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Abstract
We present a verified compiler to an idealized assembly language
from a small, untyped functional language with mutable references
and exceptions. The compiler is programmed in the Coq proof
assistant and has a proof of total correctness with respect to big-
step operational semantics for the source and target languages.
Compilation is staged and includes standard phases like translation
to continuation-passing style and closure conversion, as well as a
common subexpression elimination optimization. In this work, our
focus has been on discovering and using techniques that make our
proofs easy to engineer and maintain. While most programming
language work with proof assistants uses very manual proof styles,
all of our proofs are implemented as adaptive programs in Coq’s
tactic language, making it possible to reuse proofs unchanged as
new language features are added.

In this paper, we focus especially on phases of compilation that
rearrange the structure of syntax with nested variable binders. That
aspect has been a key challenge area in past compiler verification
projects, with much more effort expended in the statement and
proof of binder-related lemmas than is found in standard pencil-
and-paper proofs. We show how to exploit the representation tech-
nique of parametric higher-order abstract syntax to avoid the need
to prove any of the usual lemmas about binder manipulation, of-
ten leading to proofs that are actually shorter than their pencil-and-
paper analogues. Our strategy is based on a new approach to encod-
ing operational semantics which delegates all concerns about sub-
stitution to the meta language, without using features incompatible
with general-purpose type theories like Coq’s logic.

Categories and Subject Descriptors F.3.1 [Logics and meanings
of programs]: Mechanical verification; D.2.4 [Software Engineer-
ing]: Correctness proofs, formal methods; D.3.4 [Programming
Languages]: Compilers

General Terms Languages, Verification

Keywords compiler verification, interactive proof assistants

1. Introduction
Mechanized proof about programming languages is rather new as
an engineering discipline. Only a handful of “real world” projects
have been undertaken with users beyond computer science and
mathematics researchers. Still, projected practical applications un-
derlie most recent work. For example, compiler verification holds
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the promise of dramatically reducing the costs of quality assur-
ance in the development, evolution, and maintenance of compil-
ers. Unfortunately, this sort of verification seems today to require
epic investments of time and cleverness by experts in semantics and
theorem-proving. The main message of this paper is that, as in more
familiar software development, compiler verification admits design
patterns that cut down dramatically on the required grunt work, to
the point where it seems plausible that the use of verification can
actually reduce the overall effort required to build a correct com-
piler, even when the baseline we compare against is almost-correct
compilers where copious testing has found all but the most obscure
bugs.

There has been much important research on verifying compilers
for relatively low-level languages like C, including in the verified
language stack project by Moore (1989) and the more recent Com-
pCert project (Leroy 2006). In that domain, languages researchers
generally start projects and discover that, when they pick the wrong
abstractions and proof structuring principles, verification requires
much more work than they expected. In contrast, when picking
the wrong abstractions in mechanized proofs about languages with
nested variable binders (such as most functional languages), the
same researchers often find themselves buried in details that they
thought of as irrelevant. We have heard many stories of knowledge-
able semanticists outright giving up on these kinds of proofs.

Recently, there has been much progress in research on the repre-
sentation techniques that minimize the chances of such defeats. The
use of higher-order abstract syntax (HOAS) in Twelf (Pfenning and
Schürmann 1999) remains a popular choice, though it seems that a
majority of languages researchers prefer interactive proof assistants
that, unlike Twelf, can automate large parts of proofs. The de Bruijn
index representation (de Bruijn 1972) is another old standard that
sees wide use today. Perhaps the most popular methodologies now
center around the nominal logic package for Isabelle/HOL (Urban
and Tasson 2005) and the Penn approach to locally nameless bind-
ing in Coq (Aydemir et al. 2008). With these techniques, many facts
about variable freshness and term well-formedness remain present
explicitly in proofs, but there are standard recipes for figuring out
the right lemmas to prove and when to apply them.

These recipes make it likely that a user with enough persever-
ance will manage to prove his theorem. This is a great improvement
over the situation of just a few years ago, but, in this paper, we ar-
gue that we should be striving for more. In software engineering,
we focus on maximizing programmer productivity, and we believe
that mechanized proof engineering could stand to see a similar fo-
cus.

Most parts of most proofs about practical programming lan-
guages are exercises in stepping through many cases that are proved
in unenlightening ways, with a handful of cases representing the
core insights of a proof. Unfortunately, most mechanized proofs
still spend significant amounts of code on the uninteresting cases,
with significant effort expended to write that code. When it comes
time to change a theorem statement, say because a language has



been extended with a new construct, the user needs to go back
over all of his very manual proofs, editing and adding cases. This
is especially tedious with traditional manual proofs in Coq, where
proofs are completely unstructured series of commands that modify
proof states. Declarative proof languages like Isabelle’s Isar (Wen-
zel 1999) help alleviate much of this complication, but they do so
arguably at the expense of greater verbosity of proofs and greater
expenditure in building the first version of a formal development.
Is there an even more effective means of structuring proof scripts,
such that we can realize evolvability benefits similar to those that
software engineers have come to expect?

In the course of this paper, we hope to convince the reader that
the answer is “yes.” We will describe our experience building a
verified compiler for an impure functional language in Coq. Three
main contributions underly the implementation.

• We apply the parametric higher-order abstract syntax tech-
nique (Chlipala 2008) on a larger, more realistic compiler veri-
fication case study than in previous work. This encoding lets us
avoid any code dealing with name freshness or index rearrange-
ment in our compiler pass implementations, and that simplicity
makes it easier to write correctness proofs.

• To avoid the usual deluge of lemmas about substitution, we use
a new approach to encoding operational semantics. Substitution
does not appear explicitly and is instead delegated to the meta
language, as in the classical HOAS approach, but in a way
compatible with general-purpose type theories like Coq’s.

• Each of our Coq proof scripts is a program that is able to
adapt to changes to language definitions and theorem state-
ments. Such proof scripts express what are, in our opinion, the
real essences of why theorems are true, the insights that could
stump someone coming at the proofs from scratch.

Our approach is a synergistic combination of lightweight repre-
sentations and aggressive theorem-specific automation. We imple-
mented a first version of our compiler for a source language miss-
ing several of the features from the final version: let expressions,
constants, equality testing, and recursive functions. We were able
to add these features after-the-fact with minimal alterations of and
additions to our proof scripts; the extended proofs do not even men-
tion the new syntactic constructs or the operational semantics rules
that govern them.

Some of the ideas we present here can be mapped back into
alternative ways of doing things in pencil-and-paper semantics,
but, at the level of detail that is traditional in venues like POPL,
our techniques would probably only increase proof length and
complexity. Instead, this paper is focused on how to engineer a
verified compiler for a functional language. The trickiest parts of
doing this with a proof assistant turn out to have little relation to
the trickiest parts of doing it on paper. Representations matter a lot,
and proof structuring techniques have a serious impact on how easy
it is to evolve a verified compiler over time.

Past projects have considered verifying compilers for pure func-
tional languages. As far as we are aware, ours is the first to consider
a functional source language with either of mutable references or
exceptions. On paper, these features seem straightforward to add to
a compiler proof. In a proof assistant, when using the most straight-
forward proof techniques, impurity infects all of the main theorems
and lemmas. It seems a shame to pass up the opportunity to auto-
mate the flow of these details through our proofs, and we do our
best to take advantage of the possibility.

1.1 The Case Study
Our compiler operates on programs in a kind of untyped Mini-
ML, as shown in Figure 1. We have constants from some unspec-

Constants c
Variables x, f

Expressions e ::= c | e = e | x | e e | fix f(x). e
| let x = e in e
| () | 〈e, e〉 | fst(e) | snd(e)
| inl(e) | inr(e)
| case e of inl(x)⇒ e | inr(x)⇒ e
| ref(e) | !e | e := e
| raise(e) | e handle x⇒ e

Figure 1. Source language syntax

Registers r ::= r0 | . . . | rN−1

Constants n ∈ N
Lvalues L ::= r | [r + n] | [n]
Rvalues R ::= n | r | [r + n] | [n]

Instructions I ::= L := R | r +
= n

| L := R
?
= R | jnz R,n

Control-flow instructions J ::= halt R | fail R | jmp R
Basic blocks B ::= (I∗, J)

Programs P ::= (B∗, B)

Figure 2. Target assembly language syntax

ified base types, comparable with a primitive equality operation;
recursive functions; let-binding; unit values; products; sums; mu-
table references; and exceptions. This language is meant to cap-
ture the key features of core ML’s dynamic semantics, omitting es-
sential features only when they involve variable numbers of argu-
ments or variable binding structure. In particular, we do not model
variable-arity products and sums, mutually-recursive functions, or
compound pattern matching.

Our target language is the idealized assembly language shown
in Figure 2. It differs from a real assembly language in representing
words with natural numbers and in supporting an infinite memory
bank of words. There is still a finite supply of N registers. Our
particular compiler works for any N ≥ 3, allocating some vari-
ables to the additional registers when possible. An assembly pro-
gram consists of a list of basic blocks with one distinguished basic
block where execution begins. A basic block is a sequence of in-
structions terminated by a control-flow instruction. The supported
varieties of instruction are assignment using different addressing
modes (where [·] operands denote memory accesses), increment of
a register by a constant, equality comparison, and conditional jump
based on whether a value is nonzero. Control-flow instructions in-
clude halt, for normal program termination; fail, for termination
on an uncaught exception; and jmp, the standard “computed goto.”
Each halt or fail instruction takes an additional program result code
as an argument. The destination operands to jnz and jmp are inter-
preted as indices into the program’s list of basic blocks.

The compiler is idealized in another important way. Unlike in
our past work on a compiler for basic lambda calculus (Chlipala
2007), there is no interface with a garbage collector. The output as-
sembly programs allocate new memory but never free any memory.
As our present focus is on reasoning about nested binders, we leave
the low-level treatment of memory management to future work.

We give the source language a standard big-step operational
semantics. Figure 3 shows a sampling of the rules. We define a
separate syntactic class of values (associated with the metavariable
v) in the usual way, taking a restriction of the syntax of expressions
and adding a form ref(n), standing for an allocated reference cell



(h, fix f(x). e) ⇓ (h,Ans(fix f(x). e))

(h1, e1) ⇓ (h2,Ans(fix f(x). e)) (h2, e2) ⇓ (h3,Ans(e′))
(h3, e[f 7→ fix f(x). e][x 7→ e′]) ⇓ (h4, r)

(h1, e1 e2) ⇓ (h4, r)

(h1, e1) ⇓ (h2,Ex(v))

(h1, e1 e2) ⇓ (h2,Ex(v))

(h1, e1) ⇓ (h2,Ans(fix f(x). e)) (h2, e2) ⇓ (h3,Ex(v))

(h1, e1 e2) ⇓ (h3,Ex(v))

(h1, e) ⇓ (h2,Ans(v))

(h1, ref(e)) ⇓ (v :: h2,Ans(ref(|h2|)))

(h1, e) ⇓ (h2,Ans(ref(n))) h2.n = v

(h1, !e) ⇓ (h2,Ans(v))

(h1, e) ⇓ (h2,Ans(v))

(h1, raise(e)) ⇓ (h2,Ex(v))

(h1, e1) ⇓ (h2,Ex(v)) (h2, e2[x 7→ v]) ⇓ (h3, r)

(h1, e1 handle x⇒ e2) ⇓ (h3, r)

Figure 3. Sample rules from source language semantics

at numerical address n. The basic judgment is (h1, e) ⇓ (h2, r),
where h1 and h2 are reference cell heaps represented as lists of
values, e is the expression to evaluate, and r is the result, which
is either Ans(v) for normal termination with expression result v or
Ex(v) when v was raised as an exception and not caught. There
are 38 rules in total, covering all of the points in an expression’s
evaluation where an exception might be raised. We write |h| for the
length of a list h.

Our assembly language also has a big-step operational seman-
tics. There are many equivalent ways of formalizing such a seman-
tics; the specifics that we chose will not matter in what follows.
The overall judgment is of the simple form P ⇓ h, r, where h is
the final heap and r is either halt(n) or fail(n).

Our final theorem says that compiled programs have the same
observable behavior as their corresponding source programs. With
our limited languages, a program can only exhibit one of three
kinds of observable behavior: halting, failing, or diverging. The the-
orem we prove in this case study ignores non-termination. Our the-
orem is enough to translate facts about terminating source programs
into facts about assembly programs, which is the main kind of veri-
fication of interest for a deterministic source language without I/O.
We plan eventually to strengthen the final theorem by applying co-
inductive big-step operational semantics (Leroy and Grall 2009) to
prove that divergent source programs are also mapped to divergent
assembly programs.

We write bec for the compilation of expression e. Stating the
final theorem requires formalizing the “contract” between the com-
piler and the programmer. The compiler writer agrees to follow cer-
tain data layout conventions, but it is useful to leave some aspects
of representation unspecified, to avoid unnecessary restrictions on

h ` fix f(x). e ∼= n h ` () ∼= n h ` ref(n) ∼= n′

h ` c ∼= bcc

h ` v1 ∼= h[n] h ` v2 ∼= h[n+ 1]

h ` (v1, v2) ∼= n

h[n] = 0 h ` v ∼= h[n+ 1]

h ` inl(v) ∼= n

h[n] = 1 h ` v ∼= h[n+ 1]

h ` inr(v) ∼= n

Figure 4. The compiler’s data layout contract

optimization. We chose to give a full specification for all kinds of
data besides functions and references. Other decisions are possible,
with minimal impact on the proofs. A much more specific relation
underlies our main inductive proofs, and we arrive at the visible
contract simply by forgetting some details of the “real” relation.

The data layout contract is specified as a relation h ` v ∼= n, pa-
rameterized by the final assembly-level heap h and relating source-
level value v to assembly-level word n. Figure 4 gives the details.
We overload the notation bcc to denote the compilation of a source-
level constant into a word. Our development is parameterized over
an arbitrary injective function of this kind.

We lift this relation in the natural way to apply to program
results.

h ` v ∼= n

h ` Ans(v) ∼= halt(n)

h ` v ∼= n

h ` Ex(v) ∼= fail(n)

Now our main theorem can be stated succinctly.

THEOREM 1 (Semantic correctness of compilation). For any source
program e, heap h, and result r, if (·, e) ⇓ (h, r), then there exist
h′ and r′ such that bec ⇓ h′, r′ and h′ ` r ∼= r′.

1.2 Outline
In the next section, we review the higher-order syntax represen-
tation scheme that we introduced in prior work. In Section 3, we
present a new substitution-free approach to encoding operational
semantics. Section 4 describes, with discussion of their correct-
ness proofs, the main phases of our compiler: conversion from first-
order to higher-order syntax, CPS translation, closure conversion,
translation to three-address code, and assembly code generation.
Section 5 discusses our verified optimizations: common subexpres-
sion elimination, dead code elimination, and register allocation.
Section 6 gives some statistics about our implementation, Section
7 compares with related work, and we conclude in Section 8.

The case study that we describe in this paper is included in the
directory examples/Untyped of the latest release of our Lambda
Tamer library for compiler verification in Coq, available at

http://ltamer.sourceforge.net/

2. Parametric Higher-Order Abstract Syntax
In this section, we summarize key elements of our past work on
representing programming language syntax. The following section
presents new material that is crucial for scaling up to more realistic
languages.

To formalize reasoning about languages with nested variable
binders, one needs to settle on a binding representation. Such de-
tail is often swept under the rug in pencil-and-paper proofs. Taking
many informal presentations literally, we arrive at concrete repre-
sentations like the one embodied in this Coq datatype definition for
the abstract syntax of untyped lambda calculus.



Inductive exp : Type :=
| Var : string -> exp
| App : exp -> exp -> exp
| Abs : string -> exp -> exp.

A type definition like this one does not implement usual conven-
tions on its own. At a minimum, we need some well-formedness
judgment characterizing when an expression is free of dangling
variable references. This means that each of our proofs must in-
clude extra premises characterizing which expressions are well-
formed with respect to which variable environments. If our formal-
ization requires a notion of capture-avoiding substitution, we need
to define one manually. We must also prove a fair number of ex-
tra lemmas about well-formedness and substitution. These lemmas
must have different proofs for different object languages.

There are other so-called first-order representation schemes that
alleviate this burden somewhat, including the de Bruijn index, nom-
inal, and locally nameless styles that we mentioned earlier. Sig-
nificant extra reasoning about freshness and/or well-formedness
remains. An alternative is to use higher-order abstract syntax
(HOAS) (Pfenning and Elliot 1988), which represents object lan-
guage binders using meta language binders. This pseudo-Coq def-
inition captures the way we revise concrete syntax to arrive at
HOAS.

Inductive exp : Type :=
| App : exp -> exp -> exp
| Abs : (exp -> exp) -> exp.

For instance, we represent an application of the identity func-
tion to itself with App (Abs (fun x => x)) (Abs (fun x =>
x)). We encode the matching-up of binders with their uses by bor-
rowing our meta language’s facility for that kind of matching with
anonymous functions.

We called this definition “pseudo-Coq” because Coq will not
accept it. An inductive type is not allowed to be defined with a con-
structor that takes as input a function over the same type. Allow-
ing this would be problematic because it would allow the coding
of non-terminating programs, even without use of explicit recur-
sive definitions, by taking advantage of the opportunity to write
“exotic terms” that do not correspond to real lambda terms. Since
Coq follows the Curry-Howard Isomorphism in identifying proofs
with functional programs, non-termination corresponds to logical
inconsistency, where any theorem can be “proved” spuriously with
an infinite loop. Systems like Twelf avoid this problem by using
weaker meta languages like LF (Harper et al. 1993) that crucially
omit features like pattern-matching and recursion.

Even in general-purpose functional programming languages,
HOAS terms are difficult to deconstruct manually. It is not gen-
erally possible to “go under a binder,” since languages like ML
and Haskell provide no way to introspect into closures at runtime.
Washburn and Weirich (2008) proposed a technique for fixing some
of these deficiencies by taking advantage of parametric polymor-
phism. Guillemette and Monnier (2008) showed how the technique
can be combined with generalized algebraic datatypes to do static
verification of compiler type preservation in GHC Haskell.

Washburn and Weirich’s encoding still is not accepted literally
by Coq, but a small variation achieves similar benefits. In past
work (Chlipala 2008), we showed how to use parametric higher-
order abstract syntax (henceforth abbreviated “PHOAS”) to for-
malize the syntax and semantics of programming languages. We
were able to construct very simple, highly-automated proofs of the
correctness of some transformations on functional programs.

Here is the syntax of lambda calculus reformulated in PHOAS.

Section var.
Variable var : Type.

Inductive exp : Type :=
| Var : var -> exp
| App : exp -> exp -> exp
| Abs : (var -> exp) -> exp.

End var.

Definition Exp : Type := forall var : Type, exp var.

We use Coq’s section mechanism to scope a local variable over
a definition. Outside of the section, the exp type becomes a type
family parameterized by a choice of var type. This definition is
accepted by Coq, and the crucial difference from HOAS is that a
binder is represented as a function over variables, rather than over
expressions. This satisfies Coq’s positivity constraint for inductive
definitions. Now the identity function can be written as Abs (fun
x => Var x), with some choice of var fixed globally.

Considering just the part of the above code inside the section,
we are using the encoding known as weak HOAS (Honsell et al.
2001). If we treat the type var as an unknown, Coq’s type system
ensures that every exp corresponds to a real lambda term, since it is
not possible for a function over variables to do anything interesting
based on its input values, which in effect come from an abstract
type. The parametric part of PHOAS comes in treating var as
more than just a global unknown. We define our final expression
representation type Exp such that an expression is a first-class
polymorphic function from a choice of var to an exp that uses
that choice. For instance, the final PHOAS form of the identity
function is fun var => Abs var (fun x : var => Var var
x). The parametricity of the meta language makes this scheme
equivalent to treating var as a global constant, but we gain the
ability to instantiate Exps with particular var choices to help us
write particular functions.

For instance, we can implement capture-avoiding substitution
like this:

Section flatten.
Variable var : Type.

Fixpoint flatten (e : exp (exp var)) : exp var :=
match e with

| Var e’ => e’
| App e1 e2 => App (flatten e1) (flatten e2)
| Abs e1 => Abs (fun x => flatten (e1 (Var x)))

end.
End flatten.

Definition Exp1 := forall var : Type, var -> exp var.
Definition Subst (E : Exp1) (E’ : Exp) : Exp :=
fun var => flatten (E (exp var) (E’ var)).

First, we write a function flatten that “flattens” an expression
where variables are themselves represented as expressions. Every
variable is replaced by the expression that it holds. We recurse
inside an Abs constructor by building a new argument for Abs that
itself calls flatten. The recursive call is on the original function
body applied to a particular locally-bound variable.

We can use flatten to implement substitution easily. We de-
fine Exp1, the PHOAS type of an expression with one free vari-
able. Substitution of E’ in E is implemented with an anonymous
polymorphic function over a var choice. For a particular var, we
instantiate the one-hole expression E to represent variables as ex-
pressions and the substitutand E’ to represent variables with var.
Applying the former to the latter, we arrive at an expression whose
flattening is the proper result of substitution.



In past work (Chlipala 2008), we showed how to use PHOAS to
give denotational semantics to statically-typed, strongly-normalizing
functional languages. The basic trick is to parameterize variables
by types and define a type denotation function that can be used as a
variable representation in implementing the expression denotation
function. Using this encoding, we implemented and proved totally
correct a number of common functional language compiler passes.
These proofs usually rely on the fact that values of types like Exp
are “really parametric.” We formalized this property in terms of a
judgment that axiomatizes equivalence between expressions that
use different variable representations. This judgment for untyped
lambda calculus is Γ ` e1 ∼ e2 as defined below. Where ei rep-
resents variables in vari, Γ is a context of pairs in var1 × var2.
We write #x for the Var constructor applied to x and λf for Abs
applied to f .

(x1, x2) ∈ Γ

Γ ` #x1 ∼ #x2

Γ ` e1 ∼ e′1 Γ ` e2 ∼ e′2
Γ ` e1 e2 ∼ e′1 e′2

∀x1, x2. Γ, (x1, x2) ` f1(x1) ∼ f2(x2)

Γ ` λf1 ∼ λf2
A parametric expression E is well-formed if, for any var1 and

var2, we have · ` E(var1) ∼ E(var2). We conjecture that this
statement holds true for any E of the proper type, and we asserted
that fact as an axiom in our past work. In the case study of this
paper, we instead prove that expressions are well-formed as needed.
Future theoretical work that proved the consistency of this family
of axioms would remove the need for specialized well-formedness
proofs.

In proving the correctness of a program transformation, it is
generally the case that we use one variable choice in evaluating
a source program and a different variable choice in translating the
program. We use the well-formedness of the expression to derive
that the two instantiated expressions are equivalent. Proofs then
tend to proceed by induction or inversion on these concrete well-
formedness derivations.

At this point, the reader may want to accuse us of mislead-
ing advertising, since earlier we complained that first-order repre-
sentations require too much bookkeeping about well-formedness.
The key difference with PHOAS is that (we conjecture) every
expression is well-formed by construction. We materialize well-
formedness proofs only as needed, and we never need to prove
PHOAS analogues of common lemma schemas like substitution,
weakening, and permutation. In this case study, we proved well-
formedness manually where needed as a kind of due diligence,
but we anticipate that the theory will eventually be in place to rest
easily assuming axioms of universal well-formedness. In any case,
PHOAS avoids the need to generate fresh names or rearrange ex-
isting names in implementing a wide variety of transformations.
These administrative operations are the bane of programming and
proving with first-order representations.

3. Substitution-Free Operational Semantics
Our past work gives programs semantics by interpretation into
Coq’s strongly-normalizing logic CIC; thus, that work cannot be
applied directly to Turing-complete programming languages like
our source and target languages here. The main representational in-
novation of our new work is an effective way of writing operational
semantics over PHOAS terms. Operational semantics has proved
its worth in the formalization of a wide variety of languages, so our
new encoding expands the effective range of PHOAS dramatically.

It is tempting to write operational semantics directly over para-
metric terms (e.g., in Exp from the last section). Doing so is actually
fairly straightforward, with the trick for implementing substitution

as the one surprise. Unfortunately, inductive proofs over paramet-
ric terms tend to involve just as much administrative overhead as
we find with first-order representations. Dealing with instantiated
terms (e.g., in exp) frees us to leave variables deep within syntax
trees annotated with arbitrary meta language values. If we work
with parametric terms, we must instead represent and apply con-
texts explicitly in our induction hypotheses, since it is impossible
to “go under a binder” without first fixing a var choice.

Moreover, working with substitution explicitly brings back the
same family of lemmas about the interaction of substitution and
other functions. Generally we must prove at least one lemma
about substitution for each program transformation function that
we write. The details of such lemmas are almost always elided in
pencil-and-paper proofs, but we must prove them in full detail to
satisfy a proof assistant.

The alternative that we use here is to define an operational se-
mantics over instantiated terms that avoids mentioning substitution
explicitly. Our encoding has the flavor of a hybrid between a high-
level semantics and an abstract machine, where we track closure
allocation explicitly. We want to write semantics equivalent to ex-
amples like the one in Figure 3. For basic lambda calculus, it is
tempting to start out by defining a type val of values like the fol-
lowing, such that we can instantiate var as val in our semantics.

Inductive val : Type :=
| VAbs : (val -> exp val) -> val.

This definition suffers from the same problem as our earlier
HOAS pseudo-definition: we try to define val in terms of functions
over itself. Coq rejects the definition as ill-formed, which is a good
thing, because otherwise we would be able to implement a lambda
calculus interpreter in Coq, which gives us a trivial way of coding
an infinite loop and thus breaking logical consistency.

Our solution is to represent values as natural numbers that index
into a heap of “closures,” or meta language functions from values
to expressions. The technique bears a resemblance to approaches
to making allocation explicit in operational semantics, e.g., as in
Morrisett et al. (1995). That line of work aims to capture how high-
level programs execute on real machines, while keeping at the right
level of abstraction. In contrast, our use of explicit allocation is
aimed at removing the need to reason about explicit substitution.
What we have here is really just an instance of a common pattern
in semantics of moving to more explicitly syntactic techniques to
circumvent circularities in type definitions.

Definition val : Type := nat.
Definition closure : Type := val -> exp val.
Definition closures : Type := list closure.

Here is a big-step semantics in this style for basic lambda
calculus. Its Coq type signature could be closures -> exp val
-> closures -> val -> Prop.

(H,#v) ⇓ (H, v) (H,λf) ⇓ (f :: H, |H|)

(H1, e1) ⇓ (H2, n) (H2, e2) ⇓ (H3, v) H3.n = f
(H3, f(v)) ⇓ (H4, v

′)

(H1, e1 e2) ⇓ (H4, v
′)

As with HOAS and its relatives in general, we manage to del-
egate the object-language-specific handling of substitution to the
meta language. This delegation happens in the occurrence of f(v)
in the application rule. The rule for variables is also more interest-
ing than it may appear at first. By evaluating a variable node #v
to its content v, we effectively push the operation of last section’s
flatten function into our semantics.

The trickiness of usual substitution stems from the need to
reason about nested binder scopes. We have replaced that kind of



reasoning with global reasoning about a closure heap. We can prove
a relatively small set of lemmas about lists and reuse it to handle
closure heaps in all developments that use our encoding. There is no
need to prove even a single lemma about substitution upon starting
with a new object language or transformation.

Our technique generalizes to the full source language from Fig-
ure 1. We revise our val definition like this, using the illustrative
type synonym label for nat from our library:

Inductive val : Type :=
| VFunc : label -> val
| VUnit : val
| VPair : val -> val -> val
| VInl : val -> val
| VInr : val -> val
| VRef : label -> val.

The main PHOAS semantics for the source language tracks
input and output versions of both a closure heap and a reference
heap. We reuse our library of list lemmas to reason about both kinds
of heaps.

The definitions above are about expressions specialized to rep-
resent variables as values, but it is now easy to define an evaluation
relation for parametric terms.

(·, E(val)) ⇓ (H ′, v)

E ⇓ v

We have modified standard operational semantics by adding
a level of indirection. In a traditional paper proof at the tradi-
tional level of detail, our change would only add bureaucratic has-
sle. Counterintuitively, the change reduces hassle in mechanized
proofs, since it helps us delegate to the meta language some details
of processing the object language.

The substitution-free encoding is more than just a trick to place
PHOAS on a level playing field with first-order representations.
PHOAS with our new semantic encoding compares very favorably
with other known combinations of syntactic and semantic encod-
ings. As far as we are aware, every competing technique is either
invalid in a general-purpose proof system or leads to proof over-
head significantly above that in our implementation. In verifying
all of our translations that represent syntax solely with PHOAS,
there is not a single lemma establishing one of the standard object-
language-specific syntactic properties. We only once use proof by
induction over the structure of programs, and that occurs for an
auxiliary lemma relevant to closure conversion, where explicit rea-
soning about variables is hard to avoid.

Substitution-free operational semantics has much in common
with environment semantics, where an evaluation judgment takes
an additional input which assigns a value to each free variable of
the expression to evaluate. Both approaches involve explicit first-
order treatment of an aspect of evaluation that is implicit in the
more common varieties of natural semantics. Where environment
semantics treats every variable in a first-order way, substitution-
free semantics does the same with closures. We have found the
latter to have serious advantages for proof engineering. None of our
translations includes more than one case that has any interesting
effect on closure allocation sequence. As a result, none of our
proofs includes more than one case that must compensate for the
effect of such a change on semantics. In contrast, with environment
semantics, almost every case of each of our translations would need
some accounting for a rearrangement of variable binding structure.

Theorem-specific proof automation is one of the core tech-
niques in our approach to compiler verification, and we will have
more to say later on the details of that automation. While first-order
encodings of operational semantics usually mention substitution

explicitly, the standard lemmas about substitution tend to admit
simple automated proof strategies. Nonetheless, we feel it is still
a significant burden to have to state and apply all of these lemmas
explicitly. Perhaps an automation package could go further and ap-
ply substitution properties automatically as needed. In the project
described in this paper, we have avoided any automatic application
of induction, which rules out proofs of the usual syntactic lemmas.
We view our more elementary automation style as a mark in favor
of our proposal.

More standard operational semantics with explicit substitution
is easier to understand and believe, so we chose to state the final
theorem independently of the new technique. The first part of the
next section shows how we convert from first-order to higher-order
syntax and semantics, along with how we justify the soundness of
the conversion.

4. Main Compiler Phases
In this section, we walk through our compiler intermediate lan-
guages and the phases that translate into them. We will overload
notation by writing b·c for the compilation function being discussed
in each subsection.

For lack of space, we discuss our proof automation techniques
only in the context of CPS translation, in Section 4.2.2. The design
patterns introduced there apply equally well to the other transla-
tions.

4.1 PHOASification
Our final theorem is stated entirely in terms of standard encodings
of syntax and semantics, with no mention of PHOAS. We achieve
this by beginning our compiler with a de Bruijn index (de Bruijn
1972) implementation of the syntax from Figure 1. The first com-
piler phase translates these programs into PHOAS equivalents,
where the PHOAS syntax is a different encoding of Figure 1.

It is not generally possible to “cheat” in implementing a trans-
lation into PHOAS, in the sense that there is no default value to use
for variables when it turns out that the input program is ill-formed
somehow. Therefore, we use dependent types to enforce that every
source program is closed by construction. This is a standard tech-
nique in the dependent types world, where a type exp is indexed
by a natural number expressing how many free variables are avail-
able. Variables in ASTs are represented in types fin n, which are
isomorphic to sets of natural numbers below n.

Our implementation of PHOASification uses another standard
dependent type family, which we call ilist in our library. For a
type T and a natural number n, an ilist T n value is a length-n
list of values in T.

The type of the main translation is forall (var : Type)
(n : nat), Source.exp n -> ilist var n -> Core.exp
var. Besides the expression to translate, b·c takes in a list repre-
senting a mapping from de Bruijn indices to PHOAS variables.
Here are some representative cases from the function’s definition,
where we write σ.f for the projection from the ilist σ of the
value at the position indicated by fin value f . We write λ̂ for the
meta language’s function abstraction.

b#xcσ = #(σ.x)

be1 e2cσ = be1cσ be2cσ
bfix f(x). e1cσ = fix(λ̂f.λ̂x. be1c (x :: f :: σ))

In the source language definition, we simplify the definition
of substitution by defining a type of values and including an exp
constructor that allows the injection of any value into any type exp
n. Thus, the closed nature of a value is apparent from its type, so we
avoid needing to lift de Bruijn indices in the process of substituting
a value in an open term.



4.1.1 Correctness Proof
We define two mutually-inductive relations, for characterizing the
compatibility of source and PHOAS expressions and values. Both
relations are parameterized by PHOAS-level closure heaps, and the
expression relation is also parameterized by an ilist, like in the
definition of the translation. Here are a few representative cases.
We write $ for the constructor that injects source values into source
expressions, and we write H  H ′ for the fact that H is a suffix
of H ′. We use the notation fix F for PHOAS-level application of
the AST constructor for recursive functions.

H ` σ.f ' v
H, σ ` #f ' #v

H, σ ` e1 ' e′1 H,σ ` e2 ' e′2
H,σ ` e1 e2 ' e′1 e′2

∀f, x. H, x :: f :: σ ` e ' F (f)(x)

H,σ ` fix f(x). e ' fix F

H ` v ' v′

H,σ ` $v ' #v′

H.n = f
∀x1, x2, H

′. H  H ′ ⇒ H ′, x2 :: x1 :: · ` e ' f(x1)(x2)

H ` Fix(e) ' Fix(n)

H ` v1 ' v′1 H ` v2 ' v′2
H ` Pair(v1, v2) ' Pair(v′1, v

′
2)

We prove that both relations are monotone, with respect to
replacing a heap H with another heap H ′ such that H  H ′. We
also lift the value relation to apply over results Ans(·) and Ex(·) in
the natural way.

There are two main lemmas behind the correctness theorem for
this phase. First, we prove that the compilation function respects
expression compatibility.

LEMMA 1. For any e and σ with compatible type indices, if e
contains no uses of $, then ·, σ ` e ' becσ.

From this starting point, we track the parallel execution of e and
its compilation. We use a notion of reference heap compatibility
H ` h ' h′, which says that h and h′ have the same length and
that their values belong pairwise to H ` · ' ·.

LEMMA 2. If:
• (h1, e) ⇓ (h2, r) at the source level,
• And H,σ ` e ' e′,
• And H ` h1 ' h′1,

Then there exist H ′, h′2, and r′ such that:

• (H,h′1, e
′) ⇓ (H ′, h′2, r

′),
• And H ′ ` r ' r′,
• And H ′ ` h2 ' h′2.

Lemma 2 appeals to an auxiliary lemma about substitution.
We note that this is the only place in our development where a
substitution theorem is proved explicitly.

These lemmas together yield the final theorem directly.

THEOREM 2. If (·, e) ⇓ (h, r) and e is closed and does not use
$, then there exist H , h′, and r′ such that (·, ·, bec ·) ⇓ (H,h′, r′)
and H ` r ' r′.

4.2 Conversion to Continuation-Passing Style
The first main compiler phase translates programs into continuation-
passing style. Functions no longer return, explicit exception han-
dling constructs are eliminated, and expression evaluation is broken
up with sequences of let bindings of the results of primitive oper-
ations on variables. Figure 5 shows the syntax of the translation’s
target language.

Primops p ::= c | x = x | fix f(x). e
| () | 〈x, x〉 | fst(x) | snd(x)
| inl(x) | inr(x) | ref(x) | !x | x := x

Expressions e ::= halt(x) | fail(x) | x x | let x = p in e
| case x of inl(x)⇒ e | inr(x)⇒ e

Figure 5. CPS language syntax

b#xc kSkE = kS(x)

braise(e)c kSkE = x
kE← e; kE(x)

blet x = e1 in e2c kSkE = x
kE← e1; be2c kSkE

be1 e2c kSkE = f
kE← e1;x

kE← e2;

let k′S = λr. kS(r) in

let k′E = λr. kE(r) in

let p′ =
˙
k′S , k

′
E

¸
in

let p =
˙
x, p′

¸
in f p

Figure 6. CPS translation

We use a higher-order one-pass CPS translation, in the style of
Danvy and Filinski (1992). The type of the translation is forall
var, Core.exp var -> (var -> CPS.exp var) -> (var ->
CPS.exp var) -> CPS.exp var. Beyond the input expression,
the extra arguments are the current success continuation and the
current exception handler, represented as meta language functions
over result variables. Figure 6 shows some representative cases of
the definition. We write λx. e as shorthand for fix f(x). e when
f does not occur free in e. We write x kE← e1; e2 as shorthand for
be1c (λ̂x. e2)(kE). The application case demonstrates how the ef-
fective domain of each core function is expanded to 3-tuples of a
main argument, a success continuation, and an exception handler.

This compilation function takes as an argument a choice of
var representation. In compiling a parametric expression E, we
return an abstraction over var, within which we call the concrete
compilation function with var and E(var) as arguments. We pass
always-halt and always-fail functions as the success continuation
and exception handler, respectively.

4.2.1 Correctness Proof
As for the last phase, this correctness proof is based around a re-
lation between core and CPS values. Since both languages use
PHOAS, the relation is parameterized by a closure heap for each.
Here are some representative rules. For a meta language function f
representing a function abstraction body, we write bfc for the way
that the main compilation translates that body. The relation defini-
tion below depends on a version of the ∼ relation from Section 2,
extended to apply to the input language.

H.n = f H ′.n′ = bf ′c
(∀x1, x

′
1, x2, x

′
2. Γ, (x1, x

′
1), (x2, x

′
2)

` f(x1)(x2) ∼ f ′(x′1)(x′2))
(∀v, v′. (v, v′) ∈ Γ⇒ H,H ′ ` v ' v′)

H,H ′ ` Fix(n) ' Fix(n′)

H,H ′ ` v1 ' v′1 H,H ′ ` v2 ' v′2
H,H ′ ` Pair(v1, v2) ' Pair(v′1, v

′
2) H,H ′ ` Ref(n) ' Ref(n)



As in the last subsection, we lift this relation in the natural way
to pairs of reference heaps and pairs of results.

Our main theorem is with respect to a substitution-free big-step
semantics for CPS programs. The signature is the same as for Core
but with final heaps no longer specified, since the final result is all
that we care about.

THEOREM 3. If:
• (H1, h1, e) ⇓ (H2, h2, r) at the source level,
• And Γ ` e ∼ e′,
• And H1, H

′
1 ` h1 ' h′1,

• And, for every (v, v′) ∈ Γ, H1, H
′
1 ` v ' v′,

Then for every pair of continuations kS and kE , there exist H ′2,
h′2, and r′ such that:

• If r′ = Ans(v) and (H ′2, h
′
2, kS(v)) ⇓ r′′,

then (H ′1, h
′
1, be′c kSkE) ⇓ r′′,

• And, if r′ = Ex(v) and (H ′2, h
′
2, kE(v)) ⇓ r′′,

then (H ′1, h
′
1, be′c kSkE) ⇓ r′′,

• And H ′1  H ′2,
• And H2, H

′
2 ` r ' r′,

• And H2, H
′
2 ` h2 ' h′2.

This theorem about expressions specialized to values-as-variables
makes it easy to derive the theorem about parametric expressions
when we substitute the initial success and exception continuations
for kS and kE .

4.2.2 Automating the Proofs
We begin by proving that each of our compatibility relations is
monotone with respect to extension of closure heaps, which follows
by induction on derivations. We also give one-liner proofs for five
more lemmas that massage “obvious” facts into forms that Coq’s
automated resolution prover will be able to use. At that point, we
are ready to tackle the proof of Theorem 3, which proceeds by
induction on core evaluation judgments.

Figure 7 gives the complete proof script for this theorem, imple-
menting in Coq’s domain-specific tactic language Ltac (Delahaye
2000). We will step through the different elements, remarking as
appropriate on the design patterns they embody.

The script begins with hints, which extend Coq’s resolution
prover, supporting higher-order logic programming in the tradition
of Prolog. The first hint suggests that proof search should try each
of the rules of the evaluation judgment for CPS-level primops. In
this way, we avoid having to mention the rules explicitly, which
makes it possible for the proof to keep working even after we add
new kinds of primops.

Hint Constructors CPS.evalP.

Next, we use the Hint Resolve command to suggest some
other rules and lemmas to be applied automatically during reso-
lution.

Hint Resolve answer_Ans answer_Ex ....

We use a Hint Extern command to specify a free-form proof
search step. We give 1 as an estimate of the cost of this rule, which
effects the order in which rules are attempted. After that, we write a
pattern to match against a goal. When the goal matches the pattern,
we suggest running the proof script to the right of the arrow. In
this case, our script suggests unfolding some definitions, so that we
expose the syntactic structure of an expression to evaluate, making
it clear which operational semantics rules apply.

Hint Extern 1 (CPS.eval _ _ (cpsFunc _ _) _) =>
unfold cpsFunc, cpsFunc’.

Now we are ready for the main body of the proof. We proceed by
induction on the first hypothesis (H1, h1, e) ⇓ (H2, h2, r), and we
chain onto our use of induction a script to apply to every inductive
case. The semicolon operator accomplishes this chaining, and we
wrap the per-case script with abstract to prove every case as a
separate lemma, which saves memory by freeing some temporary
data structures after each lemma.

induction 1; abstract (...

We begin every case with an inversion on the expression equiva-
lence judgment Γ ` e ∼ e′, which is the first remaining hypothesis.

inversion 1;

Next, we call a generic simplification tactic from our Lambda
Tamer library. This tactic knows nothing about any particular object
language. It relies on a number of built-in Coq automation tactics
and adds some new strategies, combining propositional simplifi-
cation, partial evaluation, resolution proving, rewriting, and com-
mon rules for simplifying sets of hypotheses dealing with standard
datatypes like natural numbers, lists, and optional values.

simpler;

At this point, the top-level structure of the expressions appear-
ing in a case is known, and we have gotten as far as we can
with generic simplification. The next step is to begin a loop over
some theorem-specific simplification strategies. Like other tactic-
based proof assistants, Coq supports a number of tacticals, a kind
of higher-order combinators for assembling new proof strategies.
We use the repeat tactical to structure our loop. The argument to
repeat is a tactic to attempt repeatedly until it no longer applies.
Our argument here uses a match tactic expression, which general-
izes normal pattern matching in the tradition of ML and Haskell. A
match tactic matches on the form of a proof goal, including both
hypotheses and conclusion.

repeat (match goal with

Our heuristics are pattern-matching rules, where each pattern
has the form HYPS |- CONC. The HYPS section describes condi-
tions on hypotheses and CONC gives a pattern to match against the
conclusion to be proved. The former section is a comma-separated
list of zero or more entries of the form H : p, asserting that there
must exist some hypothesis matching pattern p and to whose name
the local variable H should be bound.

The first heuristic looks for a hypothesis asserting some fact
H,H ′ ` v1 ' v2. In our implementation, such a fact is written as H
& H’ |-- v1 ~~ v2, using an ASCII notation that we register as
a Coq syntax extension or “macro.” Thus, the first pattern matches
any goal with a hypothesis over this judgment. For each such
hypothesis, we apply the tactic invert 1 2 from our library. This
tactic performs inversion if and only if it is possible to deduce
from the form of the hypothesis that at most two distinct rules of
the underlying judgment could apply. If more than two rules are
possible, the tactic invocation fails, triggering backtracking to try
a different choice of H or, if that fails, the next rule in our match
expression. By using invert 1 2, we avoid having to specialize
this heuristic to the details of our object language, for instance by
writing one heuristic per case where we can deduce that a particular
rule of ·, · ` · ' · must have been used to conclude H.

| [ H : _ & _ |-- _ ~~ _ |- _ ] => invert_1_2 H

The next heuristic follows the logic of the previous one, but for
the judgment for result compatibility instead of value compatibility,
which has a different notation.

| [ H : _ & _ |--- _ ~~ _ |- _ ] => invert_1 H



Hint Constructors CPS.evalP.
Hint Resolve answer_Ans answer_Ex CPS.EvalCaseL CPS.EvalCaseR EquivRef’.
Hint Extern 1 (CPS.eval _ _ (cpsFunc _ _) _) => unfold cpsFunc, cpsFunc’.

induction 1; abstract (inversion 1; simpler;
repeat (match goal with

| [ H : _ & _ |-- _ ~~ _ |- _ ] => invert_1_2 H
| [ H : _ & _ |--- _ ~~ _ |- _ ] => invert_1 H
| [ H : forall G e2, Core.exp_equiv G ?E e2 -> _ |- _ ] =>
match goal with
| [ _ : Core.eval ?S _ E _ _ _,

_ : Core.eval _ _ ?E’ ?S _ _,
_ : forall G e2, Core.exp_equiv G ?E’ e2 -> _ |- _ ] => fail 1

| _ => match goal with
| [ k : val -> expV,

ke : val -> exp val,
_ : _ & ?s |-- _ ~~ _,
_ : context[VCont] |- _ ] =>

guessWith ((fun (_ : val) x => ke x) :: (fun (_ : val) x => k x) :: s) H
| _ => guess H

end
end

end; simpler);
try (match goal with

| [ H1 : _, H2 : _ |- _ ] => generalize (sall_grab H1 H2)
end; simpler);

splitter; eauto 9 with cps_eval; intros;
try match goal with

| [ H : _ & _ |--- _ ~~ ?r |- answer ?r _ _ ] => inverter H; simpler; eauto 9 with cps_eval
end).

Figure 7. Complete proof script for Theorem 3

The next and final heuristic from our main loop chooses when
and how to apply induction hypotheses (IHes). The first step in that
direction is to identify some hypothesis H that has the right syntactic
structure to be an IH. Our Coq development uses the predicate
Core.exp equiv for the judgment we write as Γ ` e ∼ e′ in the
statement of Theorem 3, and the code ?E denotes a pattern variable.

| [ H : forall G e2,
Core.exp_equiv G ?E e2 -> _ |- _ ] =>

It would not be effective to apply the IHes in an arbitrary or-
der. Because of the form of Theorem 3, each successful application
yields an existentially-quantified conclusion, and eliminating those
quantifiers gives us new variables to work with. Those new vari-
ables might be needed to instantiate the universal quantifiers of a
different IH. It turns out that a simple heuristic lets us choose the
right IH order in every case: as each IH is associated with an expres-
sion, follow the order in which those expressions were evaluated in
the original program.

We can track “evaluation order” by inspecting the closure heaps
that are threaded through evaluation. One evaluation “comes after”
another if the former’s starting closure heap equals the latter’s
ending heap. By clearing each IH as we use it, we make it possible
to use the following pattern match to identify an IH that is “not
ready yet.” In particular, where the current H is for some expression
E, there must exist another IH about some expression E’, such that
evaluation of E begins where evaluation of E’ leaves off, in terms
of the flow of a closure heap S. Thus, since E comes after E’, and
since we have not yet applied the IH for E’, we are not yet ready to
apply the IH for E. We use the fail tactic to backtrack to making
a different choice of H.

match goal with
| [ _ : Core.eval ?S _ E _ _ _,

_ : Core.eval _ _ ?E’ ?S _ _,
_ : forall G e2, Core.exp_equiv G ?E’ e2 -> _
|- _ ] => fail 1

If the last rule finds no matches, then we know that H is the ap-
propriate IH to apply now. We perform a further pattern-match to
determine whether we need to apply an instantiation strategy spe-
cific to the case of function application, one of the few interesting
cases of the translation. Since the general case is simpler, we will
discuss it first. We simply apply the tactic guess, which comes
from our Lambda Tamer library, to our IH. This generates a new
unification variable for every universal quantifier in the statement
of H. Additionally, we apply automatic resolution proving to dis-
charge each hypothesis of H, in the process learning the values of
most of the unification variables that we just introduced. For this
theorem, unification variables remain for the continuation variables
kS and kE , but the other unification variables are determined im-
mediately from context. By relying on the versatile guess tactic,
we avoid almost all object-language-specific application of IHes.
This is one of the key techniques supporting proof reuse.

| _ => guess H

In most proofs, guess can handle the “uninteresting” cases that
would not be written out in detail in a pencil-and-paper proof.
Often a bit more help from the human prover is needed for the
cases that lie at the heart of a transformation’s purpose. For CPS
translation, the only such case is function application, and we use
pattern matching to identify that case and treat it specially. We
use the pattern context[VCont] to require that some hypothesis



mentions a continuation value, which turns out to be enough to
isolate the case of interest. We also bind local names for the success
continuation k and the exception handler ke. Finally, we pattern-
match out the only closure heap s that is mentioned in a value
compatibility hypothesis.

From these variables, we can construct our piece of advice to
guess. More specifically, we use the variant guessWith, which
lets us suggest a value to be used to instantiate any universal quan-
tifier of proper type, such that the remaining quantifiers are still in-
stantiated with fresh unification variables. We know that each func-
tion call allocates a new continuation each for the success continu-
ation and exception handler. The argument we pass to guessWith
reflects that knowledge, suggesting a closure heap that has the two
new continuations pushed on.

match goal with
| [ k : val -> expV,

ke : val -> exp val,
_ : _ & ?s |-- _ ~~ _,
_ : context[VCont] |- _ ] =>
guessWith ((fun (_ : val) x => ke x)
:: (fun (_ : val) x => k x) :: s) H

Each iteration of the main loop ends with a call to simpler,
which will take the existentially-quantified conjunctions produced
by guess and replace them with individual hypotheses that use
fresh top-level variables.

After we finish this main loop of heuristics, most of the work
in the proof is done. Simple resolution proving can handle most of
the remaining goals. We use one additional pattern match to catch
a case where it would be useful to add a new hypothesis justified
by the library theorem sall grab about heap well-formedness.

try (match goal with
| [ H1 : _, H2 : _ |- _ ] =>

generalize (sall_grab H1 H2)
end; simpler);

After that, we call the tactic splitter to turn a goal like
∃x1, . . . , xn. φ1 ∧ . . . ∧ φm into separate goals φ1, . . ., φm, with
each xi replaced by a fresh unification variable. We solve most of
these goals with a call to the resolution prover eauto, specifying
a proof tree depth of 9 and an additional hint database cps eval,
which includes a rule to apply as many CPS operational semantics
rules as possible, counted as a single proof step.

splitter; eauto 9 with cps_eval;

Each remaining goal is solved by case analysis on whether an
unknown evaluation result r is normal or represents an uncaught
exception. More specifically, we find a hypothesis stating a result
compatibility fact, we perform inversion on that hypothesis, and we
finish off the resulting cases with standard tactics.

try match goal with
| [ H : _ & _ |--- _ ~~ ?r

|- answer ?r _ _ ] =>
inverter H; simpler; eauto 9 with cps_eval

end).

Our inductive proof has 38 cases to consider, with one for each
semantic rule. Many of these cases need this kind of further split
on results of sub-evaluations. By using automation to structure our
proof script, we shield the human proof architect from the need to
consider these many cases individually.

4.3 Closure Conversion
The next compiler phase combines the traditional transformations
of closure conversion, which changes all functions to take their

Primops p ...as in last language, minus fix...
Expressions e ...as in last language...

Programs P ::= e | let f = fix f(x). e in P

Figure 8. Closed language syntax

free variables as explicit arguments; and hoisting, which moves
all function definitions to the top level of a program. Since we
are using PHOAS, it is easiest to combine these phases into one,
such that the closed nature of function definitions can be apparent
syntactically from the fact that they only appear at the top level of
a program. Figure 8 shows the syntax of this translation’s target
language.

As in our past work on closure conversion with PHOAS (Chli-
pala 2008), this phase is interesting because we implement it
by converting higher-order syntax to first-order syntax, which is
passed to a translation that again produces higher-order syntax.
Given a parametric expression E, we instantiate it like E(nat),
choosing to represent variables as natural numbers. We also follow
a specific convention in how we use such a term, which has type
CPS.exp nat. Our convention is isomorphic to the technique of
de Bruijn levels, where bound variables that are not inside nested
scopes have level 0, the next binders inside these have level 1, and
so on. Compared to the more common de Bruijn indices, this tech-
nique has the advantage that all occurrences of a given binder’s
variable use the same level. Therefore, since PHOAS binders are
represented as functions, we can descend into a binder simply by
calling its function with the appropriate number.

We formalize this convention with a well-formedness judgment
over CPS.exp nat. Here are the key rules in a restriction to un-
typed lambda calculus.

f < n x < n

n ` f x wf

n+ 1 ` f(n) wf

n ` λf wf

Our closure conversion is dependently-typed, such that it takes
a well-formedness proof as input. We prove a theorem saying that,
for any well-formed E, we have 0 ` E(nat) wf; and we pass
an invocation of this theorem in the initial call to the translation
function.

Here is the type of the main translation.

forall (var : Type) (n : nat) (e : exp nat), wf n e
-> (((env var (freeVars n e) -> Closed.exp var)

-> Closed.prog var)
-> Closed.prog var

The function freeVars calculates the free variable set of an ex-
pression. When called like freeVars n e, it returns a length-n
list of booleans, indicating which variables up to n appear free in e.
The type family env is parameterized by such a list. An env var
fvs is a tuple of one var variable for each entry of fvs that is
true.

The main complexity in the translation type comes from a
continuation argument. In translating an expression, the form of
that expression implies some top-level function definitions that we
should add. It is critical that none of these definitions mentions any
local variables, or else we would have an ill-formed program. Thus,
in translating an expression, we bind its functions and then call a
continuation which may bind additional functions. That continua-
tion then, inside its new definitions, calls a sub-continuation with
an environment giving values to all free variables.

We hope that a few representative examples, as shown in Figure
9, make the protocol clear. We write wf arguments as φ. We rely



bhalt(x)cnφk = k(λ̂σ.halt(get x σ φ))

bf xcnφk = k(λ̂σ.let σ′ = fst(get f (Π1(σ)) (π1(φ))) in

let f ′ = snd(get f (Π1(σ)) (π1(φ))) in

let p =
˙
σ′, get x (Π2(σ)) (π2(φ))

¸
in

f ′ p)

blet p in fcnφk = bpcn(π1(φ))(λ̂kP .

bf(n)c (n+ 1)(π2(φ))(λ̂kE .k(λ̂σ.

kP (Π1(σ)) (λ̂x.

kE (x :: Π2(σ))))))

Figure 9. Representative cases of closure conversion

on a similar primop translation function whose exact type and
definition we will not discuss further here.

There are a few unusual things going on in Figure 9. First, we
manipulate well-formedness proofs φ as data. When we know from
the structure of e that a proof φ must be deduced from a rule with
two premises, we write πi(φ) for the extraction of the ith premise’s
proof. For a function call f x, the two premises say that the two
variables f and x are both less than the current de Bruijn level n.
Such less-than proofs may be passed to the get function to enable
extracting variables from an environment σ.

We must also do similar splitting of environments. Several cases
of the definition of freeVars are implemented by joining sets of
free variables. When an environment σ has a type based on the
union of two sets, then the projections Π1 and Π2 translate into
environments for those sets. This is always possible to do, since a
union of two sets contains any binding required by either set alone.

The case for fix f(x). e, omitted above, is where new function
bindings are created. It relies on two auxiliary functions for packing
environments into tuples at closure formation sites and unpacking
those tuples in function prologues. Free variable information is
used to choose which variables to pack.

4.3.1 Correctness Proof
Reasoning about layers of nested continuations is tricky, so we
prove the correctness of our translation by defining an alternate
translation that does not use continuations. The alternate transla-
tion is specialized to the operational semantics of closed programs,
where, as in the definition of val from Section 3, we represent
function values with natural numbers pointing into a closure heap.
By specializing the translation to the semantics, we can refer di-
rectly to closures and closure heaps, since function addresses are
generated in a predictable way.

Here is the type of the alternate translation:

forall (n : nat) (e : CPS.exp nat), Closed.closures
-> wf n e -> Closed.closures
* (env Closed.val (freeVars n e)

-> Closed.exp Closed.val)

A call to this function takes a current closure heap as input,
and return values are pairs of extended closure heaps and functions
from local variable environments to expressions. We did not just
use this version as our initial translation because it works with a
program representation where types alone do not guarantee well-
formedness; any variable might include an “out-of-bounds” func-
tion reference.

It is fairly straightforward to prove a correctness theorem for
the alternate translation. We need to prove about two dozen lem-
mas about operations on free variables, environments, and closure

heaps. As for the last two phases, we define compatibility rela-
tions over the values and reference heaps of the source and tar-
get languages. With these pieces in place, we can prove the overall
correctness theorem with the usual induction on source evaluation
derivations.

A final lemma connects the two translations, proved by mutual
structural induction over CPS expressions and primops.

4.4 Flattening
After closure conversion, programs are already almost in the form
of three-address code, the family of traditional low-level compiler
intermediate languages. Beyond the use of structured control flow
with case expressions, the only serious difference is that closed
programs use let-binding of immutable variables instead of manip-
ulation of mutable temporaries, of which each procedure in three-
address code has a fixed set.

We make this connection precise by defining a flat language and
a translation into it. Every let-bound variable in an input function is
assigned a distinct temporary in the function’s translation, and the
we replace the recursive type of programs P with a simpler type of
pairs, where each pair consists of a list of flat functions and a flat
main program expression. Every variable reference in the source
program becomes either a temporary or a numeric index into the
global list of functions.

Flattening works like closure conversion in instantiating PHOAS
terms for use with de Bruijn levels. As this translation returns us to
first-order languages, its correctness proof requires more lemmas
about lists and maps, though most are independent of the set of lan-
guage constructs. The main inductive theorems are comparable in
complexity and proof organization to those for closure conversion.

4.5 Code Generation
The final compiler pass translates flat programs into assembly lan-
guage. At this stage, neither source nor target language is novel.
We still prove every theorem with an adaptive tactic program, but
the basic organization of theorems is as one would expect from re-
lated projects. Our translation uses one register as the heap limit
pointer, incrementing it as products, sums, and references are al-
located. Another register doubles as the function argument register
and as a place to stash short-lived values during double memory
indirections. Finally, we reserve a register to store a recursive func-
tion’s “self” pointer. The remaining N − 3 registers are used to
store the first N − 3 temporaries of each procedure. The remaining
temporaries are stored in a global area at the beginning of mem-
ory. Since we deal only with compiling whole programs, it is easy
to choose a size for this region by finding the highest numbered
temporary used in a program.

The correctness proof is comparable in complexity to those of
previous phases, but with significantly more supporting lemmas.

5. Optimizations
To better gauge how our approach scales to the algorithms used
by real compilers, we also implemented and verified two common
optimization passes.

5.1 Common Subexpression Elimination
Between closure conversion and flattening, we perform intrapro-
cedural common subexpression elimination (CSE) on closed pro-
grams. Since our languages have no intraprocedural iteration con-
structs, there is no need to perform dataflow analysis. Instead, a
single recursive traversal of a program suffices. The optimization
still simplifies cases like application of a known function, where it
is possible to avoid building a closure.



As we descend into a program’s structure, we maintain a map-
ping from variables to symbolic values, as defined below.

Symbolic values s ::= #n | c | () | 〈s, s〉 | inl(s) | inr(s)

Values not built from the basic constant, unit, product, and sum
constructors are represented with symbolic variables #n, where
a fresh n is generated for each new input-program variable that
cannot be determined to have more specific structure.

The purpose of CSE is to remove some redundant bindings
and case analyses. This transformation may sound complicated
enough to require conversion of input programs to first-order form
to analyze them. However, it is possible to implement CSE in an
elegant higher-order way. In translating a parametric program P ,
we must produce a CSE’d version of it for each possible variable
representation var. Our solution is to do so by instantiating P at
variable type var * sval, where sval is the type of symbolic
values s.

Thus, each variable is tagged with a symbolic representation,
and this representation may be accessed directly at use sites. The
main translation maintains a mapping from symbolic values to vari-
ables. We use this mapping to simplify case expressions with dis-
criminees that we see statically are either inl or inr. When proceed-
ing under a let binder, the translation evaluates the bound expres-
sion symbolically. If the result is in the map, we avoid creating a
new binder in the translation. Instead, we apply the binder body,
which is a function over variable/value pairs, to the variable that
our map associates with the appropriate symbolic value, paired with
that value. If the value we are binding is not found in the map, we
do create a new binder, and, in the recursive call inside the binder’s
scope, we add the new variable to the symbolic map.

The main correctness theorem for this translation is proved very
similarly to the main theorem for CPS conversion. The proof can be
a bit simpler because we need no value compatibility relation; CSE
has no effect on the values that appear during program evaluation.
We prove the main theorem with about 20 lines of tactic code for
performing appropriate case analyses, applying IHes and a lemma
about primops, and materializing known facts about variables men-
tioned in expression equivalence derivations.

5.2 Combined Register Allocation and Dead Code
Elimination

In a single pass performed between flattening and code generation,
we combine register allocation and dead code elimination. Code
generation automatically assigns the lowest-numbered temporaries
to registers. Thus, the task of “register allocation” is simply to
minimize the number of temporaries that each procedure uses, by
finding opportunities to combine several mutually non-interfering
temporaries into one. We use liveness information to calculate in-
terference graphs. As with CSE, the lack of intraprocedural itera-
tion makes it possible to compute an interference graph in a single
traversal of procedure syntax. We use the same liveness informa-
tion to eliminate useless assignments to temporaries.

Our implementation makes use of the finite set and map support
in Coq’s standard library. We represent liveness information with
sets of temporaries, interference graphs with sets of unordered pairs
of temporaries, and temporary reassignments with maps from tem-
poraries to temporaries. Coq’s library contains functors that build
such structures from modules describing keys, and each functor
output contains a set of standard theorems about its data structure.
On top of this, we also implement and use an abstract data struc-
ture for temporary sets whose complements are finite, for use in
choosing new names for temporaries.

As with code generation and many other kinds of low-level rea-
soning, this correctness proof is built from many unsurprising lem-
mas. By relying on the standard theorems about sets and maps, we

Component Total Proofs
Source language 228 0
Core PHOAS language 266 2
PHOASification 28 0

Correctness 390 138
Well-formedness 40 17

CPS language 279 18
CPS translation 94 0

Correctness 221 60
Well-formedness 39 12

Closed language 311 21
Closure conversion 303 13

Correctness 652 238
Well-formedness 261 119

CSE 87 1
Correctness 228 80
Well-formedness 177 70

Flat language 108 0
Flattening 63 0

Correctness 524 156
Register allocation 201 49

Correctness 642 310
Assembly language 105 0
Code generation 153 0

Correctness 1156 491
Overall compiler 13 0

Correctness 89 12
Total 6658 1807

Figure 10. Lines of code in different components

manage to avoid most proving that is not specific to our transfor-
mation.

6. Statistics
Figure 10 breaks down our development by the number of lines
of code in each component. We include how many lines of code
in each component come from proofs, which counts literal proof
scripts, resolution hints, and definitions of tactic functions. More or
less all of the remaining lines come from definitions of syntax and
semantics, in the files corresponding to languages; from compiler
phase implementations, in their files; or from theorem statements
and auxiliary definitions, in “Correctness” and “Well-formedness”
files.

Our development depends upon our Lambda Tamer Coq library,
which contains about 1500 lines of object-language-agnostic theo-
rems and tactics. We assert two axioms from the Coq standard li-
brary: functional extensionality, which says that two functions are
equal if they map equal inputs to equal outputs; and proof irrel-
evance for equality proofs, which says that no equality proposi-
tion has more than one distinct proof. This pair of axioms has been
proved on paper to be consistent with CIC.

The “Well-formedness” components in Figure 10 deal with
proofs that transformations produce well-formed PHOAS terms
from well-formed inputs. We conjecture that there are CIC-consistent
axioms stating that all PHOAS terms are well-formed. If this
were proved metatheoretically, then we could safely omit the well-
formedness proofs.

Our first finished compiler was for our final source language mi-
nus let expressions, constants, equality testing, and recursive func-
tions. We also proved a simpler version of the final correctness
theorem, stating only that a compiled program exhibits the same



binary success-or-failure result as the original, ignoring details of
returned values and thrown exceptions. As we added the enhance-
ments needed to reach the final version, we measured how much
effort was required.

6.1 Strengthening the Main Theorem
Since our source language is Turing-complete, the interesting as-
pects of compiler verification must be tackled even if the final the-
orem only distinguishes between two distinct classes of program
outcome. Other distinctions may be modeled using tests within the
object language. Thus, it was pragmatic for us to develop our initial
proofs using this simplification. Later, we went back and adapted
the proofs to allow us to prove Theorem 1 as we stated it earlier in
the paper.

This required updating the different object languages so that
halt and fail operations take parameters. We added or modified
about 100 lines of syntax and semantics. We also had to introduce
the “compiler data layout contract” relation and its relatives for
the different translation phases, whose definitions added about 150
lines of unsurprising code. Additionally, we added about 100 lines
of theorem statements, one-liner automated proofs, and resolution
hints for some new theorems about the contract relations.

Beyond that, we modified or added about 80 lines of theorem
statements and proof script, with most added to deal with new ex-
istential quantifications over program result values. Many of these
changes were improvements that occurred to us as we worked on
the upgrade, such that we would say that the changes belonged in
the original compiler. Notably, the correctness proofs of the opti-
mizations required no changes. We worked on this upgrade over
the course of two days, with performance of the Coq proof assis-
tant being the primary limiting factor. Automation of large proofs
frequently leads Coq to run out of memory or run for excessively
long, and we spent more time than we would like tuning our scripts
to skirt these limitations on an old computer with modest resources.
We believe that relatively straightforward improvements to Coq’s
proof engine would make this kind of upgrade quite reasonable to
complete in well under a day of work. Even with the current state
of the tools, the upgrade did not require us to add any proof code
specific to a particular case of any of our inductive proofs.

6.2 Adding let Expressions
Adding let expressions was relatively simple, since general let
only appears until CPS translation, and since let does not add a
new category of runtime values. Thus, we extended the first two
translations only and the syntax and semantics of the first two
languages. We also added a let case to the expression compatibility
relation in the PHOASification correctness proof. These changes
amounted to about 30 new lines of code, with no old lines modified.
All of our proofs continued working unchanged. We did not need
to update a single theorem statement or proof script. The whole
process took under half an hour.

6.3 Adding Constants and Equality Testing
Next, we added constants and equality comparison of constants,
which impacts much more of the compiler and its proof. We added
or changed about 100 lines defining syntax, semantics, and transla-
tions, and we added about 50 lines defining new rules for inductive
relations used in the proofs. To adapt the old proofs, we had to
change some patterns to mention new constructors of datatypes, to
placate Coq’s limited support for inferring which datatype is being
pattern-matched on. We proved one lemma about the encoding of
constants, giving it a one-line proof and adding it as a hint, and
we added one additional one-line hint that detects when constants
are being compared for equality and then performs case analysis
on whether they are equal. These proof changes amount to about

10 lines in total, and we also added 5 more lines to improve per-
formance in a way not related to constants. We spent about half a
day on this extension, again with most of that time spent waiting
for slow proof search to finish.

6.4 Adding Recursive Functions
Replacing non-recursive anonymous functions λx. e with recur-
sive anonymous functions fix f(x). e turned out to be the most
intensive change. We added or modified about 50 lines to account
for additions to syntax, semantics, and translations, and we modi-
fied about 20 lines that define function abstraction rules for further
inductive relations.

We added or modified about 350 lines of theorem statements
and proofs. In each of the earlier phases of the compiler, we mod-
ified at most one line of proof in a way that is really specific to
recursive functions. The remaining extra lines come from the fact
that fix is our only construct that binds more than one variable at
once. We had already proved a host of lemmas specialized to the
case of one variable at a time, and we needed to duplicate these
lemmas, reusing their automated proofs without changes. Other al-
terations to theorem statements and tactics reflected only the need
to handle a new binding pattern. The exception to this trend was
code generation, where a change to the calling convention triggered
a fair amount of churn in theorem statements. The full upgrade to
fix support took us approximately one day.

7. Related Work
Compiler verification for first-order languages has a considerable
history, but we will focus on reviewing related work in compil-
ing functional languages. See the bibliography by Dave (2003)
for pointers into the traditional literature on first-order compilers.
There have been a variety of investigations into verifying compil-
ers for pure functional languages, drawing on several very different
representation and proof techniques.

Flatau (1992) described a partial verification of a compiler from
a subset of the Nqthm logic to the first-order imperative language
Piton, performed with the Nqthm prover. The proof was highly au-
tomated, in the usual style of Nqthm and ACL2. Since the com-
piler worked in a single pass and targeted a first-order language, it
avoided most of the issues inherent in reasoning about rearranging
variable binders.

Minamide and Okuma (2003) used Isabelle/HOL and Isar to
build proofs of correctness for CPS translations for bare-bones
untyped lambda calculus, using concrete encoding of binders with
variable names. The simplest translation that they verified (that of
Plotkin) had a correctness proof of about 250 lines. Their proof
for Danvy and Nielsen’s translation took about 400 lines, and this
figure grew to about 600 when they added let binding to the object
language.

Tian (2006) used Twelf with HOAS to prove CPS translation
correctness for an untyped, pure mini-ML language without recur-
sion, which is subsumed within our case study source language.
His comparable CPS translation theorem took about 50 lines, in the
usual, fully manual Twelf style. Tian’s development uses a target
language more specialized to his particular translation, featuring
hardcoded binding of a second-class continuation with any function
definition, rather than building this functionality on top of product
types and first-class continuations. We expect that the cost of writ-
ing such proofs in Twelf becomes more apparent when source and
target languages are less tightly coupled, so that some inductive
proof cases must build proof trees of non-trivial depth.

In past work (Chlipala 2007), we verified a compiler from basic
simply-typed lambda calculus to a target language similar to three-
address code. We used the dependent de Bruijn representation
throughout the early stages of the compiler, and we relied on a



metaprogramming component to prove some of the standard binder
lemmas for us. By switching to PHOAS, we have avoided the
need to state those lemmas explicitly. Our present compiler extends
our past PHOAS-based work (Chlipala 2008) by treating impurity,
recursion, and the rest of the compilation pipeline beyond CPS
translation and closure conversion.

Dargaye and Leroy (2007) used Coq to verify CPS translations
for another mini-ML language encoded with de Bruijn indices. We
believe that our CPS translation is comparable in functionality to
their optimized translation, with the exception that ours does not do
tail call optimization. They give code size statistics for their CPS
translation, broken into “specifications” and “proofs.” The “proofs”
size for the dependencies of the optimized transform correctness
proof is 4287 lines, an order of magnitude more than the total
size of our CPS correctness file. The complexities of the languages
treated by the two projects are not directly comparable; Dargaye
and Leroy include variable-arity recursive functions and datatype
constructors, but they omit impure features.

Benton and Hur (2009) take a very different approach to com-
piler verification in Coq, starting with a typed functional language
(represented with de Bruijn indices) and using step-indexed logical
relations over types to establish correctness. Their compiler works
in one pass, so the theorems involved are very different from those
in the early phases of our compiler. Their development uses the
usual Coq manual proof style and runs to about 4000 lines. Though
their source language (basic lambda calculus with recursive func-
tions) is less featureful than the source language of this paper, their
final correctness theorem is more general than in any related work,
as it facilitates sound linking with code produced by different com-
pilers or written by hand.

8. Conclusion
Mostly-manual interactive proving of theorems about program-
ming languages and compilers can be a very engaging challenge,
and it has been a crucial tool in our efforts to figure out the right
abstractions for the job. Nonetheless, we do not believe that this
style scales to real-world implementations of high-level languages.
We think it is not at all too early to be thinking about the tech-
niques that may some day be applied in such a setting. Our case
study in this paper is a verified compiler whose mechanized cor-
rectness proofs are tactic programs that can adapt automatically to
specification changes. We believe strongly that, if compiler verifi-
cation ever goes mainstream, it will be done more like we propose
here than like the styles more commonly employed by languages
researchers.

To avoid getting bogged down in administrative lemmas about
binding, we exploit the parametric higher-order abstract syntax
encoding, along with a new way of using it to encode substitution-
free operational semantics. As a result, some of our compiler phase
correctness proofs are shorter even than what a diligent semanticist
would write on paper. Despite our use of novel representations, our
final theorem is stated only in terms of established encodings and
relies on no nonstandard axioms.

We hope to expand our case study into a verified compiler for
core Standard ML. This requires adding a few more features to the
source language and implementing a (hopefully straightforward)
elaboration from the official abstract syntax of Standard ML. We
would also like to define typing judgments for each language and
prove a type preservation theorem for the final compiler, which
could output Typed Assembly Language. We conjecture that this
extension would require little change to the semantic preservation
theorems and proofs. It would also be interesting to try to complete
the end-to-end compiler picture with a verified parser, type infer-
ence engine, and assembler.
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Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics.
Inf. Comput., 207(2):284–304, 2009.

Yasuhiko Minamide and Koji Okuma. Verifying CPS transformations in
Isabelle/HOL. In Proc. MERLIN, pages 1–8, 2003.

J Strother Moore. A mechanically verified language implementation. J.
Automated Reasoning, 5(4):461–492, 1989.

G. Morrisett, M. Felleisen, and R. Harper. Abstract models of memory
management. In Proc. FPCA, pages 66–77, 1995.

F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proc. PLDI,
pages 199–208, 1988.
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