and corresponding intermediate states) r2, . . . , r𝑘 , 𝑠2 . . . 𝑠𝑘 ,

such that,

(∀𝑗 ∈ [2, 𝑘). (𝑠 𝑗 , 𝑠 𝑗+1) ∈ [[𝑀𝑆 ]] .rules[𝑟 𝑗 ]) ∧ 𝑖2 ≺ 𝑠𝑘 ∧ 𝜙 𝑖2 𝑠𝑘

Finally we note𝑀𝐼 ⊑ 𝑀𝑆 whenever ∃𝜙. 𝑀𝐼 ⊑𝜙 𝑀𝑆 .

This last sequence of definitions is notable for which complexities it does not require the proof
author to confront. Recall that Kami [Choi et al. 2017] forced module specifications in terms of all

sets of incoming method calls that a module might face in a single atomic step, which could in

general require handling exponentially many cases, w.r.t. a module’s method count. Hence, a module

in Kami could not be characterized by giving a transition relation for each method individually. In

contrast, thanks to the restrictions in our language, each method may be characterized and proved

individually, as we are used to from e.g. frameworks for verifying object-oriented programs. This

simplification allows us to scale our design and verification methodology to significantly larger

systems (see subsection 8.1 and subsection 8.2).

6.1 Example: SimpleQueue Simulation
We now verify a one-element queue implementation against the idealized spec given earlier,

sketching the simulation relation 𝜙 . The full proof, which might be the simplest useful proof of a

refinement, is also mechanized in Coq.

Theorem 6.1 (Queue refinement). mkFifo1 ⊑ mkFifoSpec.

Proof. In this case we use the following natural 𝜙 .

𝜙 𝑖 𝑠 := ∃ (𝑣 𝑑 : 𝑁 ) (𝑙𝑎 : 𝑙𝑖𝑠𝑡 𝑁 ). 𝑖 = #(𝑣, 𝑑) ∧ 𝑠 = #𝑙𝑎 ∧ 𝑣 ∈ {0, 1} ∧
(∀𝑎. 𝑙𝑎 = [𝑎] ⇐⇒ 𝑣 = 1 ∧ 𝑑 = 𝑎) ∧ (𝑙𝑎 = [] ⇐⇒ 𝑣 = 0).

□
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Remark – the implementation queue is a strict refinement of the specification queue: The two queues
are not bisimilar (or equivalent). Indeed, some behaviors exhibited by the specification queue will

never occur in the 1-element implementation queue. An example is the behavior [𝑒𝑛𝑞(1); 𝑒𝑛𝑞(2)],
which would require the queue to be able store at least two elements.

The usefulness of this refinement notion comes in sound verification of a module where we

consider its child modules only in terms of their specifications (proved with the same notion of

refinement). The fact that once a refinement is proven that such a substitution becomes valid is

justified by the following refinement theorem.

6.2 Refinement Theorem
Let (m𝑖 |𝑖 ∈ [1, 𝑘]) be a family of 𝑘 modules, and let m0 and m′

0
be two modules defining the same

value methods and action methods and such that m0 ⊑ m′
0
.

Let (𝑆𝐼 , 𝑅, 𝐴,𝑉 ) be an Fjfj module, composed of submodules 𝑆𝐼 = (m0,m1, . . . ,m𝑘 ) and pieces

of syntax for rules 𝑅 = {𝑟𝑖 |𝑖 ∈ [0, 𝑛rules)}, action methods 𝐴 = {𝑎𝑚𝑖 |𝑖 ∈ [0, 𝑛amethods)} and value

methods 𝑉 = {𝑣𝑚𝑖 |𝑖 ∈ [0, 𝑛vmethods)}. Let (𝑆𝑆 , 𝑅, 𝐴,𝑉 ) be the same module when we substitute the

first submodule by its specification: 𝑆𝑆 = (m′
0
,m1, . . . ,m𝑘 ). The refinement theorem guarantees:

[[(𝑆𝐼 , 𝑅, 𝐴,𝑉 )]] ⊑ [[(𝑆𝑆 , 𝑅, 𝐴,𝑉 )]]

Note that here, without loss of generality, we refined the first submodule of the system. We could

similarly have refined a module in any position. The proof of this refinement theorem has also

been mechanized in Coq and constitutes one of the main workhorses of our framework.

6.3 From Refinement to Trace Inclusion
We sometimes want a top-level theorem statement about inclusion of traces of behaviors instead of

existence of simulation relations. We now adapt and present a well-known result from Baier and

Katoen [2008] to Fjfj, proving that simulation implies the inclusion of behaviors.

We define a method interaction with a module𝑀 as either: (1) an action-method step indicating

we succesfully called a given action method: am(arg), or (2) a value-method step coupled with the

return value observed: vm(arg) → ret.

We define inductively the predicate behavior𝑀 𝑙 𝑖 𝑒 declaring that a list 𝑙 of method interactions

is a behavior starting from the initial state 𝑖 of the module 𝑀 , ending in state 𝑒 , if there exists a

choice of rules interleaved with these method calls, which support this trace. For example one can

easily prove:

behavior mkFifoSpec [enq(1); enq(2);first () → 1; deq()] [] [2]

Fjfj provides the following theorem (also mechanized in Coq) to get from refinement to trace

inclusion:

Theorem 6.2 (Trace inclusion). If𝑀𝐼 ⊑ 𝑀𝑆 then:

∀𝑙, 𝑒 . behavior𝑀𝐼 𝑙 init𝑖 𝑒 ⇒ ∃𝑒′ . behavior𝑀𝑆 𝑙 init𝑠 𝑒′

6.4 Typical Usage of Refinement
We will now illustrate some typical uses and advantages of refinement. Our usual pattern is to

introduce intermediate specifications in our proofs, to replace low-level, synthesizable modules

by clean data structures on which it is easy to write invariants to connect with the top-level

specification.
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Canonicity of representation. Another aspect in which picking the right data structure for our

intermediate specification matters is what we call canonicity. Consider two implementations of a

4-element queue. One is built with 4 registers, an enqueue pointer, a dequeue pointer, and a register

indicating an empty queue. We can call this version the circular-buffer version. The other version is

simply using a list of length at most 4, which we can call the list version.
The list version has the property of canonicity: reasoning about an empty queue, we only need

to consider a single case: the empty list. In contrast, the circular buffer has 4 different states that

represent the empty case (equal enqueue pointer and dequeue pointer, and empty register is set).

Thus, the proof will either need to cover more cases explicitly or work modulo a custom equiva-

lence relation. Those issues disappear when we do a proof in the list version: there are no multiple

state representations of the same conceptual state. We say the data structure is canonical.

Generally, we say that a module 𝑀 has the canonicity property if there exists no nontrivial

simulation of𝑀 by itself, i.e. if 𝜙 witnesses a simulation of𝑀 by itself, then 𝜙 𝑖 𝑠 := 𝑖 = 𝑠 .

We think of the refinement theorem as the systematic tool to work modulo the right notion of

substitution, with a foundational justification for the substitution. And we often use the refinement

theorem to replace a noncanonical and synthesizable implementation with a canonical specification,

which requires fewer cases to consider in proofs.

Wewill always favor data structures that avoid requiring that we state invariants about symmetric

cases; preferring to bake those equivalent states directly into a custom data structure will make

proofs easier and smaller. Our use of canonical data structures to replace submodules can be

seen as an alternative to the more implicit partial-order-reduction techniques used in traditional

model-checking, like Flanagan and Godefroid [2005] and Peled [1993].

Simulation vs. Hoare logic. This style of proof has much in common with the earliest methods of

verification for data abstraction [Hoare 1975]. A simulation relation is very similar to an abstraction

relation used to explain why a program module implements an abstract data type. The difference is

that classic Hoare-logic methods of this type effectively force the “reference implementation” to be

written in math/logic within a specification. The refinement style can support similar affordances

while offering greater convenience for proofs by stepwise refinement, such that both “implemen-

tation” and “specification” can be coded in the same compiler-ready language, though with the

chance to intersperse purely logical constructs where convenient.

7 Vectors of Submodules
One common design pattern in hardware is including several clones of particular submodules, for

example a collection of processing elements or a collection of queues. In this section we elaborate

on our strategy to describe and verify this kind of design pattern.

Consider a parametrized butterfly crossbar, whose job is to route messages on a number of

input ports to the appropriate output ports. This crossbar will serve as our running example of

verifying parametrized code containing a variable number of subunits: the inputs and outputs are

each collectively seen as vectors.

One natural approach would be to consider that submodule duplication is a construction in

the metalanguage Coq, where a functional “macro” runs to generate a more verbose, redundant

hardware design. However, we found that it streamlined proofs to axiomatize vectors as a kind of

higher-order primitive module.

We observe that, in hardware, we often do one of two things with vectors:

(1) Call one method of one of the submodules of the vector (the select style).
(2) Call one method of all the submodules of the vector (the map style).
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From this observation, in Fjfj, a Vector is a construction to build one primitive module – the

vector – which contains four methods: the map value and action methods, and the select value and
action methods. The former two methods take an input in the form of a vector of bits, with each

corresponding to one element in the vector of modules. The latter two methods have a variadic

number of parameters: a first parameter indicates which method of the submodules is actually

called, and the other parameter is passed to the submethod.

This construction allows us to represent the full vector as a single module, without requiring

special new syntax support for it. While it does not support arbitrary usage patterns of vectors of

modules, we found it to be expressive enough for now, while also promoting patterns that map

properly to modularly compiled RTL. It also can easily be extended, to support more vector-level

methods, for example calling the same method for a subset of the modules, or if we wanted to be

even more general, a general fold expressing for each submodule of the vector which method we

want to call (if any) with which parameters.

8 Evaluation
We evaluated Fjfj on three hardware designs that we verified: a parametrized butterfly crossbar, a

processor, and a network switch.

First, a word is called for on the toolchain used in these studies and the project overall. Unlike other

projects that have produced verified compilers for Bluespec-style languages (e.g. Koika [Bourgeat

et al. 2020]), our focus is on modular proof of functional correctness. Hence, it is convenient to reuse

the open-source Bluespec compiler, which called for writing all case studies first in the established

Bluespec language. After sufficient analysis and testing of the FPGA-compatible RTL code that

resulted, we then hand-translated the Bluespec files to Fjfj designs (embedded in Coq source files).

This flow represents an expedient evaluation strategy, not a suggested long-term workflow.

Though the translation from Bluespec to Fjfj is extremely direct, we might also automate it, then

viewing Fjfj as an intermediate representation for verification. Indeed, Fjfj today involves modeling

choices for simplicity, like passing all method arguments and return values as natural numbers,

forcing insertion of modulus operations at the right points; hence marking Fjfj as unsynthesizable.

Another approach is to create a verified translation into such an intermediate language from a

surface language with its own verified compiler (a parallel path to RTL rather than functional-

correctness proof). In any case, these alternatives are orthogonal to the questions of this project.

8.1 Pipelined Processor
While several previous projects have demonstrated proofs of processors in verification systems, to

our knowledge each proof has tackled a processor with a bounded (and small) number of in-flight

instructions. In this section, we present the first proof of a pipelined processor valid for an arbitrary

number of in-flight instructions. This choice showcases a machine that would be especially hard to

model-check using standard methodology and so where a proof assistant can shine.

We focus on architectural transformation and do not look at Boolean equivalences. For the

latter, we reuse a standard uninterpreted-functions technique where paired implementations

and specifications will use the same uninterpreted functions for ALU execution, decoding, etc.

(axiomatized in Coq). As a result, our proof can focus on the pipelining and other architectural

features of interest without intermingling orthogonal proof challenges.

One reason proofs of correctness of hardware are difficult and time-consuming is because

they are usually not modular; we often need global invariants of the system that mention all the

different submodules of the design simultaneously and ensure constraints between their states. The

invariants need to be rewritten significantly whenever the design changes. As an example, one

might be interested in replacing the execute-to-writeback (e2w) queue by a two-element queue
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in the processor verified in previous work [Choi et al. 2017]. This design change might be to hide

a two-cycle latency to data memory for example. With previous proof techniques, the invariant

explicitly listed all possible cases of in-flight instructions: there is one instruction in the execute

stage, or there is none. Hence, this change to the design would require significantly extending the

invariant: it would lead to an invariant having about double the size the original one, requiring

significant manual work. At the same time, architecturally speaking, such a change should be

inconsequential. In contrast to this kind of proof, we want our processor designs to have submodules

independently specified and verified, allowing variations in components (e.g., frontend, backend,

queues, register files, scoreboard, memories) without affecting most of the proof.

The lack of modularity in previous proofs likely stemmed primarily from the lack of correct

modular specifications. Indeed, we will show that the intuitive specification of a standard processor

system (core + memory) must be generalized to encompass behaviors seen in implementations.

Generalization, however, is sometimes dangerous because it admits behaviors that are not seen in

the original intended specification, and thus it can make the whole design wrong. Therefore, the

generalized specification of a submodule must be shown to be safe in its context of use.

Processor, Memory, and System Specification
Before we dive in, remember that the words refinement and correct now have been given precise

formal meanings. Correctness refers to the existence of a simulation relation (a refinement) between

the specification design and the implementation design, which only talks about the behaviors of

the two systems at their interface.

Let us show the need for generalizing specifications using a machine composed of a processor

and a memory. The machine interacts with the environment using memory-mapped IO (MMIO),

and as such MMIO is the only interface to the system. One may implement such a machine using

many microarchitectures such as unpipelined, in-order pipelined, or out-of-order microarchitecture

for the processor; and different cache hierarchies, replacement policies, and reordering policies for

the memory. Typically, a machine will have multiple simultaneously outstanding memory loads. In

contrast, the MMIO requests and responses are typically handled sequentially and nonspeculatively,

as both are interactions with the outside world that can have arbitrary side effects, even for MMIO

loads. We focus on the processor side of the system and assume that the memory module is kept

constant as a first-in-first-out memory specification.

We diagram the specification and implementation systems in Figure 4. While the internal

processor-memory interaction varies between implementations, all must exhibit identical I/O

behavior for any given program. One might expect to prove refinement modularly: show the

pipelined processor implements the one-instruction-at-a-time specification, prove the cached

memory implements the memory specification, and combine these proofs using our refinement

theorem from subsection 6.2. However, this approach fails because the subsystem-level lemmas

generally do not hold. For instance, the pipelined processor does not refine the atomic specification

processor: it may emit speculative loads and reorder operations, making it easy to prove that

mkPipelinedProcessor @ mkAtomicSpecProcessor . Memory systems face similar issues. Counterintu-

itively, while the full-system specification comprises separate processor and memory components,

these components are not valid specifications for their respective implementations in isolation. The

specification is only valid when considering the complete system as a whole. Loosely speaking, a

system of memory plus processor will most of the time verify the following:

FullSystem(Memory, ProcessorImpl) ⊑ FullSystem(Memory, SimpleProcessorSpec)
while at the same time:

ProcessorImpl @ SimpleProcessorSpec
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Fig. 4. Architectural sketch of the full-system and processor implementations and specifications. Rectangles
delimit module boundaries, circles represent rules, and a plain line always goes from a rule or a method to a
method of a submodule indicating a method call. The top-level module simply connects the processor to the
memories (instruction and data) and connects the MMIO requests-and-responses queues to the public-facing
interface. The processor specification (top right) is a very simple multicycle specification: there is exactly one
instruction in-flight at any time in this machine, with a register keeping track of which state of execution the
instruction is in. The processor implementation (bottom left) is a simple pipelined machine: newer instructions
are fetched while previous ones are being decoded, executed, etc.

At first glance, we have hit a significant challenge for modular proof.

Generalizing Specifications: Recovering Modularity
We now present a system with a processor and a memory specification compatible with modular

refinement, enabling verification of a large family of processors and memory implementations.

Consider the more general specification for our system, sketched in the bottom right of Figure 4.

This new specification introduces two nondeterministic load machines: the Data-Load Buffer and
the Instruction-Load Buffer. Those two modules are simply machines that emit loads for arbitrary

addresses, at arbitrary times, and store the results into local load buffers, to be served if requested

from the simple multicycle part of the machine. An intuitive view of this specification is that an

actual processor emits both program-generated memory operations and additional loads from

speculative execution. Instead of characterizing precisely the shape of loads that can be emitted,

this specification indicates that we should conservatively think of a processor as a machine that can

emit loads to any addresses at any time.
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The Generalized Processor Specification, augmented with the nondeterministic load machines, is

able to fake the speculative loads that made it impossible to use the ISA processor specification

alone as a specification for the processor. We can now conclude:

ProcessorImpl ⊑ GeneralizedProcessorSpec

The refinement map used to support this proof states that flushing the pipelined and speculative ma-

chine yields a state directly relatable to the specification. Since the proof accommodates unbounded

in-flight instructions, the invariant (on the order of 100 LoC) is expressed in higher-order logic

but remains completely local to the processor. The main challenge stems from handling unbounded

memory requests in a non-instantaneous request-response system where multiple requests may

interleave before receiving a desired response. A key challenge with this generalized specification

is also ensuring additional loads do not cause system-wide (MMIO-level) issues.

What is a valid generalized specification? Now that we have defined a generalized specification,

we have two definitions of full-system specifications: the more-involved one using a generalized

specification for the processor and the simpler one using the simple specification for the processor.

We say that a generalized specification is valid in its context if the full system using the generalized

specification is refined by the full system using the simple specification, i.e.,

FullSystem(GeneralizedProcessorSpec,Memory) ⊑ FullSystem(SimpleProcessorSpec,Memory)
While both execute instructions sequentially, the proof of this refinement demonstrates that

the extra loads in the generalized specification do not affect the MMIO trace. The refinement

map maintains identical internal states of the two processors; only memory-related structures

differ. For instruction memory, both the response queue and load buffer must reflect instruction-

memory contents. The data-memory relation is more complex: flushing outstanding requests in

the implementation should yield a memory state matching the specification’s memory.

Putting everything together: full-system decomposition. To summarize, we can prove our target full-

system refinement, using two proofs of refinement and an application of the refinement theorem:

ProcessorImpl ⊑ GeneralizedProcessorSpec

By application of the refinement theorem it is lifted to obtain:

System(ProcessorImpl,Memory) ⊑ System(GeneralizedProcessorSpec,Memory)

And then transitively composed with the proof of validity of the generalized specification:

System(GeneralizedProcessorSpec,Memory) ⊑ System(SimpleProcessorSpec,Memory)

One could remark that in Choi et al. [2017], the processor was also proven as amodule independently

of its memory, and so one could wonder how this previous work did not run into the problem of

having to generalize the processor specification. The reason is that the verified processor serializes

the memory accesses and waits for a response before it sends a new request, i.e. it does not pipeline

thememory accesses.With these restrictions, the processor traces are indeed similar to those emitted

by a multicycle specification without requiring generalizing the specification. The restriction comes

at the cost of forbidding architectural optimizations like pipelining memory accesses, which we

were interested in studying. At the same time, they proved a processor in a form that was connected

to a sofware stack for an end-to-end proof [Erbsen et al. 2021]. Such formal linking is possible when

the processor’s specification can be read as an instruction-set-architecture (ISA) formal semantics.

In contrast, our proof is parameterized over ISA details (including combinational logic for e.g.

arithmetic operations, shared between implementation and specification). Once instantiated, the

top-level specification would be in the form needed to link with software proofs.
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8.2 Network Switch

Fig. 5. Network-switch case study: implementation (left) and specification (right).

The most comprehensive case study with Fjfj is VeriSwitch, a verified programmable network

switch based on Intel’s Tofino PISA architecture [Bosshart et al. 2013]. Though programmable,

a Tofino-like architecture differs fundamentally from a standard processor, making it a good

target to explore nonprocessor verification. The switch is structured around three main units: a

variable-length parallel parsing unit, a match-action unit, and a deparsing unit.

The system makes packet-handling decisions (dropping, rewriting, forwarding) based on config-

urable policies. Implemented in Bluespec (about 1000 LoC) and translated to Fjfj (about 1000 LoC as

well), it achieves 100 Gb/s throughput on FPGAs. Figure 5 shows both VeriSwit’s implementation

as concurrent Fjfj modules and the specification as a single non-concurrent module that processes

each packet atomically. The proof is composed of a hierarchy of refinements through 20 different

modules, from high-level specification to implementation.

8.3 Implementation, Specification, and Verification Effort
For each of the three designs, we report the following lines-of-code counts: implementation,

specification, intermediate specifications, description of the mappings between different layers of

the system, and actual proofs.

Table 2. Lines of code per example

Example Impl. Spec. Interm. Spec. Ref. Map Proof Person-Months
CrossBar 148 71 N/A 70 2956 0.5

Processor 304 205 497 299 7213 3

Network Switch 1157 173 3083 807 16230 9

9 Related Work
Verification of combinational circuits and sequential machines. Combinational circuits can be seen

as Boolean functions. Research has produced impressive techniques to solve practical Boolean

equivalence problems [Bryant 1986; Moskewicz et al. 2001]. This paper makes no attempt at tackling

that problem. Those tools and techniques, effective for combinational circuits, are also at the root

of most mainstream formal-verification techniques in use today for verification of sequential

machines [Bradley 2011; Burch et al. 1992; McMillan 2003]. While they can search impressively

large spaces, these techniques face combinatorial explosion and falter when tackling processors

with more than a few in-flight instructions.
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Meaning of correctness. Correctness is often defined through a refinement map: a predicate relating
states of implementation and specification machines. This approach makes correctness proofs

dependent on the chosen predicate; an incorrect predicate (e.g., relating all states) renders the

proof meaningless. This observation prompted research on what constitutes a good refinement

map. For processors, Su et al. [1996] introduced the criterion that flushed implementation states

should match the specification’s architectural states. While variations in flushing definitions create

incomparable correctness notions, our approach uses behavioral simulation for correctness, with

flushing merely serving as a proof technique where incorrect definitions simply prevent proof

completion.

In the vein of verification with custom predicates, we mention the pioneering works [Brock and

Hunt 1997; Jr. 1989] that tackled industrial designs, often in the ACL2 theorem-proving system. We

also mention verifications [Berezin et al. 1998; Brady et al. 2011, 2010; Bryant 2018; Burch and Dill

1994; McMillan 1998, 2000; Velev 2023] done in other frameworks (for example, in UCLID5 [Seshia

and Subramanyan 2018] or in SMV [McMillan 1993]), using various levels of automation and

tackling custom models expressed at various levels of abstraction over synthesizable designs,

trading off for complexity of the architectural schemes being proven. Finally, we mention Huang

et al. [2024, 2023, 2018]; Xing et al. [2022], who propose a conceptual framework to specify and

prove the correctness of accelerators. They show that accelerators can be seen as processors with

custom ISAs, and as such one can use traditional formal-verification techniques to prove correctness

of accelerators at the granularity of single commands/instructions.

High-level-synthesis (HLS) verification. Another approach to hardware design is to transform pro-

grams written in software languages like C, Python, etc. into hardware [Canis et al. 2011; Cong

et al. 2011; Gajski 2001; Gupta et al. 2004; Josipović et al. 2018; Mentor [n. d.]; Xilinx [n. d.]]. Recent

work [Herklotz et al. 2021] leveraged the use of the software-language semantics to tackle verifica-

tion tasks (a compiler-verification task). As far as we know, those approaches have not yet been

applied for complete formal functional correctness of complex sequential machines.

Bluespec verification. Arvind and Shen [1999]; Dave et al. [2011, 2010]; Vijayaraghavan et al. [2015]

first looked at using the rule-based formalism to describe and study the correctness of complex

microarchitectural schemes, introducing various forms of refinement (on paper) to characterize the

correctness of designs. Kami [Choi et al. 2022, 2017; Vijayaraghavan et al. 2015] formally defined a

notion of refinement in Coq which we already discussed in the core of this paper, where the main

downside we highlighted was inability to verify each method of a module independently. Wright

[2021] has explored model checking for rule-based languages. While Wright [2021] defines a notion

of refinement similar to ours, it is not used for processor verification.

10 Conclusion
We introduced Fjfj, a framework for modular formal verification of hardware designs that en-

ables software-style independent verification of module methods. We demonstrated through three

case studies that we can tackle deep hierarchical designs relying on stepwise refinement from

implementation to specification, introducing intermediate generalized specifications.
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