Cooperative Integration of
an Interactive Proof
Assistant and an
Automated Prover

Adam Chlipala and George C. Necula
University of California, Berkeley
STRATEGIES 2006

I Summary

« We suggest a new idiom for semi-
I automated program verification.
* Implemented as a Coq tactic
* In contrast to many automation tactics,
It takes advantage of partial success
through a possibility for cooperating
Interaction between human and

automatic provers.
- Uses standard Nelson-Oppen prover
features to structure the interaction

. >
When any n and v are in the E-Graph

ESC-Style Program
Verification

V x, reach(mem,Is, x)\ x#null- hd(mem, x)=0 When any hd(mem, v) is in the E-Graph

int sum(node* 1ls) {
if (ls == null)
return 0;
else
return ls->head
+ sum(ls->tail);

}

R —

result=0

Axiom:
Vm,V x,reach(m,x

Instantiate with m:=nand x:= v

Instantiate with x .= v
H1 :V x, reach(mem, Is, x) A\ x+# null— hd(mem, x)>0

6 :reach(mem , Is, Is) 2

H4 : h=Is.head |

H7:-reach(mem,ls,Is)Vv Is=nullv h>0

9

E-Graph
A - 4

(W x, reach(mem, Is, x)\ x#null- hd(mem,b x)=0)AIs#nullAr=0—- hd(mem, Is)+ r=0

Let's Try Another....

reach(mem, Is, null) A reach(mem, Is, mid) A reach(mem , new, null)

void splice(node* ls, node *mid, node *new) {
mid->tail = new;

}

e Q reach(mem', Is, null)

/m,¥ x,V y,reach(m,x,y)— x=yVreach(m,sel(m, tl(x)), y)

Prove False

~ P

vynen 3 =1ale FE z
3 1] Q6 ar == i -
Whesaniiielin X"= 0

IrStantiate with m = nand x := v

ESC-Style Downsides

 Inductive proofs must follow program
structure!

* If the decision procedure isn't smart
enough, you're out of luck.

» Poor support for re-usable proof
libraries

e Hard to use higher-order techniques

...but really convenient when it works!

Using Cogq....

IH:reach(mem, sel(mem, ti(Is)), null)- reach(upd(mem, tl(mid), new), sel(mem, tl(Is)), null)
H1 :reach(memH34 :pgdlch(memn , Isytbpaikyll)
H2 :reach(memFs2] mple e'

H3:reach(memHweachlmem, new, null)
reach(upd(menreﬁbizl(zdpdwmlén:lStlQniM) new), isyHymhhyll)

But wait! How did Kettle prove that?

It would need to use a fact like:
reach(m, x, null)Areach(m, v, null)- reach(upd(m, u, v),x,null)

Inductive reac . :
| raach ¢ Nduction H2.

—_kettle.
Calls a Nelson- "y cuie’ H1: kettle.

Oppen prover

Kettle was unable to prove the goal.

The Initial Attempt

HA4:tl(Is)= new
Hb5:sel(upd(mem, tl(mid), new), ti(Is))=new

I reedoheapein KpDip oo Pl arfthe equality of ti(ls) |74/
HI1 :reach(mem, S y T & —re they aren't equal
H Since we can come up with a good to us.
instantiation heuristic for this lemma, we
- can add it to Kettle's knowledge base and F—

have it used automatically next time....
e lemma manually, and

Kettle handles the rest!

induction H
Now we go prove kettle.
the lemma we need despdct H1; kettle.
as use (preserve_reach mem new (tl mid) new); kettle.
preserve_reach.....

An Even Better Way

- Run Kettle tactic to reduce goal into simpler subgoals.

- For each remaining subgoal G:
- For each reachability hypothesis H:
- Use elimination on H.

- If Kettle can prove the subgoals completely, move on to next subgoal.
- Otherwise, undo the elimination and try the next possible H.
- If no suitable H was found, leave G for the user.

induction H2; bounded kettle.

Ltac bounded kettle' :=
match goal with
|[[H:reach |- _]=>
destruct H; kettle; fail
end.
Ltac bounded kettle :=
kettle; try bounded_Kkettle'.

-

N

Case Splitting

Ground
Decision
Procedures

How It Works

Kettle

Case

Splitting

/

A

Quantified
Axioms with
Triggers

\

/

Cog

. Tacic

m
K@
oy

Proof Translation

> Vx,x=y—->P-z=y—-0Q

Couldn't prove Q...

Reflective Proof Checking

“Do a case analysis on the equality of x and y. ?
When x =y, the result follows by arithmetic
simplification.

Otherwise, instantiate this lemma, and then... Term in

Dependent Type Theory

Definition kettle_prop : Set :=
Definition kettle proof : kettle_prop -> Set =
Definition interp_prop : kettle_prop -> Prop =
Definition check :

forall (p : kettle_prop) (pf : kettle_proof p),

interp_prop p =

The goal is true because | have a
Kettle proof of a proposition that
compiles to what you're looking for!

Proof

Implementation

- We've implemented this as a module
linked into a custom Coq binary.

* Implementation tested in some case
studies related to pointer-using
programs

 In largest case study so far, our tactic
helped reduce the number of proof

script lines from 37 to 16.
- ...and leads to less brittle proof scripts that
adapt to small spec changes.

Conclusion

« Coqg users benefit from a new way of
automating parts of proofs.

» Historical users of ESC-style tools can
use CoQg as a more expressive way of
driving their automated provers.

« Another contribution to the quest to
find the sweet spot between
expressivity and automation

