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Abstract—Anticipating all possible attacks on a system is hard
work. Malicious actors seem to have an inherent advantage, since
they can win by finding single vulnerabilities. In our MIT team
within the DARPA SSITH program, we are exploring principled
ways to rule out human error as a source of security issues
in computer processors. A typical security audit involves prose
arguments about attack models and why they are thwarted.
We instead write down formal mathematical theorems about
real digital hardware designs, and we build their formal proofs
that can be checked algorithmically. That is, a program, rather
than a potentially distracted human, confirms that the security
argument is convincing.

After giving some background on the general technology, I
would like to focus on two concrete uses in the SSITH program.
First, we are exploring flexible tagging support, to flow addi-
tional security-relevant information through the microarchitec-
tural state of a Linux-capable processor. Unusually, however, we
propose to compile custom processor descriptions automatically
from descriptions of security policies to be enforced. We aim to
do this compilation in a way that gives formal theorems that the
generated processors truly enforce the security policies. Second,
we are tackling the issues with timing side channels exposed by
the Spectre and Meltdown vulnerabilities. Through a synergistic
connection with work funded by the National Science Foundation,
we are able to prove security theorems for whole hardware-
software system stacks. For instance, we can show that a compiled
C program with a cryptographic function will run on a specific
RISC-V processor, in a way where a secret input flowing into
the function provably has no effect on timing of output events
flowing out of the processor.
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I. INTRODUCTION

The DARPA SSITH program is about fundamental tooling
approaches to make commodity microprocessors more secure,
without requiring superhuman attention to detail by designers.
Our SSITH team at MIT (PI Chlipala, co-PIs Arvind and
Devadas, and PI Hicks for subcontractor Accelerated Tech,
Inc.), in a project called the Hardware Security Compiler, is
pursuing one particular “secret weapon” in that direction: end-
to-end mechanized proofs of functional correctness. That is,
we take advantage of computer software that checks complete-
ness of mathematical proofs, to establish that formal security
theorems hold of real processor designs. That way, we take
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the pressure off of human security auditors, to catch mistakes
in processor security mechanisms. Instead, we just need to
get the theorem statements right, formalizing what security
means in some context. This powerful idea can be lifted to
a higher level than just concrete designs of processors, and
we do so in our project. We show that particular development
tools produce secure-by-construction designs, whatever source
code we apply them to.

Our project pulls together technologies from our team’s past
work, extends and connects them with formal assurance, and
adds one new central tool.

• The Bluespec hardware-description language [1] pro-
vides a high-level notation for describing IP blocks and
their composition to form complete processors, with
good support for modular decomposition of designs into
libraries, put to good use by our team in the Riscy
framework for assembling RISC-V processors [2].

• The Kami formal-verification library [3] for the Coq
theorem prover lets us prove specifications for individual
IP blocks and then compose those results together into
whole-theorem results.

• The Sanctum architecture for secure-enclave execu-
tion [4] lets us protect software components from each
other, without trusted operating systems or hypervisors.

• Our new Hardware Security Compiler will support a
rapid-development workflow for processors where soft-
ware experts can describe security policies and have them
compiled automatically into processor designs guaranteed
to enforce the policies accurately. Designs will be gen-
erated as Bluespec code, with Kami proofs, calling trap-
handler code (for when policy violations are detected)
protected inside Sanctum enclaves.

In the next section, we summarize what this style of
mechanized proofs is all about and what guarantees it delivers.
The final two sections sketch our approaches to compilation of
custom tagging schemes and to proved freedom from timing
side channels.

II. MECHANIZED PROOFS?

We use the Coq theorem-prover software, though other
similar systems could have formed reasonable bases, too. Basic
usage involves:



• Defining systems under study as source code in languages
with clear semantics. (E.g., we work with Bluespec.)

• Writing down formal specifications for those systems, ex-
plaining which of their possible behaviors are acceptable,
in a language of mathematical source code. (E.g., we
write down mappings from IP blocks’ input-wire signals
to output-wire signals.)

• Developing formal proofs in yet another source-code
language, laying out arguments for why systems meet
their specifications. Manual effort is required to write
the proofs, but then they are checked automatically by
software.

The crucial properties of the approach include being:
• Mechanized, where all arguments are written out as

source code and can be checked algorithmically
• End-to-end, where we prove each IP block separately

but then compose into full-system theorems, such that
we only need to worry about getting the full system’s
specification right, since specification bugs in the IP
blocks must be caught in the course of proving the full
system

• Proving functional correctness, where instead of rela-
tively lax properties like localized assertions, we show
very specific correctness properties, like properly imple-
menting the specification of a machine-language instruc-
tion set, which tells us which output-wire signals are
acceptable given prior input-wire signals

Use of the Bluespec language is crucial to allow separate
proof of IP blocks while supporting low-cost composition.
Bluespec library modules look something like Java classes,
with encapsulated private registers and public methods for
accessing them.

III. COMPILING TAGGING SCHEMES

Tagged processor architectures attach additional metadata
to registers, memory cells, and other microarchitectural state.
Different tagging schemes track different metadata to enforce
different policies. For instance, to avoid buffer overflows,
we might associate pointers with array-length information,
trapping if an instruction tries to access a pointer with non-
positive length. Configurable tag-tracking units in hardware
can provide flexibility at the cost of overhead in power, per-
formance, or area. Conversely, these metrics can be improved
by designing processors with specific tagging schemes built
in, but then we run into the high costs of developing and
verifying new hardware. Our team’s approach is to build a
Hardware Security Compiler that produces a hardware design
automatically, given a high-level description of a tagging
policy.

Furthermore, the compiler itself will be proved sound: any
hardware design that comes out is guaranteed to implement the
tagging policy that went in. There are nontrivial challenges in
establishing this property. First, we have the classic problem
of showing correctness of a microprocessor with nontrivial
optimizations like pipelining, speculation, and caching. Next,

we have the challenge of deriving optimized implementations
of different tagging schemes automatically. TLB-style caches
should probably be introduced for tag information in certain
places, and different tagging styles may call for dense (e.g.,
attach a tag to each memory location) vs. sparse (e.g., use a
hash table off to the side) representation. We plan to formalize
a menu of such implementation choices and prove that any
selection from the menu is sound for any tagging scheme.

IV. RULING OUT TIMING SIDE CHANNELS

Sending the right signals on output wires is a good start,
but we also want to make sure that we do not leak secrets
via the timing of when those signals go out. We have already
proved that a very simple, unpipelined processor design avoids
leaking secrets through timing. In fact, we were also able to
compose that hardware result with a software-level result for
the machine code of a popular cryptographic cipher Salsa20,
establishing that the full system (hardware and software)
avoids information leaks via timing. A crucial challenge here
is formulating a separate security property for each main piece:
software, processor, and memory system. Any combination of
three that meet their respective conditions should be secure.

That preliminary work requires software to meet the con-
stant time condition popular in cryptography. Our ongoing
work aims to establish timing-side-channel freedom for ar-
bitrary software isolated with Sanctum. We must reason about
how, for instance, partitioning of cache lines across protection
domains prevents cache timing from leaking secrets.

An appealing property of this approach is that we need not
anticipate attack details, trying to guess the next Spectre or
Meltdown. Instead, we write down a simple property about
relationships between I/O event timing and secret inputs, and
in the course of end-to-end proofs that systems meet the
property, we will run into any surprising microarchitectural
synergies that endanger it.
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